DKDP系列晶体制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惯性受约核聚变(Inertial confinement fusion,简称ICF)是一种可控制的热核爆炸,是未来获取核能环保能源最有前途的手段之一。从长远看,ICF工程在解决人类未来能源短缺的问题方面具有实际的应用前景,已经受到世界各国的普遍关注。强激光频率转换晶体是ICF系统中高功率激光器的重要光学元件,尽管目前新型的非线性光学晶体材料不断涌现,但综观其光学性能和生长特性,到目前为止,能满足ICF研究所需要的高激光损伤阈值大尺寸晶体,也仅有磷酸二氢钾/氘化磷酸二氢钾(KDP/DKDP)晶体。DKDP晶体在ICF工程中作为三倍频晶体最大优点在于其可以有效降低高功率密度激光下所产生的受激拉曼散射波(SRS)。但是目前生长出来的晶体的激光损伤阈值还是比理论计算出来的结果低一个数量级,这严重限制了激光输出的能量密度和晶体使用寿命,成为制约惯性约束聚变发展和应用的瓶颈。如何提高DKDP晶体的光损伤阈值一直是国内外研究的热点。
     激光引起光学元件的损伤是一个复杂的过程,它由激光参数和元件性质两方面决定。光学材料的物理性质对其激光损伤有明显影响,目前对它们之间的关系还未完全了解,但是有些研究结论还是得到了较普遍的肯定。了解材料和元件的物理参数对预测激光诱导损伤的可能性非常重要。本文生长制备了系列氘含量DKDP晶体,并按照“0902”要求利用不同原料和方法生长了晶体氘含量为80%的DKDP晶体;从DKDP晶体材料力学、热学、电学、光学等基本性能与结构之间的关系入手,探讨三倍频DKDP晶体损伤产生的材料影响因素,结合对特定激光参数下DKDP晶体的损伤特性规律研究,为使用者提供参考。
     1.采用点籽晶快速法生长了系列不同氘含量DKDP晶体,其次采用不同原料、不同生长方法生长了80%DKDP晶体,对这些晶体的生长过程进行了研究,同时还对系列氘含量晶体的晶胞参数和结构完整性进行了分析。
     A原料所配置的溶液稳定性不高,生长过程中容易出杂晶,并且杂晶生长较快;B原料料所配溶液稳定性较好,后期溶液中出现絮状不溶物,但是溶液中没有出现杂晶,晶体正常生长;C原料溶液中后期也出现杂晶,但是杂晶生长速度较慢,对晶体生长影响较小。对比研究发现,原料纯度较高时,杂质离子含量低,对晶体柱面的阻碍作用较小,有利于晶体的快速生长。
     快速生长的晶体中吸附的杂质金属离子含量要明显多于传统法生长的晶体。传统晶体中杂质金属离子含量分布较均匀,锥头和帽区附近金属离子含量没有明显的差别。而对于快速生长的晶体,柱面区杂质金属离子含量相对于锥面区明显更高。
     低氘晶体和高氘晶体可以分别看作是低掺氘KDP晶体和低掺氢DKDP晶体,这说明少量的掺杂会降低晶体的结构完整性。而处于中间浓度的晶体结晶完整性较好。
     2.测定了点籽晶技术生长的系列氘含量DKDP晶体的(001)面、(100)面和三倍频面在载荷从5g到100g的变化范围内的维氏硬度指数。基于KDP晶体力学性质分析了不同载荷、不同面上的压痕。随着晶体中氘含量的增加,晶体不同面的维氏硬度逐渐较小。这种结果主要是由于氢键在氘对氢取代之后结合力变弱所致。我们认为氢键对影响晶体硬度起到主要的作用。由于O-H键平行于[100]和[010]方向,不同面的硬度出现了明显的各向异性。K(H1-xDx)2PO4晶体的加工硬化系数随着晶体氘含量的增加而逐渐增大,这跟实验得到的维氏硬度结果是相一致的。
     3.对不同氘含量DKDP晶体的热学性质进行了详细的测试,包括比热、热膨胀、热导率等。实验发现,受生长条件的影响,氘含量对晶体热学性质的影响不明显。我们测试所得的系列氘含量晶体的比热与理论计算(135.97g·mol-1)相差不多,这表明在测试的温度范围之内,K(H1-xDx)2PO4晶体的比热符合杜隆—珀替定律和柯普定律。此外随着氘含量的增加,晶体的相转变温度和相变潜热基本有一个下降的趋势。
     随着温度的升高,晶体a方向和c方向的热膨胀系数先缓慢增大,最后趋于平稳。随着晶体氘含量的增加,晶体的两个方向上的热膨胀系数比率(c/a)有增大的趋势。这表明,在晶体中掺入氘量增大,晶体的各向异性增大,在生长或者切割过程中受开裂影响更大。
     4.测试了点籽晶快速法生长的系列氘含量DKDP晶体的电学性质,包括电导率、介电常数、弹性常数、压电常数。
     DKDP晶体的电导率随着晶体中氘含量的增加而增大。而且,根据电导率的变温测试结果,晶体电导活化能随着氘含量的增加逐渐减小。目前的结果证实了氘原子在氢键上隧穿频率要比氢原子小,这可能是导致KDP晶体的电导率在氘取代氢之后增大的原因。
     DKDP晶体的介电常数随着晶体中氘含量的增加而逐渐增大,沿着a方向的相对介电常数大于沿着c方向的介电常数,但沿着c方向的相对介电常数增大的更快。随着外加电场频率的增大,各氘含量晶体的相对介电常数是逐渐增大的,并且相对介电常数ε11比ε33增大的更快。
     实验确认了KDP晶体的弹性顺度常数sll约为31pm2N-1,这与前人报道有一定区别。在所有弹性常数中s11,s44,和s66相对较大。而且,随着晶体氘含量的增加,s11,s44,和s66逐渐的增大,但是s12,s13,和s33没有明显的变化。
     DKDP晶体的压电常数d36随着晶体中氘含量的增加而增大,但是d14的这种趋势很微小。这是由于氘取代氢之后,P04四面体中P-O键长增大P04更容易发生变形所致。随着氘含量的增加,压电应变常数e36逐渐增大,e14基本没有变化。机电耦合系数kij的变化遵循相同的规律。
     5.对系列氘含量DKDP晶体和不同原料、方法生长的80%DKDP晶体的光学性质,包括透过光谱、系列氘含量晶体的拉曼光谱、激光损伤阈值和损伤特性进行了研究。
     随着晶体氘含量的增加,晶体的透过光谱范围变大,红外部分透过向更长波长处移动,这种变化是由于氢键中氢原子被氘原子取代所致,D-O键相比于H-O键的结合力更弱。对于80%DKDP晶体,传统法生长的晶体在紫外区域的透过率要比快速法生长的晶体明显要高。在800~1900nm波长范围内传统法生长的晶体比快速法生长的晶体的透过范围更宽。
     系列氘含量DKDP晶体的偏振拉曼光谱测试表明,随着氘含量的增加,(H/D)2PO4阴离子基团内振动模的拉曼峰出现红移,这是由于氘取代氢之后P-O键的结合力变弱所致。此外,随着晶体中氘含量的增加,X(YY) X和X(ZZ)X两种配置下最强峰的峰强呈现先减后增的趋势,在晶体氘含量约为74%时达到最小值。从应用的角度看,这个结果对选择何种氘含量的DKDP晶体作为高功率大口径激光系统中三倍频晶体有一定的参考价值。
     z切样品的阈值高于三倍频切样品,我们推测DKDP晶体的本征力学性能各向异性和晶体中非球吸收体的存在导致了激光损伤阈值的方向性。DKDP晶体的激光损伤阈值随着氘化程度的增加而降低,这种结果归因于随着氘化程度增加晶体结构中主要方向上化学键强度的逐渐降低。在相同的生长温度下,DKDP晶体的激光损伤阈值与原料(主要金属杂质含量在lppm以下)的纯度关系不大,但是采用高纯原料有助于晶体均匀性的提高。对于传统生长的晶体,从低密度区域(靠近锥头)取出的样品的激光损伤阈值更高。
     1064nm激光作用下,损伤点是由中心点、定向裂纹和周围微变化区域组成,中心点空洞尺寸在2-30μm之间,主要为6-81μm。355nm激光作用下损伤点也是由中心点、周围微变化区域组成,偶尔会存在定向裂纹,中心点的尺寸1-10μm,大部分在5μm以下。相比较1064nm光损伤,355nm光损伤点密度更大,尺寸更小。此外,单晶中激光诱导损伤的形状有一定规律,这跟晶体的弹性对称性有关。拉曼测试表明,表损伤点的物质形态有一定变化但还不明确,有待进一步实验研究。
Inertial Confinement Fusion (ICF) is a kind of heat nuclear explosion that can be controlled in the laboratory, which will be one of the most promising methods for generating environmentally safe energy in the future. In the long tern, the ICF has the practical applied prospect in overcoming the shortage of energy for human being. The frequency conversion crystal is an important optical element in the high power laser system for ICF. At present, a large number of novel nonlinear optical crystals are constantly emerging. However, KDP and DKDP crystal is only one crystal with high laser induced damage threshold and large size that could meet the requirement of ICF research. The advantage of DKDP crystal used as third harmonic generation (THG) crystal in ICF project is for minimizing the stimulated Raman scattering caused by high power laser. Whereas the intrinsic breakdown of pure material is one order of magnitude above the maximum laser energy considered in these facilities, experiments showed that laser damage actually occurs at fluences below the maximum energy delivered. This problem greatly limits the fluence of output laser and the crystal's useful life. The way to improve the laser induced damage resistance of as-grown crystals is by far the most challenging problem for DKDP performance.
     Laser induced damage of optics has a very complex process, which decided by both laser parameters and properties of material. The physical properties of optical material have an obvious influence on the laser damage. Although the relationship between the properties of material and laser damage has not been cleared yet, some results have been widely confirmed. The study on the properties of material and the physical parameters of optical element is important for forecasting possibility of laser induced damage. In present work, a series of DKDP crystals with different deuteration levels and80%DKDP crystals grown with different KH2PO4raw materials by two growth methods were prepared. The mechanical, thermal, electrical and optical property of DKDP crystal were measured and analyzed with its structure for investigating the effect of material on laser damage of DKDP crystal for THG. The behavior of laser damage with specified laser parameter was investigated to provide references for users.
