高层斜交网筒结构体系基本力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层斜交网筒结构体系是一种新型的结构体系,由桁架筒结构体系发展而来。主要特征为取消了竖向直柱,由斜柱相交连续环绕建筑外表面形成网格筒体。由于其具有建筑形式优美、抗侧刚度大、空间整体性能优越等特点,近年来已经出现于部分世界知名的高层与超高层建筑中。但高层斜交网筒结构体系的应用尚不成熟,依然局限于工程个案,相关理论研究也未深入展开,尚未建立对工程应用具有指导意义的理论体系。
     本文在总结斜交网筒结构的已有工程实践和理论研究资料的基础上,对高层斜交网筒结构体系的概念进行提炼,针对其在抗侧刚度、主要构件内力和结构延性等方面的基本力学性能展开研究。主要研究工作和成果如下:
     1、提炼高层斜交网筒结构体系的基本概念,拓展其立面网格布置与空间形式,并具体提出受力更加合理的直线与曲线变角度斜交网筒结构的网格布置方案。
     2、从高宽比、斜柱角度、主环梁跨数等几何因素方面,以及环梁刚度、角柱设置、杆件连接形式等结构因素方面对等角度斜交网筒结构进行抗侧刚度影响分析。结果显示斜交网筒结构抗侧刚度优于传统筒体结构,且存在最优的斜柱角度使斜交网筒结构抗侧刚度最大化。
     3、提出针对矩形平面、基于实际层间位移关系的斜交网筒结构斜柱截面初步设计方法。将该方法应用于变角度斜交网筒结构的抗侧刚度影响分析,确定变角度相对于等角度的优势范围,得出不同高宽比下最优的斜柱角度布置。
     4、结合剪力滞后分析对斜交网筒结构的斜柱内力特点进行研究。指出水平力作用下斜柱轴力分布不均,存在弱轴力斜柱。但从空间整体而言,斜交网筒结构剪力滞后效应低于传统筒体结构,其底层剪力滞比随斜柱角度增大而增大。
     5、对斜交网筒结构环梁内力特点展开研究。指出竖向荷载作用下转角区域的主环梁与相应楼板存在较大的拉力作用,并针对环梁与楼板受拉提出具体的改善措施。
     6、对斜交网筒结构进行弹塑性分析,指出其弹性承载力大,但结构延性较差。利用屈曲约束构件和钢管混凝土构件,对提高斜交网筒结构延性的方式展开具体分析讨论。
The Diagrid Tube Structural System is an innovative structural system for high-risebuildings, which is developed from Braced Tube Structure. Generally, Diagrid TubeStructure utilizes diagonals, instead of the traditional vertical columns, to form anexterior tube. Compared with conventional tubular systems, Diagrid Tube StructuralSystem provides significant lateral resistance, and represents an excellent developmentfor tall buildings. In recent years, Diagrid Tube Structures have seen a worldwideapplication as the major structural system for certain tall buildings. However DiagridTube Structural System is only applied in a limited quantity of building cases, thesystematic research on it is not yet implemented.
     Based on the practical experience and the few existed research on diagridstructures, the basic mechanical behavior of Diagrid Tube Structural System isinvestigated in this dissertation. The main work and achievements are as follows:
     1) The basic conception of Diagrid Tube Structural System is extracted and theconfiguration of diagonals is developed. A preliminary design guideline specifically fortwo types of Diagrid Tube Structure composed of diagonals with gradually changingangles is proposed.
     2) With respect to the geometric parameters of height-to-width aspect ratio,diagonal angle, number of bays, along with the structural elements of main beam, cornercolumn, connection pattern, the sensitivity investigation of the lateral stiffness ofDiagrid Tube Structure composed of diagonals with uniform angle is conducted. Theresults indicate that the lateral stiffness of Diagrid Tube Structure is much larger thanconventional tubular structures, and the maximum lateral stiffness is achieved withoptimal diagonal angle.
