高分子刷体系中相互作用的自洽场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在稳定粒子分散体系、改善表面润湿性能、提高材料的生物相容性等方面得到广泛的应用,高分子刷体系一直是理论和实验研究的热点。
     在高分子刷体系中,当粒子和接枝高分子链的尺寸在同一数量级时,接枝面不能被看成无限大的平面。高分子刷侧向均匀的假设不再合理,接枝点的分布将随着粒子和高分子刷相对位置变化而变化。这种情况,只符合接枝点可以迁移的液体刷体系。实际上,大多数高分子刷的接枝点位置是不能移动的,即固体刷更符合实际情况。因而,用于研究这类体系的理论方法,应该能够同时考虑液体刷和固体刷。
     我们将接枝点密度分布作为限制条件,引入到自洽场方程中,使得自洽场理论能够处理固体刷和液体刷。用该方法研究了曲率为零的平板刷与有限尺寸的惰性粒子之间、粒子尺寸与接枝高分子链的尺寸相当的球形刷子之间以及星形高分子之间的相互作用。
     第二章中,我们研究了平板刷和圆柱形粒子之间的相互作用,忽略了体系中可能存在的各种焓的相互作用。考察了粒子形状和尺寸,以及接枝参数对粒子与刷子之间作用的影响。得到了如下一些结果:(1)液体高分子刷与粒子相互作用的力/距离曲线上存在一个最大阻力,而固体刷与粒子相互作用的力/距离曲线上,随着体系参数不同,相应地出现极大值点或拐点。(2)当粒子与接枝面之间的距离较远时,参数相同的液体刷或固体刷与粒子之间的作用没有明显差别。(3)力/距离曲线上出现拐点或极值时阻力大小及对应的粒子位置能够反映粒子和刷子的结构特征:其大小与粒子的体积、接枝密度、链长的倒数线性关系;该点出现时,粒子离接枝面的距离与刷子高度的比值为常数(约为1.1)。
     第三章中,我们研究了在熔体介质中两个完全相同的球形高分子刷之间的相互作用。我们忽略了体系中可能存在的各种焓相互作用,考察了接枝密度、自由链链长、粒子尺寸对球形固体刷或液体刷之间的相互作用的影响。研究的结果表明:(1)当接枝链和粒子的尺寸相当时,高分子刷的结构对粒子尺寸、接枝密度、自由链长度等参数很敏感,在一定的参数范围内,发生“干一湿”转变。(2)改变自由链长度、粒子尺寸以及接枝密度等参数,球形刷子之间的相互作用会发生从完全排斥到近距离排斥、远距离吸引的转变;吸引作用随接枝密度、自由链长度以及粒子尺寸的增加而增强。(3)球形刷子之间吸引的原因在于自由链从受限的刷子附近的区域到达自由的本体中获得的构象熵。(4)当刷子之间的距离较远时,固体刷或液体刷之间的作用从完全排斥变为近距离排斥、远距离吸引的行为是基本一致的,当刷子之间的距离很近时,液体刷之间的排斥作用比固体刷之间的排斥作用弱。
     星形高分子作为曲率极高的球形高分子刷,同时具有柔性高分子和硬球粒子的性质,在高分子物理和粒子物理两个领域之间建立了一种自然的桥梁,是很重要的模型体系。因此,在第四章中,我们研究了无热溶剂中规则星形高分子之间的相互作用。得到了星形高分子之间的等效二体作用势,当星形高分子之间的距离小于星形高分子的等效软球尺寸时,该作用势与标度理论推测得到的作用势一致,可以表示为:U(d)∝-f~(3/2)In(d/R)。此外,我们还研究了共线的三个星形高分子之间的三体作用,发现三体作用为微弱的吸引作用,其作用的强度不及二体相互作用的10%,这一结果支持以二体作用势为基础的基于粒子的模拟方法的合理性。
End-grafting polymers onto particle surfaces has always been a spotlight in both experimental and theoretical researches for its extensive applications in stabilizing particle dispersion systems, improving biocompatibility of materials, and modifying wetting properties of surfaces, etc. In the field of polymer brushes, the hypothesis of lateral homogeneity of grafting density, which has perfectly explained the behaviors of liquid brushes with mobile grafting sites, however, fails to apply to systems where the size of particles being of the same order as that of the grafting polymers. It becomes even more debatable for real situations in which the polymer brushes bear closer resemblance to a solid brush, where the grafting sites are immobile. To clarify these issues, we develop self-consistent field theory (SCFT) for polymer brushes to address both the liquid and solid cases.
    We first explore the interaction between a planar brush and a cylindrical particle by the modified SCFT, and the influences of particle shape, particle size and grafting parameters on the interaction are discussed. In the absence of enthalpy effects, the following results are obtained: (1) At intermediate distance, a maximum appears on the force-distance curve of all the liquid brush/particle system, however, for the solid brush/particle system the presence of the maximum point relies on the parameters chosen; (2) If the particle is far away from the grafting surface, the interactions between the particle and polymer brush are similar in both cases; (3) The inflexion and maximum on the force-distance plots indicate the structural characteristics of these polymer brushes.
    We also study the interaction between two identical spherical brushes in a polymer melt and investigate the effects of grafting density, particle size, length of melt chains, and the mobility of the grafting sites. The results are shown as follows: (1) The structure of the spherical brushes is so susceptible to particle radius, grafting density, and the length of the melt chains that increasing these parameters will lead to a structure transition from a "wet" to "dry" brush; (2) The pairwise interactions vary from repulsive at short distance to attractive at long distance, according to different particle radius, grafting density, and the length of melt chains; (3) The attractive force between spherical brushes is a consequence of entropy increase when moving the melt chains from limited proximity of brushes to free the bulk space; (4) The differences
    between solid and liquid brushes are unnoticeable when the two spherical brushes are not closely located. However, as the separation is decreased, the repulsion between solid brushes becomes relatively stronger than that between liquid ones.
    Due to the bridging role in polymer physics and nano-particle physics played by star polymers, which can be viewed as high-curvatured spherical polymer brushes, we extend our research to the interactions between regular star polymers in athermal solvents, and calculate the effective two-body interaction potential. We find the results in agreement with those of scaling theories and other particle-based simulations. For the triplet potential among three aligned bodies, the weak interaction confirms the rationality of particle-based simulations which only involve pair-wise potentials.
引文
[1] Miiner ST. Polymer brushes; Science; 1991; 251:905-913
    [2] Halperin A, Tirrell M, Lodge TP., Tethered chains in polymer microstructures; Advances in Polymer Science; 1992; 100:31-71
    [3] F.S. Bates, Polymer-polymer phase behavior; Science, 1991; 251 (4996):898-905
    [4] Zhao B, Brittain W.J., Polymer brushes: surface-immobilized macromolecules,Prog. Polym. Sci.; 2000; 25:677-710
    [5] Soga K, Zuckermann M J, Guo H., Binary Polymer Brush in a Solvent; Macromolecules; 1996; 29:1998-2005
    [6] Mansky P, Liu Y, Huang E, Russell TP, Hawker CJ., Controlling polymer-surface interactions with random copolymer brushes; Science;1997; 275 (5305): 1458-1460
    [7] Zhao B, Brittain WJ., Synthesis of Tethered Polystyrene-block-Poly(methyi methacrylate) Monolayer on a Silicate Substrate by Sequential Carbocationic Polymerization and Atom Transfer Radical Polymerization; J. Am. Chem. Soc.; 1999; 121(14); 3557-3558
    [8] Raphael E, de Gennes PG., Rubber-rubber adhesion with connector molecules E. Raphael, P. G. De Gennes; J. Phys. Chem.; 1992; 96(10); 4002-4007.
    [9] Ji H, de Gennes PG. Macromolecules 1993;26:520. Adhesion via connector molecules: the many-stitch problem Hong Ji, P. G. De Gennes; Macromolecules; 1993; 26(3); 520-525.
    [10] Z.Zhao, B. Bushan, Effect of bonded lubricant films on the tribological performance of magnetic thin-film rigid disks, Wear; 1996; 202:50-59
    [11] Klein J, E. Kumacheva, D. Mahalu, D.Perahia, L. J. Fetters, Reduction of frictional forces between solid-surfaces bearing polymer brushes; Nature; 1994; 370(6491): 634-636
    [12] Y.Ikada, Y. Uyama, Lubricating Polymer Surfaces, Technomic Publisher, Lancaster, 1993
    [13] Takei YG, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T, Dynamic Contact Angle Measurement of Temperature-Responsive Surface Properties for Poly(N-isopropylacrylamide) Grafted Surfaces, Macromolecules 1994; 27(21):6163-6166
    [14] Ito Y, Ochiai Y, Park YS, Imanishi Y.; pH-Sensitive Gating by Conformationai Change of a Polypeptide Brush Grafted onto a Porous Polymer Membrane; J. Am. Chem. Soc.; 1997; 119(7); 1619-1623
    [15] Ito Y, Park YS, Imanishi Y; Visualization of Critical pH-Controlled Gating of a Porous Membrane Grafted with Polyelectrolyte Brushes; J. Am. Chem. Soc.;1997; 119(11); 2739-2740
    [16] Ito Y, Nishi SW, Park YS, Imanishi Y; Oxidoreduction-Sensitive Control of Water Permeation through a Polymer Brushes-Grafted Porous Membrane; Macromolecules; 1997; 30(19); 5856-5859.
    [17] Velten U, Shelden RA, Caseri WR, Surer UW, Li YZ; Polymerization of Styrene with Peroxide Initiator Ionically Bound to High Surface Area Mica; Macromolecules; 1999; 32(11); 3590-3597
    [18] Velten U, Tossati S, Shelden RA, Caseri WR, Suter UW, Hermann R, Muller M; Graft Polymerization of Styrene on Mica: Formation and Behavior of Molecular Droplets and Thin Films; Langmuir; 1999; 15(20); 6940-6945.
    [19] Niu Q J, Frechet JMJ, Polymers for 193-nm mierolithography: Regioregular 2-alkoxyearbonylnortrieyelene polymers by controlled cyelopolymerization of bulky ester derivatives of norbornadiene;Angewandte Chemie-International Edition; 1998; 37(5): 667-670
    [20] Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC, Whitesides GM, Ingber DE; Engineering Cell-shape and Function; Science; 1994; 264(5159):696-698
    [21] Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE; Geometric control of cell life and death; Science, 1997; 276 (5317): 1425-1428
    [22] Aksay A, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger PM, Gruner SM; Biomimetie pathways for assembling inorganic thin films; Science ;1996; 273 (5277): 892-898
    [23] Balazs AC, Singh C, Zhulina E, Gersappe D, Pickett G; Patterned polymer films; MRS Bulletin; 1997; 22 (1): 16-21
    [24] G.B.Sigal, M.Mammen, G.Dahman, G.M.Whitesides; Polyacrylamides Bearing Pendant α-Sialoside Groups Strongly Inhibit Agglutination of Erythrocytes by Influenza Virus: The Strong Inhibition Reflects Enhanced Binding through Cooperative Polyvalent Interactions; J. Am. Chem. Soc.; 1996; 118(16); 3789-3800
    [25] P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953.
    [26] A.Y. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules, AIP Press, New York, 1994.
    [27] T.M. Birshtein, V.A. Pryamitsyn, Coil-globule type transitions in polymers. 2. Theory of coil-globule transition in linear maeromoleeules; Macromolecules; 1991; 24(7); 1554-1560.
    [28] (a) B. Chu, Q. Ying, A.Y. Grosberg, Two-Stage Kinetics of Single-Chain Collapse. Polystyrene in Cyclohexane; Macromolecules," 1995; 28(1); 180-189.
    (b) B. Chu, Q. Ying, Single-Chain Expansion from the Collapsed Globule of Polystyrene in Cyclohexane to the Coil; Macromolecules; 1996; 29(5); 1824-1826.
    