     1. A series of DKDP crystals with different deuteration levels were rapidly grown by point seed technique. In addition,80%DKDP crystals were grown by both traditional method and rapid method with different raw material. The growth phenomenon of these crystals was described and summarized. The cell parameters and crystalline perfection of DKDP crystals with different deuteration levels were measured.
     The stability of growth solution prepared with high pure raw material is poor with respect to other two low pure materials. The content of metalline ion impurities in rapid growth crystal is obviously higher than that of crystal grown by traditional method. The distribution of metalline ion impurities in crystal grown by traditional method is uniform. The content of impurities in prismatic sector of the rapid crystal is higher with respect to pyramidal sector. The crystalline perfection of crystals with low deuteration level and high deuteration level is inferior compared to that of the crystals with in-between deuteration level.
     2. The Vickers hardness of (100),(001), and so called "tripler" faces for DKDP crystals with different deuteration levels were measured with load in the range from5to100g. The indentations made by different loads or indented on different faces were observed. The formation of cracks was analyzed. Initially the hardness number of (001) face for each crystal increases with the increase of the applied load until it reaches25g. With further increase in load, the hardness number decreases gradually. The hardness numbers decline with the increase in deuterium content. These composition dependences are expected since the bond strength is weakened by the substitution of deuterium for hydrogen. The hydrogen bond is considered to play the key role in effecting the crystal's hardness. The visible hardness anisotropy of the different faces is attributed to the inhomogeneous distribution of the oxygen-hydrogen bond on these faces.
     3. The thermal parameters such as specific heat, thermal expansion and thermal conductivity of DKDP crystals with different deuterium contents were measured. The results show that the effect of deuteration level on the thermal property of DKDP crystal is obscure influenced by growth conditions. In test temperature range, the measured specific heat of K(H1-xDx)2PO4crystals is in accord with the value calculated on the basis of Dulong-Petit law and Neumann-Kopp law. With the increase of deuterium content, the phase transition temperature and the phase transition latent heat of DKDP crystal show a decreasing trend. Moreover, the thermal expansion ratio (c/a) is increasing. It means that the mechanical anisotropy of DKDP increases with increasing deuteration level.
     4. The electrical conductivity, dielectric constants, elastic constants, piezoelectric constants of DKDP crystals with different deuteration levels were measured.
     The electrical conductivities of these crystals were measured along a and c directions at room temperature. The electrical conductivity increases with the increase for deuterium content. Also the electrical conductivities of certain crystals were measured at various temperatures ranging from20to130℃. The values of activation energy decrease as the increase of deuterium content. The present study indicates that the deuterium tunneling frequency is smaller than that of hydrogen, which may be the reason why the variation of electrical conductivity happens after the substitution of deuterium for hydrogen in KDP crystal.
     With the increase of deuterium content, the dielectric constants of these DKDP crystals increase gradually. The dielectric constants along a direction are larger that those along c direction. The dielectric constant along a direction increases more rapidly than that along c direction. Moreover, the dielectric constant increases with the increase of frequency of applied electrical field. Similarly, the dielectric constant along a direction increases more rapidly.
     The elastic compliant constant s11of KDP crystal is measured and certified approximately as31pm2N-1by many tests, which is different with the values reported previously. In all elastic constants, the s11, s44, s66are larger than the others. With the content of deuterium increasing, s11, s44, s66gradually increase respectively, whereas s12, s13, S33have no demonstrable variation.
     The d36of DKDP crystal increases with the increase in deuterium content, and this trend for d14is slight. The length of the P-O bond increases with increasing deuterium content, which may be the cause of the variation of piezoelectric properties with the increase in deuterium content. The piezoelectric stress constant e14has no change, while e36increases with increasing content of deuterium. The electromechanical coupling coefficients kij follow a similar rule.
     5. The transmission spectra of DKDP crystals with different deuteration levels and80%DKDP crystals are measured. With the increase of deuterium content, the transmission spectra become wide and the infrared regions shift to longer wavelength. This variation arises from the substitution from Hydrogen to Deuterium in bonds with oxygen atoms. For80%DKDP crystal, the transmission in the UV region of crystal grown by traditional method is clearly higher than that of crystal grown by rapid technique. Moreover, the transmission in the range from800to1900nm of crystal grown by traditional method is wider than that of crystal by rapid method.