     3) A valid method for estimating the cross-section area of diagonals in preliminarydesign of Diagrid Tube Structure is deduced. By using the section estimating method,the sensitivities of lateral stiffness of Diagrid Tube Structure composed of diagonalswith gradually changing angles is investigated. The advantage of diagonals withchanging angles over diagonals with uniform angle is confirmed. The optimalcombinations of diagonal angles are presented.
     4) The study on diagonal internal forces of Diagrid Tube Structure is conducted. Diagonals with relatively small internal forces are observed. However, due to the spatialbehavior of diagrids, the shear lag effect of Diagrid Tube Structure is smaller thanconventional tubular structure. The shear lag ratio at1st story increasesas the diagonalangle increases.
     5) Ring beam internal forces of Diagrid Tube Structure are analyzed, whichindicates that the main beams and nearby floors around corner suffer larger tensileforces. Several measures are considered to improve this phenomenon.
     6) The elasto-plastic analysis is conducted to evaluate the seismic performance ofDiagrid Tube Structure. Large overstrength is confirmed for Diagrid Tube Structure,however, the structural ductility is not sufficient owing to the buckling of diagonals.Buckling-Restrained Diagonals and Concrete-Filled Steel Tubes are used to improve thestructural ductility.
引文
[1]中华人民共和国住房和城乡建设部.高层建筑混凝土结构技术规程JGJ3-2010.北京:中国建筑工业出版社,2011.
    [2]中华人民共和国建设部.民用建筑设计通则GB50352-2005.北京:中国建筑工业出版社,2005.
    [3]中华人民共和国建设部.高层民用建筑设计防火规范GB50045-95.2005年版.中国计划出版社,2005.
    [4]霍达.高层建筑结构设计(修订版).北京:高等教育出版社,2004.
    [5]方鄂华,钱稼茹,叶列平.高层建筑结构设计.北京:中国建筑工业出版社,2003.
    [6] MOON K S. Dynamic Interrelationship between Technology and Architecture in Tall Buildings[D].Massachusetts Institute of Technology,2005.
    [7] MOON K S, CONNOR J, FERNANDEZ, et al. Diagrid Structural Systems for Tall Buildings:Characteristics and Methodology for Preliminary Design. The Structural Design of Tall and SpecialBuildings,2007,16(2):205-230.
    [8] CARROLL C. China Central Television Headquarters-Structural Design. International journal ofsteel structures,2006,6(5):387-391.
    [9] LEONARD J. Investigation of Shear Lag Effect in High-rise Buildings with Diagrid System[D].Massachusetts Institute of Technology,2007.
    [10] MOON K S. Optimal Grid Geometry of Diagrid Structures for Tall Buildings. ArchitecturalScience Review,2008,51(3):239-251.
    [11] MOON K S. Sustainable Structural Engineering Strategies for Tall Buildings. The StructuralDesign of Tall and Special Buildings,2008,17(5):895-914.
    [12] KIM J K, LEE Y H. Progressive Collapse Resisting Capacity of Tube-type Structures. TheStructural Design of Tall and Special Buildings,2009.
    [13] LEE D, STAROSSEK U, SHIN S. Optimized Topology Extraction of Steel-Framed DiaGridStructure for Tall Buildings. International Journal of Steel Structures,2010,10(2):157-164.
    [14] KIM Y, JUNG I, JU Y, et al. Cyclic Behavior of Diagrid Nodes with H-Section Braces. Journal ofStructural Engineering,2010,136(9):1111-1122.
    [15] KIM Y, KIM M, JUNG I, et al. Experimental Investigation of the Cyclic Behavior of Nodes inDiagrid Structures. Engineering Structures,2011,33(7):2134-2144.
    [16] KIM J K, LEE Y. Seismic Performance Evaluation of Diagrid System Buildings. The StructuralDesign of Tall and Special Buildings,2010.