    [29] G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces, Chapman & Hall, London, 1993.
    
    [30] R.V ilanove, D.Poupinet, F. Rondelez, A critical look at measurements of the .nu. exponent for polymer chains in two dimensions; Macromolecules; 1988; 27(9); 2880-2887.
    [31] H. D. Bijsterbosch, V. O. de Haan, A. W. de Graaf, M. Mellema, F. A. M. Leermakers, M. A. Cohen Stuart, A. A. van Well , Tethered Adsorbing Chains: Neutron Reflectivity and Surface Pressure of Spread Diblock Copolymer Monolayers; Langmuir; 1995; 77(11); 4467-4473.
    [32] de Gennes PG. Scaling theory of polymer adsorption, J Phys (Paris) 1976; 37:1445-1452
    [33] de Gennes PG, Conformations of Polymers Attached to an Interface; Macromolecules; 1980; 73(5); 1069-1075.
    [34] Cantor R., Nonionic diblock copolymers as surfactants between immiscible solvents Robert Cantor; Macromolecules; 1981; 14(5); 1186-1193.
    [35] E.B. Zhulina, O.V. Borisov, V.A. Priamytsin, Theory of steric stabilization of colloid dispersions by grafted polymers; Journal of Colloid and Interface Science; 1990; 737(2): 495-511
    [36] S.T. Milner, T.A. Witten, M.E. Cates, A parabolic density profile for grafted polymers; Europhysics Letters; 1988; 5(5): 413-418
    [37] S.T. Milner, T.A. Witten, M.E. Cates, Theory of the grafted polymer brush; Macromolecules; 1988; 27(8); 2610-2619.
    [38] E.B. Zhulina, O.V. Borisov, L. Brombacher, Theory of a planar grafted chain layer immersed in a solution of mobile polymer Macromolecules; 1991; 24(16); 4679-4690.
    [39] C.M. Wijmans, J.M.H.M. Scheutjens, E.B. Zhulina, Self-consistent field theories for polymer brushes: lattice calculations and an asymptotic analytical description Macromolecules; 1992; 25(10); 2657-2665.
    [40] E.P.K. Currie, F.A.M. Leermakers, M.A. Cohen Stuart, G.J. Fleer, Grafted Adsorbing Polymers: Scaling Behavior and Phase Transitions; Macromolecules; 1999; 32(2); 487-498.
    [41] M.A. Carignano, I.Szeifler, Pressure isotherms, phase transition, instability, and structure of tethered polymers in good, T, and poor solvents. Journal of Chemical Physics; 1994; 700(4): 3210-3224
    [42] M.A. Carignano, I. Szleifler; On the Structure and Pressure of Tethered Polymer Layers in Good Solvent; Macromolecules; 1995; 25(9); 3197-3204.
    [43] R.N. Netz, M. Schick, Polymer Brushes: From Self-Consistent Field Theory to Classical Theory Macromolecules; 1998; 37(15); 5105-5122.
    [44] I.Szleifer , M.A.Carignano, Tethered polymer layers; Advances in Chemical Physics; 1996; 94: 165-260
    [45] H. D. Bijsterbosch, V. O. de Haan, A. W. de Graaf, M. Mellema, F. A. M. Leermakers, M. A. Cohen Stuart, A. A. van Well , Tethered Adsorbing Chains: Neutron Reflectivity and Surface Pressure of Spread Diblock Copolymer Monolayers; Langmuir; 1995; 77(11); 4467-4473.
    [46] E.B. Zhulina, O.V. Borisov, V.A. Priamitsyn, T.M. Birshtein, Coil-globule type transitions in polymers. 1. Collapse of layers of grafted polymer chains Macromolecules; 1991; 24(1); 140-149.
    [47] P.Y. Lai, K.Binder , Structure and dynamics of polymer brushes near the Theta point: a Monte Carlo simulation; Journal of Chemical Physics; 1992; 97(1): 586-595
    [48] Kuznetsov DV, Chen ZY., Semiflexible polymer brushes: A scaling theory; Journal of Chemical Physics; 1998; 109 (16): 7017-7027
    [49] Pickett GT, Witten TA, End-grafted polymer melt with nematic interaction Macromolecules; 1992; 25(18); 4569-4574.
    [50] Mercurieva AA, Birshtein TM, Pryamitsyn VA, Polotskij A., Liquid-crystalline ordering in polymer brushes, Macromolecular Theory and Simulations; 1996; 5(2): 215-223
    [51] Birshtein TM, Amoskov VM, Mercurieva AA, Pryamitsyn VA., Phase transitions in polymer brushes, Macromolecular Symposia; 1997; 773: 151-161
    [52] Amoskov VM, Birshtein TM, Pryamitsyn VA, Theory of Polymer Brushes of Liquid-Crystalline Polymers Macromolecules; 1996; 2P(22); 7240-7250
    [53] Amoskov VM, Birshtein TM, Pryamitsyn VA, Theory of Liquid-Crystalline (LC) Polymer Brushes: Interpenetrating Brushes; Macromolecules; 1998; 37(11); 3720-3730
    [54] Zhulina EB, Borisov OV, Birshtein TM, Structure of grafted polyelectrolyte layer, Journal de Physique II; 1992; 2 (1): 63-74
    [55] Borisov OV, Zhulina EB, Birshtein TM., Diagram of the states of a grafted polyelectrolyte layer; Macromolecules; 1994; 27 (17): 4795-4803
    [56] Zhulina EB, Birshtein TM, Borisov OV, Theory of ionizable polymer brushes, Macromolecules; 1995; 25(5): 1491-1499
    [57] Pryamitsyn VA, Leermakers FAM, Zhulina EB. Brush Theory of Tethered Chains with a Charged Group at the Free End, Macromolecules; 1997; 30(3); 584-589
    [58] Israels R, Leermakers FAM, Fleer GJ, Zhulina EB. Charged Polymeric Brushes: Structure and Scaling Relations; Macromolecules; 1994; 27(12); 3249-3261
    [59] Pineus P, Colloid stabilization with grafted polyelectrolytes, Macromolecules; 1991; 24(10); 2912-2919.