     The polarized Raman spectra of DKDP crystals with different deuterium concentrations were measured. With the increasing deuterium content, the red-shift of the Raman peaks which are assigned as the internal vibrations of the (H/D)2PO4-anion is contributed to the decrease in the bonding force of P-O bond influenced by the substitution of deuterium for hydrogen. Moreover, the intensity of the strongest peak of these crystals decreases first, and increases with the increasing deuterium concentration. It reaches its minimum value while the mole percentage of the deuterium content in the crystal is about74%.
     The laser induced damage thresholds of z cut and tripler cut samples for DKDP crystals with different deuterium contents were measured by1-on-1test at355nm. Laser induced damage threshold of z cut sample is higher than that of tripler cut sample. The intrinsic mechanical anisotropy of DKDP crystals and the existence of non-spherical absorbers are speculated to analyze the orientation dependence of laser induced damage threshold. In addition, the laser induced damage threshold decreases with the increase of deuterated degree. The dependence of laser induced damage threshold on deuterium content is mainly due to the decline of bond strength in primary crystallographic directions with the increase of deuterated degree. At constant growth temperature, damage resistance in DKDP is fairly independent of raw material with the mass content of main metallic ionic impurity below1ppm. However, DKDP crystal grown with high pure material has an excellent homogeneity. The samples cut from pyramidal head region have higher laser induced damage threshold with respect to those cut from other regions.
     The1064nm laser damage morphology consists of three distinct regions:a core, some oriented cracks spreading from the core, and a region of modified material surrounding the core. The size of the core is about2-30μm. Most of the355nm laser damage sites consist of two distinct regions:a core and a region of modified area surrounding the core. A few of355nm laser damage sites contain the oriented crack, which occurred frequently in1064nm laser damage sites. Moreover, the morphology of laser damage sites in single crystal is dependent on the crystallographic symmetry. The Raman tests show that the material in the damage site has been modified from the bulk material. However, the results are not clear and need to be studied further.
引文
[1]D.N.Nikogosyan. Nonlinear Optical Crystals:A Complete Survey. Cork, Ireland: Springer,2005:119.
    [2]J.West, Z.Kristallogr. A quantitative X-ray analysis of the structure of Potassium dihydrogen phosphate (KH2PO4).1930,74:306-332.
    [3]罗豪甦,仲维卓.中国材料工程大典,第9卷第6篇,化学工业出版社:北京,2006.
    [4]刘冰.典型杂质离子对KDP晶体生长速度和光学质量影响的研究.山东大学博士学位论文,2008.
    [5]E.Giebe, A.Scheibe. Simple Method of Qualitatively Indicating Piezoelectricity in Crystals. Z. Phys,1925,33:760.
    [6]G.Busch, P.Scherre. A new seignettoelectric substance.Naturwiss.1935,23:737.
    [7]Busch, Helv. Dielectric measurements on KH2PO4 and. KH2AsO4 at low temperatures. Phys. Acta,1938,11:269.
    [8]Gert Steulmann. The dielectric constants of a number of potassium salts and alkali halides. Magazine for physics,1932,77:114.
    [9]W.P.Mason. Elastic, piezoelectric, and dielectric properties of sodium chlorate and sodium bromate. Phys. Rew,1946,69:173.
    [10]C.Slater.Theory of the transition in KH2PO4. J. Chem. Phys.1941,9:16.
    [11]B.C.Frazer, R.Peninsky. X-ray Analysis of the Ferroelectric Transition in KH2PO4. Acta. Crystallogr,1953,6:273.
    [12]G.E.Bacon, R.S.Pease. A Neutron Diffraction Study of Potassium Dihydrogen Phosphate by Fourier Synthesis. Proc. Roy. Soc, Lond,1953,220:397.
    [13]B.Zwicker, P.Scherrer. Electrootische Eigenschaften der. seignetteelctrischen Kristalle KH2PO4. Helv. Phys. Acta,1944,17:346.
    [14]R.O.Carpenter. Electro-optic effect in uniaxial crystals of the dihydrogen phosphate type III Measurement of coefficients. J. Opt. Soc. Amer,1950,40: 225.
    [15]J.A.Giordmaine. Mixing of Light Beams in Crystals. Phys. Rev. Lett,1962,8: 19.
    [16]P.P.Maker, R.W.Terhune, M.Nisenoff, et al. Effects of Dispersion and Focusing on the Production of Optical Harmonics. Phys. Rev. Lett,1962,8:21.
    [17]蒋民华.非线性光学晶体材料的研究进展.物理学进展,1993,13:14-22.
    [18]林尊琪.激光核聚变的发展.中国激光,2010,37(9):2202-2207.
    [19]王淦昌,袁之尚.惯性约束核聚变.安徽教育出版社,1996.
    [20]朱士尧.核聚变研究的发展历史.物理,1990,02:113-117+84.
    [21]苏根博,曾金波,贺友平等.大截面KDP晶体在激光核聚变研究中的应用.硅酸盐学报,1997,25:717.
    [22]张克从,王希敏.非线性光学晶体材料学(第二版),科学出版社,2005.
    [23]J.H.Campbell, R.T.Maney, L.J.Athertonetal.Large aperture, high damage threshold optics for beamlet. LLNL Report,1995, UCRL-LR-105821-95-1.
    [24]N.Zaitseva and L.Carman. Rapid Growth of KDP-type Crystals. Progress in Crystal Growth and Characterization of Materials,2001,43:1-118.
    [25]K. Sankaranarayanan, P. J. Ramasamy, Unidirectional seeded single crystal growth from solution of benzophenone, J. Cryst. Growth,280 (2005) 467-473.
    [26]周稳观,罗山.快速生长大型KDP晶体.激光与光电子学进展,2000,37(11):7.
    [27]A.N.Holden.Crystal growing apparatus. Disc. Faraday Soc,1949,5:312.
    [28]N.Zaitseva, L.Carman, I.Smolsky, et al. The effect of impurities and supersaturation on the rapid growth of KDP crystals. J. Cryst. Growth,1999, 204:512-524.
    [29]T. Sasaki, A. Yokotani. Growth of Nonlinear-optical Crystals for Laser-frequency Conversion. J. Cryst. Growth,1990,99:820.
    [30]鲁智宽,高樟寿,李毅平等.溶液循环流动法生长大尺寸KDP晶体.人工晶体学报,1996,27(1):19-22.
    [31]Vladimin M. Loginer et al., Abstracts (P203B.22) of ICCG XI, The Hague, June,1995:18-25.
    [32]N.Zaitseva, J.Atherton, R.Rozsa, et al. Design and benefits of continuous filtration in rapid growth of large KDP and DKDP crystals. J. Cryst. Growth, 1999,197:911-920.
    [33]杨上峰,苏根博,李征东等.添加剂下KDP晶体的快速生长.人工晶体学报,1999,28(1):4247.
    [34]李国辉,苏根博,薛丽萍等.新添加剂下KDP晶体快速生长及其性能表征.人工晶体学报,2005,34(2):336-339.
    [35]王希敏,许实,张克从.ADP晶体快速生长及其相关性能研究.人工晶体学报,1994,23(1):33-38.
    [36]N.P.Zaitseva, L.N.Rashkovich. Secondary nucleation induced by the cracking of a growth crystal:KH2PO4(KDP) and K(H,D)2PO4(DKDP). J. Cryst. Growth, 1990,102:793-800.