    [17] MOON K S. Diagrid Structures for Complex-Shaped Tall Buildings. Procedia Engineering,2011,14:1343-1350.
    [18]周健,汪大绥.高层斜交网格结构体系的性能研究.建筑结构,2007,37(05):87-91.
    [19]汪大绥,姜文伟,包联进,等.中央电视台(CCTV)新主楼的结构设计及关键技术.建筑结构,2007,37(5):1-7.
    [20]傅学怡,吴兵,张自忠.卡塔尔外交部大楼抗连续倒塌设计研究:第十九届全国高层建筑结构学术会议,2006.
    [21]傅学怡,吴兵,陈贤川,等.卡塔尔某超高层建筑结构设计.深圳大学学报(理工版),2007,24(01):1-8.
    [22]孟美莉,傅学怡,吴兵.卡塔尔某超高层建筑部分预应力环梁设计研究.建筑结构,2008,38(12):69-72.
    [23]傅学怡,吴兵,陈贤川,等.卡塔尔某超高层建筑结构设计研究综述.建筑结构学报,2008,29(1):1-9,15.
    [24]张崇厚,赵丰.高层网筒结构体系的基本概念.清华大学学报(自然科学版),2008,48(9):1399-1403.
    [25]韩小雷,唐剑秋,黄艺燕,等.钢管混凝土巨型斜交网格筒体结构非线性分析.地震工程与工程振动,2009,29(4):77-84.
    [26] HAN Xiaolei, HUANG Chao, JI Jing, et al. Experimental and Numerical Investigation of the AxialBehavior of Connection in CFST Diagrid Structures. Tsinghua Science and Technology,2008,13(01):108-113.
    [27]季静,方小丹,韩小雷,等.钢管混凝土空间相贯节点试验与研究.工程力学,2009,26(05):102-109.
    [28] HUANG Chao, HAN Xiaolei, JI Jing, et al. Behavior of Concrete-Filled Steel Tubular PlanarIntersecting Connections under Axial Compression, Part1: Experimental Study. EngineeringStructures,2010,32(01):60-68.
    [29]黄超.钢管混凝土斜交网格相贯节点受压性能研究[博士学位论文].华南理工大学,2010.
    [30]温华立.带加强层的高层建筑斜交网格结构性能研究[硕士学位论文].华南理工大学,2010.
    [31]汤杰瑶.钢管混凝土斜交网格相贯节点宏观单元本构研究[硕士学位论文].华南理工大学,2011.
    [32]张月楼,李亚明,刘宏欣,等.高层蜂窝状网格结构实例探讨及性能初步研究.建筑结构,2009,39增刊:207-210.
    [33]方小丹,韦宏,江毅,等.广州西塔结构抗震设计.建筑结构学报,2010,31(1):47-55.
    [34]方小丹,韩小雷,韦宏,等.广州西塔巨型斜交网格平面相贯节点试验研究.建筑结构学报,2010,31(1):57-62.
    [35]方小丹,曾宪武,韦宏,等.珠江新城西塔巨型斜交网格外筒节点设计研究.建筑结构,2009,39(06):9-14,122.
    [36]张小冬,刘界鹏.大连中国石油大厦结构方案优化设计.建筑结构学报,2009,增1:27-33.
    [37]黄超,韩小雷,王传峰,等.斜交网格结构体系的参数分析及简化计算方法研究.建筑结构学报,2010,31(1):70-77.
    [38]郭伟亮,滕军.超高建筑斜交网格筒力学性能研究.西安建筑科技大学学报(自然科学版),2010,42(2):174-179.
    [39]张云鹏.高层斜交网筒结构初步理论研究及应用设计[硕士学位论文].北京林业大学,2010.
    [40]郭伟亮,滕军,容柏生,等.高层斜交网格筒-核心筒结构抗震性能分析.振动与冲击,2011,30(4):150-155.
