基于广域测量系统及Prony算法的低频振荡分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网互联的加快、电力市场的引入、单台机组发电容量的增大、大容量能源输送形式的形成,电力系统的稳定性问题日益突出,低频振荡是现代电力系统稳定问题的主要表现形式。本文基于广域测量系统应用改进Prony算法对电力系统低频振荡进行分析和研究。
     分析了广域测量系统的组成、特点,探讨了其在电力系统中的应用,利用其实时同步的特点对电力系统的动态信息进行采集,应用广域测量信号分析电力系统低频振荡。
     研究了Prony算法,用两种判据确定影响算法准确性的样本函数矩阵阶数、并对算法参数的计算进行简化;利用多信号分析对Prony算法进行改进,提出同类信号、非同类信号的分类多信号分析方法,以提高算法的准确性。
     在多信号改进Prony算法分析的基础上,进一步对其在大系统下的应用进行了扩展。利用Prony算法的模式参数定义了系统的模式能量参与度,在小干扰稳定分析中参与因子矩阵的基础上,构造出反映系统相关性关系的相关矩阵,以此作为大系统下分类多信号改进Prony算法信号的选取依据,将所提改进算法应用到大系统中。
     应用本文研究的改进算法对EPRI-36系统进行低频振荡分析,得到了系统的振荡模式和主导振荡模式,算法分析结果的准确性和有效性得到了改善。
Power system stability in our country is easier to be undermined because of interconnected network speeding up, electric power market introduced, generation unit capacity increased as well as large-capacity energy transmission pattern shaping, and low frequency oscillation which occur frequently is one of the major problems of power system stability. This article presents the analysis of low frequency oscillation in power system in improved Prony algorithm based on wide area measurement system.
     WAMS is discussed in the structures, features as well as applications in power system, and wide area measurement signals are prepare for analysis of low frequency oscillation in power system because of WAMS can grasp the dynamic information from signals characterized by synchronization and wide-measurement.
     Prony algorithm widely used in power system is researched in both reckon of sample function matrix order in two criterions and algorithm parameters simplified calculation. To improve Prony algorithm, similar, non-similar signals are defined and sorted multi-signals improved Prony algorithm is proposed to analyze low frequency oscillation.
     In large-scale system, the paper makes a further effort to improve the Prony algorithm. Model energy correlativity is defined from Prony algorithm parameters and structured into correlation matrix based on correlation factor matrix in small signal stability analysis. The correlation matrix can reflect generation unit correlativity and be as basis of dividing signals in sorted multi-signals improved Prony algorithm.
     The proposed improved Prony algorithms were applied in EPRI-36 system to analyze low frequency oscillation, and the accuracy as well as the validity is demonstrated.
引文
[1]P. Kundur, J.Paserba, V.Ajjarapu, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions[J]. IEEE Transactions on Power Systems,2004,19(3):1387-1401.
    [2]Schleif F R, White J H. Damping for the northwest-southwest tieline oscillations--an analog study[J]. IEEE Transactions on Power Apparatus and Systems,1996,85(9):1239-1247.
    [3]D. K. Kosterev, C.Taylor, W. A. Mittelstadt. Model validation for the August 10,1996 WSCC system outage[J]. IEEE Transactions on Power Systems,1999, 14(3):967-969.
    [4]D. K. Kosrerev, W. A. Mittelstadt, M. Viles, et al. Modal validation and analysis of WSCC system oscillations following Alberta separation on August 4,2000[C]. Final Report by Bonneville Power Administration and BC Hydro, 2001.
    [5]邵俊松,李庚银,周明.电力系统低频振荡及振荡解列策略研究综述[J].电力情报,2000(02):1-5.
    [6]王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,1995,22-25.
    [7]张晓明,庞晓燕,陈苑文,等.四川电网低频振荡及控制措施[J].中国电力,2000,33(6):35-39.
    [8]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003,365-409.
    [9]Demello F P, Concordia C. Concepts of synchronous machine stability as affected by excitation control[J]. IEEE Transactions on Power Apparatus and Systems,1969,88(4):316-329.
    [10]汤涌.电力系统强迫功率振荡分析[J].电网技术,1995,19(12):6-10.
    [11]王铁强,贺仁睦,王卫国,等.电力系统低频振荡机理的研究[J].中国电机工程 学报,2002,22(2):21-25.
    [12]邓集祥,马景兰.电力系统中非线性奇异现象的研究[J].电力系统自动化,1999,23(22):1-4.
    [13]邓集祥,刘广生,边二曼.低频振荡中的Hopf分歧研究[J].中国电机工程学报,1997,17(6):391-394,398.
    [14]张卫东,张伟年.电力系统混沌振荡的参数分析[J].电网技术,2000,24(12):17-20.
    [15]Weijun Ji, V.Venkatasubramanian. Hard-limit induced chaos in a single-machine-infinite-bus Power system[C]. Proceedings of the 34th conference on Decision and control, New Orleans, LA, USA,1995,3465-3470.