    [37]N.P.Zaitseva, L.N.Rashkovich, S.V.Bogatyreva. Stability of KH2PO4 and K (H, D)2PO4 Solutions at fast crystal growth rates. J. Cryst. Growth,1995, 148:276-282.
    [38]N.P.Zaitseva, J.J.De Yoreo. Rapid Growth of Large-scale (40-55cm) KH2PO4 Crystal. J. Cryst. Growth,1997,180:255-262.
    [39]M.Nakatsuka, K.Fujioka, T.Kanabe, et al. Rapid growth over 50mm/day of water-soluble KDP crystal, J. Cryst. Growth,1997,171(3-4):531.
    [40]Zhuang Xinxin, Ye Liwang, Zheng Guozong, et al. The rapid growth of large-scale KDP single crystal in brief procedure, J. Cryst. Growth,2010,318 (1): 700-702.
    [41]孙承伟主编.激光辐照效应.北京,国防工业出版社,2002.
    [42]胡鹏.光学材料和薄膜激光破坏机理理论研究.中国工程物理研究院硕士学位论文.2005.
    [43]刘全喜.强激光对材料热损伤的有限元法分析.四川大学硕士论文,2007.
    [44]M.V奥尔曼著.激光束与材料相互作用的物理原理及应用.北京,科学出版社,1994.
    [45]孙杨,李成富,张强.白宝石晶体的激光损伤.中国激光.1992(19):861.
    [46]陈飞,孟绍贤.光学材料破坏机理.物理学进展,1998,18(2):187-206.
    [47]Roger M. Wood著.崔旭东译.光学材料的激光诱导损伤.成都,西南交通 大学出版社,2011.
    [48]C.W. Carr, H.B. Radousky, and S.G Demos, Wavelength dependence of laser-induced damage:Determining the damage initiation mechanisms, Phys. Rev. Lett.2003,91,127402.
    [49]B. C. Stuart, M. D. Feit, A. M. Rubenchik et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses, Phys. Rev. Lett.1995,74, 2248-2251.
    [50]M.D. Feit, and A.M. Rubenchik, Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning Proc. SPIE 2004,5273,74-81.
    [51]C. W. Carr and J. M. Auerbach, Effect of multiple wavelengths on laser-induced damage in KDxH2-xPO4 crystals, Opt. Lett.2006,31,595-597.
    [52]D.A. Cross, M.R. Braunstein, and C.W. Carr, The effect of pulse duration on laser-induced damage by 1053nm light in potassium dihydrogen phosphate crystals, Proc. SPIE 2007,640364031U.
    [53]P. DeMange, R. A. Negres, A. M. Rubenchik, The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals, J. Appl. Phys.2008,103,083122.
    [54]S. Reyne, G. Duchateau, J.-Y. Natoli et al. Pump-pump experiment in KH2PO4 crystals:Coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime, Appl. Phys. Lett.2010,96,121102.
    [55]C. W. Carr, J. B. Trenholme, and M. L. Spaeth, Effect of temporal pulse shape on optical damage, Appl. Phys. Lett.2007,90,041110.
    [56]C.W. Carr, H. B. Radousky, A.M. Rubenchik et al. Localized dynamics during laser-induced damage in optical materials, Phys. Rev. Lett.2004,92,087401.
    [57]R. A. Negres, S. O. Kucheyev, P. DeMange et al. Decomposition of KH2PO4 crystals during laser-induced breakdown, Appl. Phys. Lett.2005,86,171107.
    [58]C. W. Carr, M. D. Feit, M. A. Johnson et al. Complex morphology of laser-induced bulk damage in KH(2-x)DxPO4 crystals, Appl. Phys. Lett.2006,89, 131901.
    [59]A. K. Burnham, M. Runkel, M. D. Feit, Laser-induced damage in deuterated potassium dihydrogen phosphate, Appl. Opt.2003,42,5483-5495.
    [60]C.S. Liu, N. Kioussis, S.G. Demos et al. Electron- or hole-assisted reactions of H defects in hydrogen-bonded KDP, Phys. Rev. Lett.2003,91,015505.
    [61]C.S. Liu Q. Zhang and N. Kioussis, Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4, Phys. Rev. B 2003,68, 224107.
    [62]A. Dyan, M. Pommies, G. Duchateau, et al. Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and KD2xH2(1-x)PO4 crystals, Proc. SPIE 2007,6403,640307.
    [63]H. Yoshida, T. Jitsumo, H. Fujita et al. Investigation of bulk laser damage in KDP crystal as a function of laser irradiation direction, polarization, and wavelength, Appl. Phys. B 2000,70,195-201.
    [64]O. Krupych, Y. Dyachok, I. Smaga et al. Morphology of laser-induced damage of lithium niobate and KDP crystals, Optica Applicata 2008,38,567-574.
    [65]D. A. Cross, C. W. Carr, Analysis of 1ω bulk laser damage in KDP, Appl. Opt. 2011,50, D7-11.
    [66]Z. M. Liao, M. L. Spaeth, K. Manes et al. Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model, Opt. Lett.2010,35,2538-2540.
    [67]D. Hebert, L. Hallo, L. Voisin et al. A KDP equation of state for laser-induced damage applications, J. Appl. Phys.109,2011,123527.
    [68]S. G. Demos, P. DeMange, R. A. Negres et al. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals, Opt. Expr.2010,18,13788-13804.
    [69]J. Swain, S. Stokowski, D. Milam, F. Rainer, "Improving the bulk laser damage resistance of potassium dihydrogen phosphate by pulsed laser irradiation," Applied Physics Letters,1982,40(4):350-352.
    [70]J. Swain, S. Stokowski, D. Milam, "The effect of baking and pulsed laser irradiation on the bulk laser threshold of potassium dihydrogen phosphate crystals," Applied Physics Letters,1982,41 (1):12-14.
    [71]K. Fujioka, S. Matsuo, T. Kanabe, H. Fujita, and M. Nakatsuka," Optical properties of rapidly grown KDP crystal improved by thermal annealing. "J. Crystal Growth 1997,181:265-271.
    [72]王圣来,李丽霞,胡小波等.热退火对KDP晶体微结构的影响.功能材料,2003,34:331-333.
    [73]Youjun Fu, Zhangshou Gao, Shenglai Wang, et al. Study of K(DxH1-x)2PO4 Crystals:Growth Habit, Optical Properties and their Improvement by Thermal-Conditioning. Cryst. Res. Technol.2000,35(2):177-184.
    [74]常新安,涂衡,臧和贵,等.退火处理对DKDP晶体光学均匀性的影响研究.人工晶体学报.2006,35(3):532-535.
    [75]王坤鹏.提高KDP晶体光学质量及CMTD晶体生长机理研究.山东大学博士学位论文,2006:87.
    [76]M.Pritula Igor, M. I.Kolybayeva, V. I.Salo, et al. Annealing of KDP cryslals in vacuum and under pressure. Proc. of SPIE 1997,2966:634-639.
    [77]V. I. Salo, I. M. Pritula, et al. Increasing optical homogeneity of KDP crystals. Proc. of SPIE.2003, Session 7C,106.
    [78]牟晓明.有机染料等杂质对KDP晶体生长与性质的影响及晶体退火条件的研究.山东大学博士学位论文,2009:96.