    [41]滕军,郭伟亮,容柏生,等.高层建筑斜交网格筒结构抗震概念分析.土木建筑与环境工程,2011,33(4):1-6.
    [42]张建新.竖向斜交网格筒结构钢筋混凝土节点受力性能研究[硕士学位论文].哈尔滨工业大学,2011.
    [43]张崇厚,赵丰.高层斜交网筒结构体系抗侧性能相关影响因素分析.土木工程学报,42(11):41-46.
    [44] ZHANG Chonghou, ZHAO Feng, LIU Yansheng. Diagrid Tube Structures Composed of StraightDiagonals with Gradually Varying Angles. The Structural Design of Tall and Special Buildings,2012,21:283-295.
    [45] ZHAO Feng, ZHANG Chonghou. Diagrid Tube Structures with Curved Diagonals: The6thEuropean Conference on Steel and Composite Structures, Budapest, Hungary,2011.
    [46] ETABS. CSI Analysis Reference Manual. Berkeley: Computers and Structures, Inc.,2004.
    [47]中华人民共和国建设部.建筑结构荷载规范GB50009-2001.2006年版.中国建筑工业出版社.
    [48]中华人民共和国住房和城乡建设部.建筑抗震设计规范GB50011-2010.北京:中国建筑工业出版社,2010.
    [49] KWAN A K H. Simple Method for Approximate Analysis Framed Tube Structures. Journal OfStructural Engineering-ASCE,1994,120(4):12-21.
    [50] ASCE. Minimum Design Loads for Buildings and Other Structures: SEI/ASCE7-05. Reston, VA:American Society of Civil Engineerings.
    [51] SINGH Y, NAGPAL A K. Negative Shear Lag in Frame-tube Buildings. Journal of StructureEngineering,1994,120(11):3105-3121.
    [52]陈岳辉,陈荣毅,刘斌.角柱刚度对筒体结构剪力滞后效应影响的研究.四川建筑科学研究,1999,1:3-5.
    [53] HAJI-KAZEMI H, COMPANY M. Exact Method of Analysis of Shear Lag in Framed TubeStructure. The Structural Design of Tall Buildings,2002,11:375-388.
    [54]苏强,吴亚平,杨东涛.几何非线性对箱梁剪力滞后效应的影响.兰州交通大学学报(自然科学版),2005,24(3):17-20.
    [55]马心俐.框筒结构剪力滞后效应分析的样条函数方法[硕士学位论文].广西大学,2005.
    [56]刘中辉,王全凤.框筒结构长宽比对剪力滞后的影响及其分析.华侨大学学报(自然科学版),2005,26(3):331-332.
    [57]高雁,李正良.高层筒体结构剪力滞后研究.西南科技大学学报,2006,21(2):15-19.
    [58]王海波,陈伯望,沈蒲生.框筒结构考虑负剪力滞效应的简化分析.计算力学学报,2006,23(6):706-710.
    [59]金仁和,魏德敏.框筒结构剪力滞后研究现状.建筑钢结构进展,2008,10(2):23-27.
    [60]中华人民共和国建设部.钢结构规范GB50017-2003.北京:中国计划出版社,2003.
    [61]江毅,方小丹,韦宏,等.广州西塔体外预应力应用研究.建筑结构,2009,39(11):13-15.
    [62] VELETSOS A S, NEWMARK N M. Effect of Inelastic Behavior on The Response of SimpleSystems to Earthquake Motions:2nd World Conference Earthquake Engineering, Tokyo,1960.
    [63]王元清.钢结构脆性破坏事故分析.工业建筑,1998,28(5):55-58.
    [64]童根树,赵永峰.中日欧美抗震规范结构影响系数的构成及其对塑性变形需求的影响.建筑钢结构进展,2008,10(5):53-62.
    [65] International Code Council Inc. International Building Code: IBC2006.2006.