    [60] R.Y erushalmi-Rozen, J. Klein, L.J.Fetters, Suppression of rupture in thin nonwetting liquid-films, Science; 1994; 263 (5148): 793-795
    [61] Sidorenko, A.; Minko, S.; Schenk-Meuser, K.; Duschner, H.; Stamm, M.; Switching of Polymer Brushes Langmuir; 1999; 15(24); 8349-8355.
    [62] D. F. Siqueira, K. Koehler, M. Stamm, Structures at the Surface of Dry Thin Films of Grafted Copolymers; Langmuir; 1995; II(8); 3092-3096.
    [63] Sedjo RA, Mirous BK, Brittain WJ, Synthesis of Polystyrene-block-poly(methyl methacrylate) Brushes by Reverse Atom Transfer Radical Polymerization; Macromolecules; 2000; 33(5); 1492-1493.
    [64] Amitabha Chakrabarti, Raul Toral; Density profile of terminally anchored polymer chains: a Monte Carlo study Macromolecules; 1990; 23(7); 2016-2021
    [65] M. J. Fasolka, Observed Substrate Topography-Mediated Lateral Patterning of Diblock Copolymer Films, Phys. Rev. Lett.; 1997; 79(16):3018-3021
    [66] Fasoika, M. J.; Banerjee, P.; Mayes, A. M.; Pickett, G.; Balazs, A. C.,Morphology of UItrathin Supported Diblock Copolymer Films: Theory and Experiment Macromolecules; 2000; 33(15); 5702-5712.
    [67] Boltau M, Walheim S, Miynek J, Krausch G, Steiner U, Surface-induced structure formation of polymer blends on patterned substrates ; Nature; 1998; 391(6670): 877-879
    [68] Schaffer E, Thurn-Albrecht T, Russell TP, Steiner U, Electrically induced structure formation and pattern transfer; Nature; 2000; 403(6772): 874-877
    [69] Boker, A.; Muller, A. H. E.; Krausch, G, Nanoscopic Surface Patterns from Functional ABC Triblock Copolymers; Macromolecules; 2001; 34(21); 7477-7488
    [70] Singh, C.; Zhulina, E. B.; Gersappe, D.; Pickett, G. T.; Balazs, A. C, A "Jumping Micelle" Phase Transition Macromolecules; 1996; 29(23); 7637-7640.
    [71] Singh C, Pickett GT, Balazs AC,Interactions between polymer-coated surfaces in poor solvents .1. Surfaces grafted with A and B homopolymers; Macromolecules; 1996; 29 (23): 7559-7570
    [72] Marko JF, Witten TA., Phase separation in a grafted polymer layer, Phys. Rev. Lett., 1991; 66(11):1541-1544
    [73] Marko JF, Witten TA. Correlations in grafted polymer layers; Macromolecules; 1992; 25(1); 296-307.
    [74] Brown G, Charkrabati A, Marko JF, Micro-phase separation of a dense 2 component grafted polymer layer, Europhysics Letters ; 1994; 25 (4): 239-244
    [75] P.-Y. Lai, Binary mixture of grafted polymer-chains - a Monte-Carlo simualtion, Journal of Chemical Physics; 1994; 100(4): 3351-3357
    [76] M. Müller, Phase diagram of a mixed polymer brush, Physical Review E; 2002; 65(3): 030802(1-4)
    [77] S. Miniko, M. Müller, D. Usov, A. Scholl, C. Froeck, and M. Stamm, Lateral versus perpendicular segregation in mixed polymer brushes; Physical Review Letters, 2002; 88(3): 035502-1-035502-4
    [78] Zhulina EB, Singh C, Balazs AC., Forming Patterned Films with Tethered Diblock Copolymers Macromolecules; 1996; 29(19); 6338-6348
    [79] Zhulina EB, Balazs AC., Designing Patterned Surfaces by Grafting Y-Shaped Copolymers Macromolecules; 1996; 29(7); 2667-2673
    [80] Zhulina EB, Singh C, Balazs AC, Self-Assembly of Tethered Dibiocks in Selective Solvents Macromolecules; 1996; 29(25); 8254-8259
    [81] Singh C, Balazs AC., Interactions between Polymer-Coated Surfaces in Poor Solvents. 2. Surfaces Coated with AB Diblock Copolymers; Macromoleeules; 1996; 29(27); 8904-8911
    [82] Hui Dong, John F. Marko, Thomas A. Witten; Phase Separation of Grafted Copolymers; Macromolecules; 1994; 27(22); 6428-6442
    [83] Gersappe G, Fasolka M, Balazs AC, Jacobson SH. Aggregation in grafted polymers with attractive end groups Journal of Chemical Physics, 1994; 100 (12):9170-9174
    [84] Li WX, Balazs AC. Clusters formation in grafted polymers with interactive end-groups, Mololecular Simulation; 1994; 13 (4-5): 257-265
    [85] Gersappe G, Fasolka M, Israels R, Balazs AC,Modeling the Behavior of Random Copolymer Brushes Macromolecules; 1995; 28(13); 4753-4755.
    [86] E.P.K. Currie, A.B. Sieval, G.J. Fleer, M.A. Cohen Stuart, Polyacrylic Acid Brushes: Surface Pressure and Salt-Induced Swelling ; Langmuir; 2000; 16(22);8324-8333.
    [87] E.P.K. Currie, J. van der Gucht, O.V. Borisov, M.A. Cohen Stuart, Stuffed brushes: theory and experiment; Pure and Applied Chemistry; 1999; 71(7): 1227-1241
    [88] Iwata H, Hirata I, Ikada Y. Atomic Force Microscopic Analysis of a Porous Membrane with pH-Sensitive Molecular Valves; Macromolecules; 1998; 31(11);3671-3678.
    [89] Suzuki M, Kishida A, Iwata H, Ikada Y.; Graft copolymerization of acrylamide onto a polyethylene surface pretreated with glow discharge; Macromolecules; 1986; 19(7); 1804-1808.
    [90] Boven G, Folkersma R, Challa G, Schouten A J. Radical grafting of poly(methyl methacrylate) onti silicon wafers,glassslids and glass-beads; Polymer Communications; 1991; 32 (2): 50-53
    