    [79]Francois Guillet, et al. Effect of thermal annealing on KDP and DKDP on laser damage resistance at 3ω. Proc. of SPIE.2010,7842:78421T.
    [80]J. J. Adams, T. L. Weiland, J. R. Stanley, et al. Pulse length dependence of laser conditioning and bulk damage in KD2PO4.Proc. of SPIE 2004,5647:265-278.
    [81]J. J. Adams, J. A. Jarboe, et al. Comparison between S/1 and R/1 tests and damage density vs. fluence (p(Φ)) results for unconditioned and sub-nanosecond laser-conditioned KD2PO4 crystals. Proc. of SPIE.2007,6720:672014.
    [82]C. Maunier, B. Bertussi, et al. Comparison of ns and sub-ns laser conditioning of KDP and DKDP crystals for high power lasers. Proc. of SPIE.2007,6720: 67201L.
    [83]B. Bertussi, et al. Laser conditioning of KDP crystals using excimer and Nd: YAG lasers. Proc. of SPIE.2007,6403:64031N.
    [84]P. P. Demange. Laser-induced defect reactions governing the damage performance of KDP and DKDP. Universtiy of California Davis, Ph. D. Dissertation,2006,46,
    [85]R. A. Negres, et al. Laser damage performance of KD2-xHxPO4 crystals following X-ray irradiation. Opt. Expr.2008,16(21):16326-16333.
    [86]M.D. Feit and A.M. Rubenchik. Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning. Proc. of SPIE 2004,5273:74-82.
    [87]M.M. Chirila, N.Y. Garces, L.E. Halliburton, S.G Demos, T.A. Land and H.B. Radousky. Production and thermal decay of radiation-induced point defects in KD2PO4 crystals. J. Appl. Phys.2003,94:6456-6462.
    [88]G. Duchateau. Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses. Opt. Expr. 2009,17(13):10434-10456.
    [1]A. K. Burnham, H. F. Robey, N. P. Zaitseva, et al. Producing KDP and DKDP crystals for the NIF laser. UCRL-ID-135590.
    [2]R. Hawley-Fedder, P. Geraghty, S. Locke, et al. NIF pockels cell and frequency conversion crystals. Proc. of SPIE.2004,5341:121-126.
    [3]M. H. Jiang, C. S. Fang, X. L. Yu, et al. Polymorphism and metastable growth of DKDP. J. Cryst. Growth.1981,53:283-291.
    [4]DKDP研究小组.在D2O溶液中DKDP晶体两相稳定区的研究.1979,8(3):197-200.
    [5]A. N.Levchenko, V. M.Shulga, et al. Application of thermal laser and ionising radiation conditioning for quality improvement of KDP and DKDP single crystals. LFNM,2002,3-5 June:31-33.
    [6]S. L. Wang, Z. S. Gao, Y. J. Fu, et al. Study on rapid growth of highly-deuterated DKDP crystals. Cryst. Res. Technol.2003,38(11):941-945.
    [7]孙绍涛.三倍频DKDP晶体制备及激光损伤阈值研究.山东大学博士学位论文,2010.
    [8]李云南.溶液过饱和度和氘化程度对KDP/DKDP晶体光学性能影响的研究.山东大学硕士学位论文,2005.
    [9]杨鹏.DKDP晶体生长及其性质与性能研究.北京工业大学硕士论文,2005.
    [10]G. M. Loiacono, J. F. Balascio, W. Ocborne. Effect of deuteration on the ferroelectric transition temperature and the distribution coefficient of deuterium in K (H1-xDx) 2PO4. Appl. Phys. Lett.1974,24:455.
    [11]L. N. Rashkovich. KDP-family single crystals. IOP Publishing Ltd, Bristlo, England,1991.
    [12]I. Owczarek, K. Sangwal. Effect of impurities on the growth of KDP crystals: on the mechanism of adsorption on{100} faces from tapering data.1990,99: 827-831.
    [13]Guohui Li, Youping He, Genbo Su, et al. The effect of metallic ions on tapering phenomenon of DKDP crystals and its elimination. Cryst. Res. Technol.2007, 42(4):361-363.
    [14]王波,王圣来,房昌水等.Fe3+对KDP晶体生长影响的研究.人工晶体学报,2005,34(2):205-208.
    [15]S. A. De Vries, P. Goedtkindt, S. L. Bennett, et al. Phys. Rev. Lett. Surface Atomic Structure of KDP Crystals in Aqueous Solution:An explanation of the Growth Shape.1998,80:2229-2232.
    [16]Bruker APEX2; Bruker AXS Inc.:Madison, WI,2005.
    [17]G. M. Sheldrick. SHELXTL. University of Goettingen:Goettingen, Germany, 2001.
    [18]E. Parthe, L.M. Gelato. Acta Crystallogr.1984,169, A40.
    [19]L.M. Gelato, E. J. Parthe. Appl. Crystallogr.1987,139,20.
    [20]Landolt-B6rnstein Substance/Property Index. Springer-Verlag, Berilin Heidelberg,2007.
    [21]胡国行.KDP/DKDP晶体和熔石英激光损伤及抑制技术研究.中国科学院研究生院博士论文,2011.
    [22]李朝荣,吴立军,陈万春.高分辨x射线衍射研究杂质对晶体结构完整性的影响.物理学报.2001,50(11):2185-2191.
    [23]G. Bhagavannarayana, S. K. Kushwaha. Enhancement of SHG efficiency by urea doping in ZTS single crystals and its correlation with crystalline perfection as revealed by Kurtz powder and high-resolution X-ray diffraction methods. J. Appl. Cryst 2010,43:154-162.
    [1]N. Zaitseva, L. Carman. Rapid Growth of KDP-type Crystals. Prog. Cryst. Growth Charact. Mater.2001,43:1-118.
    [2]J. J. De Yoreo, A. K. Burnham, P. K. Whitman. Developing KH2PO4 and KD2PO4 crystals for the world's most powerful laser. Inter. Mater. Rev.2002,47:113-152.
    [3]C. W. Carr, M. D. Feit, M. A. Johnson, A. M. Rubenchik. Complex morphology of laser-induced bulk damage in KH(2-X)DXPO4 crystals. Appl. Phys. Lett.2006,89: 131901.
    [4]H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, K. Yoshida. Investigation of bulk laser damage in KDP crystal as a function of laser irradiation direction, polarization, and wavelength. Appl. Phys. B 2000,70: 195-201.
    [5]C. C. Desai, J. L. Rai. Microhardness studies of SnI2 and SnI4 single crystals. Bull. Mater. Sci.1983,5:453-457.
    [6]B. R. Lawn, D. B. Marshall. Hardness, Toughness, and Brittleness:An Indentation Analysis. J. Am. Ceram. Soc.1979,62:347-350.
    [7]A. Jain, A. K. Razdan, P. N. Kotru, B. M. Wanklyn. Load and directional effects on microhardness and estimation of toughness and brittleness for flux-grown LaBO3 crystals. J. Mater. Sci.1994,29:3847-3856.
    [8]S. Karan, S. Sen Gupta, S. P. Sen Gupta. A study of the deformation characteristics of solution-grown mixed crystals of ammonium-potassium sulphate. Mater. Sci. Eng. A 2003,357:304-307.