    [16]李川江,邱国跃.基于改进粒子群算法的PMU装置数量增加过程中的最优配置方法[J].继电器,2006,34(12):52-56.
    [17]P. Kundur. Power system stability and control[M]. McGraw-Hill Inc.New York,1994,1-5.
    [18]L. Rouco,1. J. Perez-Arriga. Multi-area analysis of small signal stability in large electric Power Systems by SMA[J]. IEEE Transactions on Power Systems, 1993,8(3):1257-1265.
    [19]张静,徐政,王峰,等. TLS-ESPRIT在低频振荡分析中的应用[J].电力系统自动化2007,31(20):84-88.
    [20]P. Korba, M. Larsson, C. Rehtanz. Detection of oscillations in Power systems using Kalman filtering techniques[J]. IEEE Conference on Control Applications,2003, vol.1:183-188.
    [21]Hiyama T, Suzuki N, Funakoshi T. On-line identification of power system oscillation modes by using real time FFT[C]. IEEE PES Winter Meeting, Singapore,2000.
    [22]张鹏飞,薛禹胜,张启平.电力系统时变振荡特性的小波脊分析[J].电力系统自动化,2004,28(16):32-35,66.
    [23]苏小林,周双喜.Prony法在同步发电机参数辨识中应用[J].电力自动化设备,2006,26(9):1-4.
    [24]Hauer J F, Demeure C J, Scharf L L. Initial results in Prony analysis of power system response signals[J]. IEEE Transactions on Power Systems, 1990,5(1):80-89.
    [25]陈树恒,李兴源.基于WAMS的低频振荡模式在线辨识算法[J].继电器,2007,35(20):17-22.
    [26]竺炜,唐颖杰,周有庆,等.基于改进Prony算法的电力系统低频振荡模式识别[J].电网技术,2009,33(5):44-53.
    [27]D. A. Pierre, D. J. Trudnowski, M.K.Donnelly. Initial results in electromechanical mode identification from ambient data[J]. IEEE transactions on Power System,1997,12(3):124-125.
    [28]刘国平.基于Prony法的低频振荡分析与控制[硕士学位论文].浙江大学,2004.
    [29]熊俊杰,邢卫荣,万秋兰Prony算法的低频振荡主导模式识别[J].东南大学学报(自然科学版),2008,38(1):64-68.
    [30]马燕峰,赵书强,刘森,等.基于改进多信号Prony算法的低频振荡在线辨识[J].电网技术,2007,31(15):44-49.
    [31]D. J. Trudnowski, J.M.Johnson, J. F. Hauer. Making Prony analysis more accurate using multiple signals[J]. IEEE Transactions on Power Systems, 1999,14(1):226-231.
    [32]李建伟,许宝杰,韩秋实.非平稳振动信号分析中Hilbert-Huang变换的对比研究[J].机械强度,2006,28(2):165-169.
    [33]李天云,赵妍,韩永强,等Hilbert-Huang变换方法在谐波和电压闪变检测中的应用[J].电网技术,2005,29(2):73-77.
    [34]李天云,赵妍,李楠,等.基于HHT的电能质量检测新方法[J].中国电机工程学报,2005,25(17):52-56.
    [35]刘毅华,赵光宙.希尔伯特-黄变换在电力系统故障检测中的应用研究[J].继电器,2006,34(14):4-6.
    [36]胡国胜,陈一天.基于HHT变换的电机故障信号频率分析[J].电力学报,2005,20(4):327-330.
    [37]李天云,高磊,赵妍.基于HHT的电力系统低频振荡分析[J].中国电机工程学报, 2006,26(14):24-30.
    [38]Jarmes Torl. Leaning to live with Power system oscillation[C]. IEE Colloquium on Power System Dynamics Stabilization,1998.
    [39]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002,287-291,256-257.
    [40]刘扬名.电力系统稳定器(PSS)参数优化整定的研究[硕士学位论文].上海交通大学,2007.
    [41]袁野,程林,孙元章,等.基于系统留数矩阵的广域PSS设计[J].电力系统自动化,2007,31(24):1-6.
    [42]王海风,李乃湖,陈晰.近似模态控制分析法及其在选择灵活交流输电稳定器安装地点与反馈信号中的应用[J].中国电机工程学报,1999,19(6):60-64.
    [43]马幼捷,周雪松,相位SVC综合非线性控制器在交直流混合系统中的应用[J].中国电机工程学报,2004,24(9):19-23.
    [44]郭吞林,童陆园.多机系统中可控串补(TCSC)抑制功率振荡的研究[J].中国电机工程学报.2004,24(6):1-6.
    [45]Gibbard M J, Vowles D J, Pourbeik P. Interactions Between and Effectiveness of, Power System Stabilizers and FACTS Device stabilizers in Multimachines Systems[J]. IEEE Trans on Power Systems,2000,15(2):748-750.
    [46]Rahim A, Nassimi S. Synchronous generator damping enhancement through coordinated control of exciter and SVC[J]. IEE Proc Gener Transm Distrib 1996, 143(2):211-218.