    [91] Boven G, Oosterling MCLM, Challa G, Schouten AJ., Grafting kinetics of poly(methyl methacrylate) on microparticulate silica; Polymer; 1990; 31(12): 2377-2383
    [92] (a) O.Prucker , J. Ruhe, Synthesis of Poly(styrene) Monolayers Attached to High Surface Area Silica Gels through Self-Assembled Monolayers of Azo Initiators Macromolecules; 1998; 57(3); 592-601.
    
    (b) O.Prucker , J. Ruhe, Mechanism of Radical Chain Polymerizations Initiated by Azo Compounds Covalently Bound to the Surface of Spherical Particles Macromolecules; 1998; 37(3); 602-613
    
    [93] W.Zhao, G. Krausch, M.H.Rafailovich, J. Sokolov, Lateral Structure of a Grafted Polymer Layer in a Poor Solvent; Macromolecules; 1994; 27(11); 2933-2935.
    [94] M.Baum, W.J. Brittain, Synthesis of Polymer Brushes on Silicate Substrates via Reversible Addition Fragmentation Chain Transfer Technique; Macromolecules; 2002; 35(3); 610-615.
    
    [95] Nakayama Y, Matsuda T. , Surface Macromolecular Architectural Designs Using Photo-Graft Copolymerization Based on Photochemistry of Benzyl N, N-Diethyldithiocarbamate, Macromolecules; 1996; 29(27); 8622-8630
    
    [96] Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T, Controlled Graft Polymerization of Methyl Methacrylate on Silicon Substrate by the Combined Use of the Langmuir-Blodgett and Atom Transfer Radical Polymerization Techniques; Macromolecules; 1998; 37(17); 5934-5936
    [97] Husseman M, Malmstrom EE, McNamara M, Mate M, Mecerreyes O, Benoit DG, Hedrick JL, Mansky P, Huang E, Russell TP, Hawker CJ., Controlled Synthesis of Polymer Brushes by "Living" Free Radical Polymerization Techniques Macromolecules; 1999; 32(5); 1424-1431
    [98] Huang X, Wirth MJ, Surface initiation of living radical polymerization for growth of tethered chains of low polydispersity; Macromolecules; 32 (5): 1694-1696(1999)
    [99] Sedjo RA, Mirous BK, Brittain WJ, Synthesis of Polystyrene-block-poly(methyl methacrylate) Brushes by Reverse Atom Transfer Radical Polymerization; Macromolecules; 2000; 33(5); 1492-1493.
    [100] de Boer B, Simon HK, Werts MPL, van der Vegte EW, Hadziioannou G., "Living" Free Radical Photopolymerization Initiated from Surface-Grafted Iniferter Monolayers; Macromolecules; 2000; 33(2); 349-356
    [101] J.Habicht, M.Schmidt, J.Ruhe, J.Johannsmann, Swelling of Thick Polymer Brushes Investigated with Ellipsometry; Langmuir; 1999; 75(7); 2460-2465.
    [102] R.H. Wieringa, E.A. Siesling, P.F.M. Geurts, (a) Surface Grafting of Poly(L-glutamates). 1. Synthesis and Characterization Langmuir; 2001; 77(21); 6477-6484
    (b) Surface Grafting of PoIy(L-glutamates). 2. Helix Orientation Langmuir; 2001; 77(21); 6485-6490.
    