    [9]C. H. Guin, M. D. Katerich, A. I. Savinkov, M. P. Shaskolskaya. Plastic Strain and Dislocation Structure of the KDP Group Crystals. Kristall und Technik 1980,15: 479-488.
    [10]T. Fang, J. C. Lambropoulos. Microhardness and Indentation Fracture of Potassium Dihydrogen Phosphate (KDP). J. Am. Ceram. Soc.2002,85:174-178.
    [11]S. O. Kucheyev, W. J. Siekhaus, T. A. Land, S.G. Demos. Mechanical response of crystals during nanoindentation. Appl. Phys. Lett.2004,84: 2274-2276.
    [12]C. Lu, H. Gao, J. Wang, X. Teng, B. Wang. Mechanical Properties of Potassium Dihydrogen Phosphate Single Crystal by the Nanoindentation Technique. Mater. Manuf. Process.2010,25:740-748.
    [13]王洪祥,王景贺,马恩财,等.KDP晶体超精密加工表面硬度压痕尺寸效应研究.哈尔滨工业大学学报.2006,38(6):856-858.
    [14]H. Li, R.C. Bradt. The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci.1993,28:917-926.
    [15]J. Gong, J. Wu, Z. Guan. Examination of the Indentation Size Effect in Low-load Vickers Hardness Testing of Ceramics. J. Eu. Ceram. Soc.1999,19:2625-2631.
    [16]M. A. Meyer. Some aspects of the hardness of metals. Ph.D. Thesis, Delft,1951.
    [17]W. Mason, P. F. Johnson, J. R. Varner. Importance of load cell sensitivity in determination of the load dependence of hardness in recoding microhardness tests. J. Mater. Sci.1991,26:6576-6580.
    [18]K. Sangwal. Review:Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids-some basic concepts and trends. Cryst. Res. Tech.2009,44:1019-1037.
    [19]S. O. Kucheyev, C. Bostedt, T. van Buuren, T. M. Willey, T. A. Land, J. L. Terminello, T. E. Felter, A. V. Hamza, S. G Demos, A. J. Nelson. Electronic structure of KD2xH2(1-x)PO4 studied by soft x-ray absorption and emission spectroscopies. Phys. Rev. B 2004,70:245106.
    [20]J. C. Slater. Theory of the Transition in KH2PO4. J. Chem. Phys.1941,9:16-33.
    [21]D. Xu, D. Xue, H. Ratajczak. Morphology and structure studies of KDP and ADP crystallines in the water and ethanol solutions. J. Mol. Struct.2005,740:37-45.
    [22]F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, Y. Tian. Hardness of Covalent Crystals. Phys. Rev. Lett.2003,91:015502.
    [23]A. Simunek, J. Vackar. Hardness of Covalent and Ionic Crystals:First-Principle Calculations. Phys. Rev. Lett.2006,96:085501.
    [1]胡鹏.光学材料和薄膜激光破坏机理理论研究.中国工程物理研究院硕士论文,2005.
    [2]夏普军,龚辉,程雷,等.光学材料连续波激光热-力破坏效应.光学学报.1997,17(1):20-23.
    [3]R. W. Hopper, D. R. Uhlmann. Mechanism of inclusion damage in laser glass. J. Appl. Phys.1970,41(10):4023-4037.
    [4]W. Melle, R. Galler. Thermal analysis of laser-induced damage in a transparent dielectric (DKDP). Phys. Stat. Sol. (a),1980,58:165-172.
    [5]M. D. Feit, A. M. Rubenchik. Implications of nanoabsorber initiators for damage probability curves, pluselength scaling and laser conditioning. Proc. SPDE,2004, 5273:74-82.
    [6]A. Dyan, M. Pommies, G. Duchateau, et al. Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2(1-x)PO4 crystals. Proc. SPIE,2007,6403:640307.
    [7]Z. M. Liao, M. L. Spaeth, K. Manes, J. J. Adams, and C. W. Carr. Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model. Opt. Lett. 2010,35:1238-1240.
    [8]S. Reyne, G. Duchateau, J.-Y. Natoli, et al. Pump-pump experiment in KH2PO4 crystals:Coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime. Appl. Phys. Lett.2010,96: 121102.
    [9]关振铎,张中太,焦金生编著.《无机材料物理性能》,清华大学出版社,1992.
    [10]M. Born, K. Huang, 《Dynamical theory of crystal lattices》, Oxford University Press,38 (1954), printed in Great Britain.
    [11]汪志诚编著.《热力学·统计物理》,高等教育出版社,1993.
    [12]徐民.NdxLu1-xVO4系列激光晶体的生长及其性能研究.山东大学博士学 位论文,2011.
    [13]肖定全,王民编著.《晶体物理学》,四川大学出版社,1989.
    [14]J. F. Nye,《Physical properties of crystals》, Oxford University Press,1985, printed in Great Britain.
    [15]徐明霞.DKDP晶体生长与性质研究.山东大学博士学位论文,2012.
    [16]H. Yoshida, T. Jitsuno, H. Fujita, et al. Investigation of bulk laser damage in KDP crystal as a function of laser irradiation direction, polarization, and wavelength. Appl. Phys. B.2000,70:195-201.
    [1]Roger M. Wood著.崔旭东译.光学材料的激光诱导损伤.成都,西南交通大学出版社,2011.
    [2]关振铎,张中太,焦金生编著.无机材料物理性能.清华大学出版社,北京,1992:335.
    [3]N. P. Zaitseva, J. J. De Yoreo, M. R. Dehaven, et al. Rapid growth of large-scale (40-55 cm) KH2PO4 crystals.-J. Cryst Growth,1997,180:255-262.
    [4]J. J. De Yoreo, A. K. Burnharm, P. K. Whitman. Developing KH2PO4 and KD2PO4 crystals for the world's most powerful laser, Int. Mater. Rev,2002,47: 113-152.
    [5]L. J. Atherton, F. Rainer, J. J. De Yoreo. Thermal and laser conditioning of production and rapid growth KDP and KD*P crystals. Proc. SPIE, (1994) 2114: 36-45.
    [6]S. B. Lang. Piezoelectric and pyroelectric effects in the KDP-family. Ferroelectrics,1987,71:225-245.
    [7]W. P. Mason, The Elastic, Piezoelectric, and Dielectric Constants of Potassium Dihydrogen Phosphate and Ammonium Dihydrogen Phosphate. Phys. Rev. 1946,69:173-194.
    [8]B. Zwicker, Helv. Phys. Acta 19,523 (1946).
    [9]W. J. Price and H. B. Huntington. Acoustical Properties of Anisotropic Materials. J. Acoust. Soc. Amer.1950,22,32-37.
    [10]H. B. Huntington. The Elastic Constants of Crystals. Solid State Phys,1958,7: 213-351.
    [11]L. Boyer and R. Vacher. Mesure des constantes elastiques du KDP par diffusion brillouin. Phys. Status Solidi,1971, A6:K105-K108.
    [12]L. A. Shuvalov and A. V. Mnatsakanyan. Elastic Properties of Crystals of Potassium Dideuterophosphate over a Wide Range of Temperatures. Kristallografiya,1966,11:222-226
    [13]W. Bantle, Helv. Phys. Acta 18,245 (1945).
    [14]T. R. Sliker and S. R. Burlage. Some Dielectric and Optical Properties of KD2PO4. J. Appl. Phys.1963,34:1837-1840.