    [66]顾强,申永康,李成.钢结构的地震反应修正系数.苏州科技学院学报(工程技术版),2011,24(4):18-24.
    [67] Applied Technology Council. Structural Response Modification Factors: ATC-19. Redwood City,CA:1995.
    [68] UANG C M. Establishing R (or Rw) and Cd Factors for Building Seismic Provisions. Journal ofStructural Engineering,1991,117(1):19-28.
    [69] OSTERAAS J D. Strength and Ductility Considerations in Seismic Design[D]. Stanford University,1990.
    [70] HOUSNER G W. Limit Design of Structures to Resist Earthquakes: Proceedings of The FirstWorld Conference on Earthquake Engineering, Berkeley, CA,1956.
    [71] NEWMARK N M, HALL W J. Earthquake Spectra and Design. Earthquake Engineering ResearchInstitute,1982.
    [72] Applied Technology Council. Seismic Evaluation and Retrofit of Concrete Building: ATC-40.1996.
    [73] FEMA. NEHRP Commentary on The Guidelines for The Seismic Rehabilitation of Buildings:FEMA274. Washington, DC:1997.
    [74]小谷俊介.日本基于性能结构抗震设计方法的发展.建筑结构,2000,30(6):3-9,58.
    [75]方鄂华,钱稼茹,赵作周.弹塑性静力分析与时程分析:第十五届全国高层建筑结构学术会议,武汉,1998.
    [76]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响.建筑科学,2001,17(5):8-13.
    [77]钱稼茹,邹积麟.静力弹塑性分析在工程中的应用研究.1999.
    [78]钱稼茹,罗文斌.静力弹塑性分析——基于性能/位移抗震设计的分析工具.建筑结构,2000,30(6):23-26.
    [79] CHOPRA A K, GOEL R K. A Modal Pushover Analysis Procedure for Estimating SeismicDemands for Buildings. Earthquake Engineering&Structural Dynamics,2002,31(3):561-582.
    [80]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动,2004,24(3):89-97.
    [81]缪志伟,马千里,叶列平,等. Pushover方法的准确性和适用性研究.工程抗震与加固改造,2008,30(1):55-59.
    [82]马千里,叶列平,陆新征. MPA法与Pushover法的准确性对比.华南理工大学学报(自然科学版),2008,36(11):121-128.
    [83] SAP2000. Structural Analysis Program. Berkeley, CA: Computers and Structures, Inc.,2004.
    [84] FEMA. Prestandard and Commentary for The Seismic Rehabilitation of Buildings: FEMA-356.Washington, D.C.:2000.
    [85] CLARK P, AIKEN I, KASAI K, et al. Design Procedures for Buildings Incorporating HystereticDamping Devices: Proceedings of the69th Annual Convention,SEAOC, Sacramento, CA,1999.
    [86]汪家铭,中岛正爱,陆烨.屈曲约束支撑体系的应用与研究进展(I).建筑钢结构进展,2005.
    [87]胡宝琳,李国强,孙飞飞.屈曲约束支撑体系的研究现状及其国内外应用.四川建筑科学研究,2007,33(4):9-13.
    [88]汪家铭,中岛正爱,陆烨.屈曲约束支撑体系的应用与研究进展(II).建筑钢结构进展,2005,7(2):1-11.
    [89] KASAI K, OOKI Y, ISHII M, et al. Value-added5-Story Steel Frame and Its Components: Part1-Full-scale Damper Tests and Analyses: The14th World Conference on Earthquake Engineering,Beijing, China,2008.
    [90]蔡益燕,郁银泉.屈曲约束支撑和制震设计:第九届高层建筑抗震技术交流会,厦门,2003.
    [91]郭彦林,刘建彬,蔡益燕,等.结构的耗能减震与防屈曲支撑.建筑结构,2005,35(8):18-23.
    [92]韩林海.钢管混凝土结构——理论与实践(第二版).北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700