    (c) Surface Grafting of Poly(L-giutamates). 3. Block Copolymerization Langmuir; 2001; 77(21); 6491-6495.
    
    [103] Parsonage E, Tirrell M, Watanabe H, Nuzzo R., Adsorption of poly (2-vinylpyridine) poly(styrene) block copolymers from toluene solutions Macromolecules; 1991; 24(8); 1987-1995
    
    [104] Guzonas D, Boils D, Hair ML. Surface force measurements of polystyrene block poly(ethylene oxide) adsorbed from a nonselective solvent on mica; Macromolecules; 1991; 24(11); 3383-3387.
    
    [105] H.W atanabe, M. Tirrell, Measurement of forces in symmetric and asymmetric interactions between diblock copolymer layers adsorbed on mica Macromolecules; 1993; 26(24); 6455-6466.
    
    [106] H.J. Taunton, C.Toprakcioglu, L,J,Fetters, J.Klein, Interactions between surfaces bearing end-adsorbed chains in a good solvent; Macromolecules; 1990; 23(2); 571-580.
    [107] J.H. Maas, M.A. Cohen Stuart, A.B. Sieval, H. Zuilhof, E.J.R. Sudholter, Preparation of polystyrene brushes by reaction of terminal vinyl groups on silicon and silica surfaces, Thin Solid Films; 2003; 426(1-2): 135-139
    
    [108] Minko, S.; Patil, S.; Datsyuk, V.; Simon, F.; Eichhorn, K.-J.; Motornov, M.; Usov, D.; Tokarev, I.; Stamm, M., Synthesis of Adaptive Polymer Brushes via "Grafting To" Approach from Melt; Langmuir; 2002; 75(1); 289-296.
    [109] S.Granick, J. Herz, Surface pressure from block copolymers with one block forming a monolayer and the other block dangling in solution; Macromolecules; 1985; 75(3); 460-465
    [110] R.W. Richards, B.R. Rochford, J.R.P. Webster, Organization of an amphiphilic linear diblock copolymer at the air/water interface studied by neutron reflectometry, Faraday Discussions; 1994; 98: 263-281
    [111] R.W. Richards, B.R. Rochford, J.R.P. Webster, Surface phase separation in an amphiphilic block copolymer monolayer at the air-water interface, Polymer; 1997; 35 (5): 1169-1177
    [112] T. Wu, K.Efimenko, J.Genzer , Preparing High-Density Polymer Brushes by Mechanically Assisted Polymer Assembly, Macromolecules; 2001; 34(4); 684-686
    [113] J.Genzer , K.Efimenko, Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers, Science; 2000; 290 (5499): 2130-2133
    [114] E.P.K. Currie, A.B. Sieval, M. Avena, H. Zuilhof, E.J.R. Sudholter, M.A. Cohen Stuart, Weak polyacid brushes: Preparation by LB deposition and optically detected titrations; Langmuir; 1999; 75 (21): 7116-7118
    [115] E.P.K. Currie, W. Norde, M.A. Cohen Stuart, Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties; Advances in Colloid and Interface Science; 2003; 100-102: 205-265
    [116] Allain C, Ausserr D, Rondelez F., Direct Optical Observation of Interfacial Depletion Layers in Polymer Solutions; Phys Rev Lett. ; 1982; 49(23): 1694-1697
    [117] Sauer DB, Yu H, Kim MW, An ellipsometric study of a diblock copolymer: a test of microscopic theory; Langmuir; 1989; 5(1); 278-280
    [118] Kawaguchi M, Kawarabayashi M, Nagata N, Kato T, Yoshioka A, Takahashi A. , Adsorption of polybutadienes with polar group terminations on the solid surface. 1. Infrared study at the silica surface; Macromolecules; 1988; 27:1059-1062.
    [119] Munch MR, Gast AP, Kinetics of block copolymer adsorption on dielectric surfaces from a selective solvent; Macromolecules; 1990; 25(8); 2313-2320.
    [120] Munch MR, Gast AP, A study of block copolymer adsorption kinetics via internal reflection interferometry; Journal of the Chemical Society-Faraday Transactions; 1990; 86 (9): 1341-1348
    [121] Cosgrove T, Ryan K., NMR and Neutron-Scattering studies on poly(ethylene oxide) terminally attached at the polystyrene water interface; Langmuir; 1990; 6(1): 136-142
    [122] Auroy P, Auvray L, Leger L. Characterization of the brush regime for grafted polymer layers at the solid-liquid interface; Physical Review Letters ; 1991; 66(6): 719-722
    [123] E.P.K. Currie, M. Wagemaker, M.A. Cohen Stuart, A.A. van Well; Structure of Monodisperse and Bimodal Brushes; Macromolecules; 1999; 32: 9041- 9050.
    [124] C.Marzolin, Ph.Aur oy, M. Deruelle, J.P.Folkers, L.Leger , A. Menelle, Neutron Refiectometry Study of the Segment-Density Profiles in End-Grafted and Irreversibly Adsorbed Layers of Polymer in Good Solvents; Macromolecules; 2001; 34(25); 8694-8700
    [125] A.Karim, V.V.T sukruk, J.F.Douglas, Self-organization of polymer brush layers in a poor solvent; Journal de Physique II; 1995; 5 (10): 1441-1456
    [126] P.A. Auroy, L. Auvray, L. Leger, Structures of end-grafted polymer layers: a small-angle neutron scattering study; Macromolecules; 1991; 24(9); 2523-2528.
    [127] M.S. Kent, L.T. Lee, B. Farnoux, F. Rondelez, Characterization of diblock copolymer monolayers at the liquid-air interface by neutron reflectivity and surface tension measurements; Macromolecules; 1992; 25(23); 6240-6247.
    [128] M.S. Kent, L.T. Lee, B.J. Factor, F. Rondelez, G.H. Smith, Tethered chains in good solvent conditions: An experimental study involving Langmuir diblock copolymer monolayers; Journal of Chemical Physics; 1995; 103(6): 2320-2342
    [129] B.J. Factor, L.T. Lee, M.S. Kent, F. Rondelez, Observation of chain stretching in Langmuir diblock copolymer monolayers; Phys. Rev. E ; 1993; 48(4): R2354-R2357
    [130] H. J. Taunton, C. Toprakcioglu, L. J. Fetters, J. Klein, Forces between surfaces bearing terminally anchored polymer-chains in good solvents, Nature, 1988; 332(6166), 712-714
    [131] G. Hadziioannou, S. Patel, S. Granick, M.tirrell, Forces between surfaces of block copolymers adsorbed on mica; J. Am. Chem. Soc; 1986; 108(11); 2869-2876.
    [132] H.J. Taunton, C.toprakcioglu, J.Klein, Direct measurement of the interaction between mica surfaces with adsorbed diblock copolymer in a good solvent Macromolecules; 1988; 27(11); 3333-3336
    