    [15]W. Kooehner, Solid State Laser Engineering (Springer-Verlag, Berlin,1999).
    [16]D. Eimed, Ferroelectrics 72,397, (1987).
    [17]M. O'Keeffe and C. T. Perrino. Proton conductivity in pure and dopedKH2PO4. J. Phys. Chem. Sol.1967,28:211-218.
    [18]M. O'Keeffe and C. T. Perrino. Isotope effects in the conductivity of KH2PO4 and KD2PO4. J. Phys. Chem. Sol.1967,28:1086-1088.
    [19]J. Bruinink. Proton migration in solids. J. Appl. Electrochem.1972,2:239-249.
    [20]L. B. Harris and G. J. Vella. Direct current conduction in ammonium and potassium dihydrogen phosphate. J. Chem. Phys.1973,58:4550-4557.
    [21]L. Glasser. Proton Conduction and Injection in Solids. Chem. Rev.1975,75: 21-65.
    [22]A. I. Baranov, V. P. Khiznichenko and L. A. Shuvalov. High temperature phase transitions and proton conductivity in some kdp-family crystals. Ferroelectrics, 1989,100:135-141.
    [23]S. Chandra, A. Kumar. Proton conduction in some solid hydrates and KDP-ferroelectric family materials. Solid State Ionics,1990,40/41:863-868.
    [24]S. Chandra, S. A. Hashmi. Proton transport mechanism in ammonium dihydrogen phosphate. J. Mater. Sci.1990,25:2459-2464.
    [25]S. Chandra, A. Kumar. Investigations on the proton transport mechanism in potassium dihydrogenphosphate. J. Phys. Condens. Matter,1991,3:5271-5286.
    [26]A. Kumar, S A Hashmi and S. Chandra. Proton transport in KDP-family of ferroelectric materials. Bull. Mater. Sci.1992,15:191-199.
    [27]K.-D. Kreuer. Proton Conductivity:Materials and Applications. Chem. Mater. 1996,8:610-641.
    [28]Z. Kvitek, J. Bornare. Thermal hysteresis and phase front shape at para-ferro transition in DKDP crystals under small dc applied electric fields. J. Phys.: Condens. Matter 2000,12:7819-7831.
    [29]S. J. van Reeuwijk, A. Puig-Molina and H. Graafsma. Electric-field-induced structural changes in deuterated potassium dihydrogen phosphate. Phys. Rev. B. 2000,62:6192-6197.
    [30]S. O. Kucheyev, C. Bostedt, T. van Buuren, et al. Electronic structure of KD2xH2(1-x)PO4 studied by soft x-ray absorption and emission spectroscopies. Phys. Rev. B.2004,70:245106.
    [31]F. Akhtar, J. Podder. A Study on Structural, Optical, Electrical and Etching Characteristics of Pure and L-Alanine Doped Potassium Dihydrogen Phosphate Crystals. J. Crystallization Process & Tech.2011,1:55-62.
    [32]ANSI/IEEE Standard 176, IEEE Standard on Piezoelectricity, New York,1987.
    [33]X. Yin, J. Wang, S. Hu, C. Jiang. Determination of the Electro-elastic Constants of La3Ga5SiO14 Single Crystal. Piezoelectrics&Acoustooptics.2003, 25,1:75-77.
    [34]Z. Gao, Y. Sun, X. Yin, S. Wang, M. Jiang. Growth and electric-elastic properties of KTiOAsO4 single crystal. J. Appl. Phys.2010,108:024103.
    [35]Z. Gao, X. Tao, X. Yin, W. Zhang, and M. Jiang. Elastic, dielectric, and piezoelectric properties of BaTeMo2O9 single crystal. Appl. Phys. Lett.2008, 93:252906.
    [36]R. Bechmann. Contour Modes of Square Plates excited Piezoelectrically and Determination of Elastic and Piezoelectric Coefficients. Proc. Phys. Soc.1951, B64:323-337.
    [37]S. J. Zhang, W. H. Jiang, Jr. R. J. Meyer, F. Li, J. Luo, W. W. Cao. Measurements of face shear properties in relaxor-PbTiO3 single crystals. J. Appl. Phys.2011,110:064106.
    [38]S. J. Zhang, F. Li. High performance ferroelectric relaxor-PbTiO3 single crystals:Status and perspective. J. Appl. Phys.2012,111:031301.
    [39]W. Soluch, R. Ksiezopolski, W. Piekarczyk, M. Berkowski, M. A. Goodberlet, J. F. Vetelino. Elastic, piezoelectric, and dielectric properties of the BaLaGa3O7 crystal. J. Appl. Phys.1985,58:2285-2287.
    [40]J. C. Slater. Theory of the Transition in KH2PO4. J. Chem. Phys.1941,9:16-33.
    [41]V. H. Schmidt and E. A. Uehling, Random Motion of Deuterons in KD2PO4. Phys. Rev.1962,126:447-457.
    [42]J. J. De Yoreo and B. W. Woods. A study of residual stress and the stress-optic effect in mixed crystals of K(DxHl-x)2PO4. J. Appl. Phys.1993,73: 7780-7789.
    [43]A. K. Burnham, M. Runkel, and M. D. Feit. Laser-induced damage in deuterated potassium dihydrogen phosphate. Appl. Opt.2003,42:5483-5495.
    [44]R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos. Expedited laser damage profiling of KDxH2-xPO4 with respect to crystal growth parameters. Opt. Lett.2006,31:3110-3112.
    [45]K.-D. Kreuer, A. Fuchs, J. Maier. Isotope effect of proton conductivity and proton conduction mechanism in oxides. Solid State Ionics,1995,77:157-162.
    [46]C. Belouet, M. Monnier, R. Crouzier. Strong isotopic effects on the lattice parameters and stability of highly deuterated D-KDP single crystals and related growth problems. J. Cryst. Growth,1975,30:151-157.
    [47]I. Smolyaninov and M. D. Glinchuk. The peculiarities of glass state formation and the role of random elastic fields in mixed crystals of the KH2PO4 family. J. Phys. Condens. Matter,1994,6:2869-2880.
    [48]R. R. Levitskii and B. M. Lisnii, Theory of related to shear strain u6 physical properties of ferroelectrics and antiferroelectrics of the KH2PO4 family. Phys. Stat. Sol.,2004,241:1350-1368.
    [49]S. J. Zhang, F. P. Yu. Piezoelectric Materials for High Temperature Sensors. J. Am. Ceram. Soc.,2011,94:3153-3170.
    [1]N. P. Zaitseva, L. Carman. Rapid growth of KDP-type crystals. Prog. Cryst. Growth Charact. Mater.2001,43:1-118.
    [2]J.J. De Yoreo, A.K. Burnham, and P.K. Whitman, Developing KH2PO4 and KD2PO4 crystals for the world's most powerful laser, Int. Mater. Rev.2002, 47:113-152.
    [3]Ruth A. Hawley-Fedder, Paul Geraghty, Susan N. Locke, Michael S. McBurney, Michael J. Runkel, Tayyab I. Suratwala, Samuel L. Thompson, Paul J. Wegner, Pamela K. Whitman. NIF Pockels cell and frequency conversion crystals. Proc. of SPIE2004,5341:121-126.