    [47]戚军,江全元,曹一家.采用时滞广域测量信号的区间低频振荡阻尼控制器设计[J].电工技术学报,2009,24(6):154-159.
    [48]王伟岸,马平,蔡兴国.考虑广域反馈信号时滞影响的附加励磁控制器[J].电网技术,2008,32(19):50-54.
    [49]王宇静,于继来.考虑广域测量时滞的电网广义预测阻尼控制[J].电网技术,2009,33(4):51-56.
    [50]王绍部,江全元,刘兆燕,等.计及反馈信号多时滞特性的广域阻尼控制[J],电力系统及其自动化,2008,32(10):18-22.
    [51]严伟佳,蒋平,顾伟.SVC阻尼控制附加信号选取的探讨[J].电力系统及其自动化学报,2008,20(2):69-72.
    [52]李春艳,孙元章,彭晓涛.大型电力系统中广域阻尼控制器的配置和反馈信号选择[J].电力自动化设备,2009,29(2):21-25.
    [53]常勇,徐政.SVC广域辅助控制阻尼区域间低频振荡[J].电工技术学报,2006,21(12):40-46.
    [54]Phadke A G. Synchronized Phasor Measurements in Power System[C]. IEEE Computer Application in Power,1993,6(3):10-15.
    [55]鞠平,代飞,等.电力系统广域测量技术[M].北京:机械工业出版社,2008:37-42,3-4.
    [56]张启平,曹路,励刚,等.广域测量系统及其在华东电网的应用[J].华东电力,2005,33(1):5-10.
    [57]胡绍谦.电力系统同步湘量测量技术的研究[硕士学位论文].西南交通大学,2004.
    [58]沙智明.电力系统广域实时同步相量测量系统研究[博士学位论文].华北电力大学,2006.
    [59]丁道齐.未来型电力系统的广域测量和通信[J].电力系统通信,2004,25(11):1-6.
    [60]姜廷刚,高厚磊,刘炳旭.适合广域测量系统的通信网探讨[J].电力系统及其自动化学报,2004,16(3):57-60.
    [61]彭静,卢继平,汪洋,等.WAMS中的通信网络平台构建[J].电力系统保护与控制,2009,37(12):62-67.
    [62]曾旭东,沈澜.广域测量系统整合方案[J].四川电力技术,2009,32(1):91-94.
    [63]毛安家,郭志忠.与SCADA互补的WAMS中PMU的配置及数据处理方法[J].电网技术,2005,29(8):71-74.
    [64]王正风,黄太贵,葛斐,等.PI数据库在广域测量系统中的应用[J].电气应用,2008,27(5):186-189.
    [65]陆进军,高鑫,张力,等.配电网广域测量系统动态数据存储技术分析[J].电力系统自动化,2007,31(增刊):39-43.
    [66]李卫国,李虹,付红军,等.基于广域测量系统的电力系统状态估计[J].电网技术,2008,32(增刊2):124-127.
    [67]丁军策,蔡泽祥,王克英.基于广域测量系统的状态估计研究综述[J].电力系统自动化,2006,30(7):98-103.
    [68]秦晓辉,毕天姝,杨奇逊.基于WAMS的电力系统机电暂态过程动态状态估计[J].中国电机工程学报,2008,28(7):19-25.
    [69]薛禹胜,徐伟,Zhaoyang DONG,等.关于广域测量系统及广域控制保护系统的评述[J].电力系统自动化,2007,31(15):1-5.
    [70]蔡运清,汪磊,Kip Morison,等.广域保护(稳控)技术的现状及展望[J].电网技术,2004,28(8):20-25.
    [71]宋方方,毕天妹,杨奇逊.基于WAMS的电力系统受扰轨迹预测[J].电力系统自动化,2006,30(23):27-32.
    [72]谢会玲,鞠平,陈谦,等.广域电力系统负荷整体建模方法[J].电力系统自动化,2008,32(1):1-5.
    [73]Taylor C W, Venkatasubramanian M V, Chen Yonghong. Wide-area stability and voltage control[C]. Proceedings of the 7th Symp. Specialist in Electric Operational and Expansion Planning (Ⅶ SEPOPE), Curitiba, Brazil,2002.
    [74]胡志祥,谢小荣,肖晋宇,等.广域测量系统的延迟分析及其测试[J].电力系统自动化,2004,28(15):39-43.
    [75]李大虎,曹一家.基于模糊滤波和Prony算法的低频振荡模式在线辨识方法[J].电力系统自动化,2007,31(1):14-19.
    [76]郭成,李群湛,王德林.互联电力系统低频振荡的广域Prony分析[J].电力自动化设备,2009,29(5):69-73.
    [77]王慧.基于WAMS的电力系统低频振荡在线辨识的研究[硕士学位论文].贵州大学,2008.
    [78]张贤达.现代信号处理[M].北京:清华大学出版社,1994,120,120-125.
    [79]吕岩岩,方鸽飞,刘君华,等.电力系统电压与无功控制分区的改进[J].电工技术,2006,39(2):39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700