    [133] M.D. Whitmore, J. Noolandi; Theory of adsorbed block copolymers; Macromolecules; 1990; 23(13); 3321-3339.
    
    [134] B. Vincent, J. Edwards, S. Emmett, A. Jones, Depletion flocculation in dispersions of sterically-stabilized particles(soft spheres); Colloids and Surfaces; 1986; 18 (2-4): 261-281
    [135] B. van Lent, R. Israels, J.M.H.M. Scheutjens, G.J. Fleer, Interaction between hairy surfaces and the effect of free polymer; Journal of Colloid and Interface Science; 1990; 137(2): 380-394
    [136] C.M. Wijmans, E.B. Zhulina, G.J. Fleer, Effect of Free Polymer on the Structure of a Polymer Brush and Interaction between Two Polymer Brushes ; Macromolecules; 1994; 27(12); 3238-3248
    [137] R.A. Gage, E.P.K. Currie, M.A. Cohen Stuart; Adsorption of Nanocolloidal SiO_2 Particles on PEO Brushes; Macromolecules; 2001; 34(15); 5078-5080.
    [138] P. -A. Albertsson, Partition of Cell Particles and Macromolecules, third ed., Wiley, New York, 1986.
    [139] N.D. Winblade, I.D. Nikolic, A.S. Hoffman, J.A. Hubbell, Blocking Adhesion to Cell and Tissue Surfaces by the Chemisorption of a Poly-L-lysine -graft-(poly(ethylene glycol); phenylboronic acid) Copolymer; Biomacromolecules; 2000; 1(4); 523-533.
    [140] A.Abuchowski, F.F.Davis, in: J.Holsenber g, J. Roberts (Eds.), Enzymes as Drugs, Wiley, New York, 1981, p.367.
    [141] A.L. Klibanov, K. Maruyama, A.M. Beckerleg, V.P. Torchilin, L. Huang, Activity of amphipathic poly(ethylenen glycol)-500 to prolong the circulayiontome of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target; Biochimica et Biophysica Acta; 1991; 1062 (2): 142-148
    [142] T.M. Allen, The use of glycolipids and hydrophilic polymers in avoidingrapid uptake of liposomes by the mononuclear phagocyte system; Advanced Drug Delivery Reviews; 1994; 13 (3): 285-309
    [143] D. Leckband, S.Sheth, A.Halperin, Grafted poly(ethylene oxide) brushes as nonfouling surface coatings; Journal of Biomaterials Science- Polymer Edition; 1999; 70(10): 1125-1147
    [144] S.Nagaoka, Y.Mori, H.T akiuchi, K.Y okota, H. Tanzawa, S. Nishiumi, in: S. Shalaby, A.S. Hoffman, B.D. Ratner, T.A. Horbett (Eds.), Polymers as Biomaterials, Plenum Press, New York, 1984, p.361.
    [145] C.-G. Golander, J.N. Herron, K. Lim, P. Claesson, P. Stenius, J.D. Andrade, in: J.M. Harris (Ed.), Poly(Ethylene Glycol) Chemistry, Biotechnological and Biomedical Applications, Plenum Press, New York, 1992, Chapter 15.
    [146] W.R.Gombotz, W.Guanghui, T.A. Horbett, A.S. Hoffman, Protein adsorption to PEO surfaces; Journal of Biomedical Materials Research; 1991; 25(12): 1547-1562
    [147] K.D. Park, Y.S. Kim, D.K. Han, Kim YH, Lee EHB, Suh H, Choi KS., Bacterial adhesion on PEG modified polyurethane surfaces; Biomaterials; 1998; 79(7-9): 851-859
    [148] K.V acheethasanee, R.E. Marchant, Vacheethasanee K, Marchant RE, Surfactant polymers designed to suppress bacterial (Staphylococcus epidermidis) adhesion on biomaterials, Journal of Biomedical Materials Research ; 2000; 50(3): 302-312
    [149] S.W. Kim, H.Jacobs, J.Y.Lin, C. Nojori, T.Okano, Nonthrombogenic bioactive surfaces, Annals of the New York Academy of Sciences; 1987; 576: 116-130
    [150] S.J. Sofia, V. Premnath, E.W. Merrill, Poly(ethylene oxide) Grafted to Silicon Surfaces: Grafting Density and Protein Adsorption ; Macromolecules; 1998; 57(15); 5059-5070.
    [151] K.L. Prime, G.M.Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers; J. Am. Chem. Soc; 1993; 775(23); 10714-10721.
    [152] D.Schwendel, R. Dahint, S.Herrwerth, M.Schloerholz, W. Eck, M.Grunze, Temperature Dependence of the Protein Resistance of Poly- and Oligo(ethylene glycol)-Terminated Alkanethiolate Monolayers; Langmuir; 2001; 77(19); 5717-5720
    [153] P.Harder, M.Grunze, R. Dahint, G.M.Whitesides, P.E.Laibinis, Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption J. Phys. Chem. B. ; 1998; 702(2); 426-436.
    [154] N.V. Efremova, S.R. Sheth, D.E. Leckband, Protein-Induced Changes in Poly(ethylene glycol) Brushes: Molecular Weight and Temperature Dependence Langmuir; 2001; 77(24); 7628-7636.
    [155] A.Halperin, Compression induced phase transitions in PEO brushes: the n-cluster model; European Physical Journal B; 1998; 3(3): 359-364
    [156]Razatos, A.; Ong, Y. -L.; Boulay, F.; Elbert, D. L.; Hubbell, J. A.; Sharma, M. M.; Georgiou, G., Force Measurements between Bacteria and Poly(ethylene glyeol)-Coated Surfaces; Langmuir; 2000; 16(24); 9155-9158.
    [157]J. Maas, M. A. Cohen Stuart, F. A. M. Leermakers, N. A. M. Besseling, Wetting Transition in a Polymer Brush: Polymer Droplet Coexisting with Two Film Thicknesses; Langmuir, 2000; 16(7); 3478-3481.
    [158]K. R. Shull, Wetting autophobieity of polymer melts; Faraday Discussions; 1994; 98: 203-217
    [159]M. W. Matsen, J. W. Gardiner, Autophobie dewetting of homopolymer on a brush and entropic attraction between opposing brushes in a homopolymer matrix; Journal of Chemical Physics; 2001; 115 (6): 2794-2804
    [160]M. Carignano, R. Y erushalmi-Rozen, N. Dan; Polymer-Induced Wetting Transitions in Liquid Films; Macromolecules; 2000; 33(9); 3453-3460.
    [161]C. Gay, Wetting of a Polymer Brush by a Chemically Identical Polymer Melt; Macromolecules; 1997; 30(19); 5939-5943.