    [4]G. H. Hu, Y. A. Zhao, S. T. Sun, D. W. Li, X. Sun, J. D. Shao and Z. X. Fan. Characteristics of 355 nm laser damage in KDP and DKDP crystals. Chin. Phys. Lett.2009,26:097802.
    [5]G. H. Hu, Y. A. Zhao, S. T. Sun, D. W. Li, X. Sun, J. D. Shao and Z. X. Fan. A thermal approach to model laser damage in KDP and DKDP crystals. Chin. Phys. Lett.2009,26:097803.
    [6]R.M. Wood. Laser-Induced Damage of Optical Materials. Institute of Physics, Bristol,2003.
    [7]M.F. Koldunov, A. A. Manenkov, I.L. Pokotilo, Efficiency of various mechanisms of the laser damage in transparent solids. Quantum Electron.2002,32:623-628.
    [8]S.G. Demos, P. DeMange, R.A. Negres, and M.D. Feit, Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals. Opt. Expr.2010,18:13788-13804.
    [9]S.G Demos, M. Staggs, J.J. De Yoreo, and H.B. Radousky, Imaging of laser-induced reactions of individual defect nanoclusters. Opt. Lett.2001, 26:1975-1977.
    [10]A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, R. A. Hawley-Fedder. Laser-induced damage in deuterated potassium dihydrogen phosphate. Applied Optics,2003,42(27):5483-5495.
    [11]F. Guillet, B. Bertussi, A. Surmin and G. Duchateau. Effect of stress on laser damage and its relation with precursor defects in KDP/DKDP. Proc. of SPIE, 2011,8190:819027.
    [12]B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, and M.D. Perry, Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Phys. Rev. Lett.1995,74:2248-2252.
    [13]J.Y. Natoli, J. Capoulade, H. Piombini, B. Bertussi, Influence of laser beam size and wavelength in the determination of LIDT and associated laser damage precursor densities in KH2PO4, Proc. SPIE 2007,6720:672016.
    [14]P. DeMange, C.W. Carr, R.A. Negres, H.B. Radousky, and S.G. Demos, Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing, Opt. Lett.2005,30:221-223.
    [15]C.W. Carr, H.B. Radousky, and S.G. Demos, Wavelength Dependence of Laser-Induced Damage:Determining the Damage Initiation Mechanisms, Phys. Rev. Lett.2003,91:127402.
    [16]A. Dyan, G. Duchateau, S. Eslava, J.L. Stehle, D. Damiani and H. Piombini. Transmission measurements in rapid growth KDP and DKDP crystals. Journal of Modern Optics,2009,56(1):27-31.
    [17]N.Y. Garces, K.T. Stevens, L.E. Halliburton, M. Yan, N.P. Zaitseva, J.J. DeYoreo. Optical absorption and electron paramagnetic resonance of Fe ions in KDP crystals. Journal of Crystal Growth,2005,225:435-439.
    [18]S.A. De Vries, P. Goedtkindt, S.L. Bennett, et al. Surface Atomic Structure of KDP Crystals in Aqueous Solution:An Explanation of the Growth Shape. Phys. Rev. Lett.,1998,80 (10):2229-2232.
    [19]卢贵武.KDP晶体的生长机制和生长动力学研究.山东大学博士论文,2002.
    [20]R. Loudon. The Raman effect in crystals. Adv. Phys.1964,13(52):423-482.; erratum 1965,14:621.
    [21]T. Huser, C. W. Hollars, W. J. Siekhaus, J. J. De Yoreo,T. I. Suratwala and T. A. Land. Characterization of Proton Exchange Layer Profiles in KD2PO4 Crystals by Micro-Raman Spectroscopy. Appl. Spectrosc.2004,58(3):349-351.
    [22]G. W. Lu, X. Sun. Raman Study of Lattice Vibration Modes and Growth Mechanism of KDP Single Crystals. Cryst. Res. Technol.2002,37(1):93-99.
    [23]W. L. Liu, H. R. Xia, X. Q. Wang, et al. Spectroscopic manifestation for the isotopic substitution in potassium dihydrogen phosphate. J. Alloys Compd.2007, 430:226-231.
    [24]K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. (4th Ed.)Wiley, New York (1986).
    [25]I. Laulicht, R. Ofek. Anomalous isotope effect on Raman linewidths in KH2AsO4 and KD2AsO4 crystals. J. Raman Spectrosc.1975,4(1):41-45.
    [26]H. R. Xia, H. C. Chen, H. Yu, et al. Vibrational spectra of a K0.30Na0.10Sr0.48Ba0.32Nb206 single crystal studied by Raman and Infrared Reflectivity Spectroscopy. Phys. Stat. Sol. B 1998,210:47-59.
    [27]C. Kittel. Introduction to Solid State Physics,6th ed. New York:John Wiley & Sons,1986,90.
    [28]B. Liu, X. Yin, X. Sun, M. Xu, S. Ji, X. Xu, J. Zhang. Growth and electro-elastic properties of KH(2-x)DxPO4 single crystals. J. Appl. Cryst.2012,45:439-445.
    [29]H. Tanaka, M. Tokunaga, I. Tatsuzaki. Internal modes and local symmetry of PO4 terahedra in K(H1-xDx)2PO4 by Raman scattering. Solid State Comm. 1984,49(2):153-155.
    [30]M. Tokunaga and I. Tatsuzaki. Light scattering spectra of polarization fluctuations and models ofthe phase transition in KDP type ferroelectrics. Phase Transitions.1984,4(2):97-155.
    [31]C. E. Barker, R. A. Sacks, B. M. Van Wonterghern, et al. Transverse stimulated Raman scattering in KDP. Proc. SPIE 1995,2633:501-505.
    [32]H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, K. Yoshida. Investigation of bulk laser damage in KDP crystal as a function of laser irradiation direction, polarization, and wavelength. Appl. Phys. B 2000,70: 195-201.
    [33]B. Teng, D. Zhong, Zh. Yu, et al. Growth from the edges and inclusion defect of KDP crystal. J. Cryst. Growth,2009,311:716-718.
    [34]S. Reyne, G. Duchateau, J.Y. Natoli and L. Lamaignere. Laser-induced damage of KDP crystals by 1ω nanosecond pulses:influence of crystal orientation. Opt. Expr.2009,17:21652-21666.
    [35]C.W. Carr, M.D. Feit, M.A. Johnson, A.M. Rubenchik. Complex morphology of laser-induced bulk damage in KH(2-x)DxPO4 crystals. Appl. Phys. Lett.2006,89: 131901.
    [36]C. Belouet, M. Monnier, R. Crouzier. Strong isotopic effects on the lattice parameters and stability of highly deuterated D-KDP single crystals and related growth problems. J. Cryst. Growth,1975,30:151-157.
    [37]J. E. Swain, S. E. Stokowski, D. Milam, et al. The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals. Appl. Phys. Lett.1982,41:12-14.
    [38]O. Krupych, Y. Dyachok, I. Smaga, et al. Morphology of laser-induced damage of lithium niobate and KDP crystals. Optica Applicata,2008,38:567-574.
    [39]胡国行.KDP/DKDP晶体和熔石英激光损伤及抑制技术研究.中国科学院研究生院博士学位论文,2011.
    [40]R. A. Negres, S. O. Kucheyev, P. DeMange, et al. Decomposition of KH2PO4 crystals during laser-induced breakdown. Appl. Phys. Lett.2005,86:171107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700