    [162]N. Dan, R. Yerushalmi-Rozen, Wetting of brush-covered surfaces by polymeric liquids; Trends in Polymer Science; 1997; 5(2): 46-50
    [163]J. H. Maas, G. J. Fleer, F. A. M. Leermakers, M. A. Cohen Stuart, Wetting of a polymer brush by a chemically identical polymer melt: Phase diagram and film stability; Langmuir; 2002; 18 (23): 8871-8880
    [1]de Gennes PG, Conformations of Polymers Attached to an Interface; Macromolecules; 1980; 13(5); 1069-1075.
    [2]de Gennes, P. G. Scaling Concepts in Polymer Physics; Comell University: Ithaca, NY, 1979.
    [3]Halperin A, Tirreil M, Lodge TP.; Tethered chains in polymer microstructures, Advances in Polymer Science; 1992; 100: 31-71
    [4]Zhao B, Brittain W. J., Polymer brushes: surface-immobilized macromolecules, Prog. Polym. Sci. 2000; 25: 677-710
    [5]Milner ST. Polymer brushes; Science; 1991; 251: 905-913
    [6]E. P. K. Currie, W. Norde, M. A. Cohen Stuart, Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties; Advances in Colloid and lnterface Science; 2003; 100-102: 205-265
    [7]Hamdoun B, Ausserre D, Cabuil V, Joly S, Copolymer nanopartiele composites: Lameilar period; Journal de Physique Ⅱ; 1996; 6 (4): 503-510
    [8]Fogg DE, Radzilowski LH, Dabbousi BO, Schrock RR, Thomas EL, Bawendi MG, Fabrication of quantum dot-polymer composites: Semiconductor nanoclusters in dual-function polymer matrices with electron-transporting and cluster passivating properties, Macromolecules; 1997; 30 (26): 8433-8439
    [9]Lauter-Pasyuk, V.; Lauter, H. J.; Ausserre, D.; Gallot, Y.; Cabuil, V.; Kornilov, E. I.; Hamdoun, B; Effect of nanoparticle size on the internal structure of eopolymer-nanoparticles composite thin films studied by neutron reflection; Physica B (Amsterdam); 1998; 241-243, 1092-1094
    [10]Chan VZH, Hoffman J, Lee VY, Iatrou H, Avgeropoulos A, Hadjichristidis N, Miller RD, Thomas EL, Ordered bieontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors, Science; 1999; 286 (5445): 1716-1719
    [11]Thurn-Albrecht T, Schotter J, Kastle CA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP; Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates: Science; 2000; 290 (5499): 2126-2129
    [12]Huh J, Ginzburg VV, Balazs AC ; Thermodynamic behavior of particle/diblock copolymer mixtures: Simulation and theory, Macromolecules, 2000; 33 (21): 8085-8096
    [13]Thompson RB, Ginzburg VV, Matsen MW, Balazs AC; Predicting the mesophases of eopolymer-nanoparticle composites; Science; 2001; 292 (5526): 2469-2472
    [14]Kim JU, O'Shaughnessy B; Morphology selection of nanoparticle dispersions by polymer; Physical Review Letters; 2002; 89 (23): Art. No. 238301
    [15]D. Leckband, S. Sheth, A. Halperin, Grafted poly(ethylene oxide) brushes as nonfouling surface coatings; Journal of Biomaterials Science- Polymer Edition; 1999; 10 (10): 1125-1147
    [16]Brooks DE, Haynes CA, Hritcu D, Steels BM, Muller W; Size exclusion chromatography does not require pores; PNAS; 2000; 97(13): 7064-7067
    [17]S. T. Milner, Strong stretching and SF descriptions of grafted polymer brushes, Journal of the Chemical Society_Faraday Transactions; 1990; 86 (9): 1349-1353
    [18]Cosgrove T., Heath T., Vanlent B., Leermakers F., Scheutjens J.; conformation of terminally attached chains at the solid solvent interface Self-Consistent-Field-Theory and Monte-Carlo Model; Macromolecules; 1987; 20 (7): 1692-1696
    [19]Michael Murat and Gary S. Grest; Structure of a grafted polymer brush: a molecular dynamics simulation; Macromolecules; 1989; 22: 4054-4059
    [20]Michael Murat and Gary S. Grest; interaction between grafted polymeric brushes: a molecular-Dynamic Study; Physical Review Letters; 1989; 63(10): 1074-1077
    [21]Amitabha Chakrabarti, Raul Total; Density profile of terminally anchored polymer chains: a Monte Carlo study; Macromolecules; 1990; 23(7); 2016-2021
    [22]Grest GS; Grafted polymer brushes- a constant surface pressure MD simulation; Macromolecules; 1994; 27 (2): 418-426
    [23]Shaffer JS.; Free energy profiles and scaling in polymer brushes; Physical Review E; 1994; 50 (2): R683-R686 Part A
    [24]S. T. Milner, T. A. Witten, M. E. Cates, A parabolic density profile for grafted polymers; Europhysics Letters; 1988; 5(5): 413-418
    [25]S. T. Milner, T. A. Witten, M. E. Cares; Theory of the grafted polymer brush Macromolecules," 1988; 21 (8); 2610-2619.
    [26]Dickman R, Anderson PE.; Force between grafted polymer brushes; Journal of Chemical Physics; 1993; 99(4): 3112-3118
    [27]Lai PY, Binder K; Structure and dynamics of grafted polymer iayers-a MC simulation; Journal of Chemical Physics; 1991; 95(12): 9288-9299
    [28]Lai PY, Binder K; Structure and dynamics of polymer brushes near theta point-a MC simulation; Journal of Chemical Physics; 1992; 97(1): 586-595
    [29]Lai PY, Zhulina EB; Structure and dynamics of a bidisperse polymer brushes Monte Carlo simulation and SCFT results; Macromolecules; 1992; 25(20): 5201-5207
    [30] J.I.Martin, Z.G.W ang, J. Phys.Chem. Polymer Brushes: Scaling, Compression Forces, Interbrush Penetration, and Solvent Size Effects; J. Phys. Chem.; 1995; 99(9); 2833-2844.
    [31] Ruckenstein E, Li BQ; Steric interactions between two grafted polymer brushes; Journal of Chemical Physics; 1997; 707(3):932-942
    
    [32] Vanlent B, Israels R, Scheutjens JMHM, Fleer GJ; Interaction between hairy surfaces and the effects of free polymer; Journal of Colloid and Interface Science; 1990; 137(2): 380-394
    [33] S.I. Jeon, J.H. Lee, J.D. Andrade, P.G de Gennes; Protein surface interactions in the presence of PEO: 1. simplified theory; J. Colloid Interface Sci; 1991; 142: 149-158
    [34] Jeon S.I., Andrade J.D.; Protein surface interactions in the presence of PEO: 2. effects of Protein size; J. Colloid Interface Sci. 1991; 142: 159-166
    [35] G. Subramanian, D.R.M. Williams, P.A. Pincus; Interaction between Finite-Sized Particles and End Grafted Polymers; Macromolecules ; 1996; 29: 4045-4050.
    [36] M. Murat, G.S. Grest, Molecular Dynamics Simulations of the Force between a Polymer Brush and an AFM Tip; Macromolecules; 1996; 29: 8282-8284
    [37] G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces, Chapman & Hall, London, 1993.
    [38] F.A.M. Leermakers, J.M.H.M. Scheutjens, J. Lyklema; Statistical thermo dynamics of association colloids. 4. inhomogeneous membrane systems; Biochim. Biophys. Acta; 1990; 1024: 139-151
    [39] B.M. Steels, J. Koska, C.A. Haynes. Analysis of brush-particle interactions using self-consistent-field theory; Journal of Chromatography B, 2000; 743 (1-2): 41-56
    [40] Steels BM, Leermakers FAM, Haynes C.A.; Analysis of compression of polymer mushrooms using self-consistent field theory; Journal of Chromatography B; 2000; 743(1-2): 31- 40
    [41] F. Drolet , G. H. Fredrickson; Combinatorial screening of complex block copolymer assembly with self-consistent field theory ; Phys. Rev. Lett., 1999; 83, 4317-4320
    [42] F. Drolet, G. H. Fredrickson; Optimizing chain bridging in complex block copolymers; Macromolecules; 2001, 34: 5317-5324.
    [43] J.-R. Roan, T. Kawakatsu; Self-consistent-field theory for interacting polymeric assemblies: II. Steric stabilization of colloidal particles; J. Chem. Phys.; 2002; 116: 7283-7294
    [44] M. Muller, Phase diagram of a mixed polymer brush; Physical Review E; 2002; 65(3): 030802(R)
    [45]R. Wang, F. Qiu, H. D. Zhang, Y. L. Yang, Interactions between brush-coated clay sheets in a polymer matrix; J. Chem. Phys. 2003; 118(20): 9447-9456
    [46]C. N. Likos, Effective interactions in soft condensed matter physics; Physics Reports; 2001; 348: 267-439
    [47]A. Halperin, Polymer Brushes that Resist Adsorption of Model Proteins: Design Parameters; Langmuir; 1999; 15: 2525-2533
    [48]Knoll A., Magerle R., Krausch G; Tapping Mode Atomic Force Microscopy on Polymers: Where Is the True Sample Surface? Macromolecules 2001, 34, 4159-4165
    [49]Cleveland, J. P.; Anczykowski, B.; Schmid, A. E.; Elings, V. B. Energy dissipation in tapping-mode atomic force microscopy; Appl. Phys. Lett. 1998, 72, 2613-2615
    [1]de Gennes P. G., Conformations of Polymers Attached to an Interface; Macromolecules; 1980; 13(5); 1069-1075.
    [2]J. -R. Roan, T. Kawakatsu; Self-consistent-field theory for interacting polymeric assemblies. I. Formulation, implementation, and benchmark tests; J. Chem. Phys.; 2002; 116, 7295-7310
    [3]Kenneth R. Shuli; Theory of end-adsorbed polymer brushes in polymeric matrices; J. Ckem, Phys. 1991; 94(8) 5723-5738
    [4]P. G. Ferreira, A. Ajdari, and L. Leibler; Scaling Law for Entropic Effects at Interfaces between Grafted Layers and Polymer Melts; Macromolecules; 1998; 31(12); 3994-4003
    [5]M. W. Matsen and J. M. Gardiner; Autophobic dewetting of homopolymer ona brushand entropic attraction between opposing brushes in a homopolymer matrix; J. Chem. Phys., 2001; 115, 2794-2804
    [6]Lee Yezek, Wolfgang Schartl, Yongming Chen, Kerstin Gohr, Manfred Schmidt; Influence of Hair Density and Hair Length on Interparticle Interactions of Spherical Polymer Brushes in a Homopolymer Matrix; Macromolecules; 2003; 36: 4226-4235
    [7]R. Wang, F. Qiu, H. D. Zhang, Y. L. Yang; Interactions between brush-coated clay sheets in a polymer matrix; J. Chem. Phys., 2003; 118, 9447-9456
    [8]B. M. Steels, J. Koska, C. A. Haynes. Analysis of brush-particle interactions using self-consistent-field theory; Journal of Chromatography B, 2000; 743 (1-2): 41-56.
    [9]M. Müller, Phase diagram of a mixed polymer brush; Physical Review E; 2002; 65(3): 030802(R).
    [10]M. Doi, Edwards S. The theory of Polymer Dynamics, Oxford University Press: London, 1986
    [11]A. K. Dolan and S. F. Edwards, Theory of stabilization od colloids by adsorbed polymer; Proceedings of the Royal Society of London Series A Mathematical Physical and Engineering Science;[J]; 1974; 337(1611), 509-516.
    [12]W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, "Numerical Recipes", Cambridge UniversityPress, Cambridge, England, 1989.
    [13]L. Leibler, A. Ajdari, A. Mourran et al., in Ordering in Maeromolecular Systems, edited by A. Teramoto, M. Kobayashi, and T. Norisuji, (Springer Verlag, Berlin, 1994).
    [14]C. Gay; Wetting of a Polymer Brush by a Chemically Identical Polymer Melt; Macromolecules; 1997 30, 5939-5943.
    [15]E. B. Zhulina, O. V. Borisov, L, Brombacher, Theory of a planar grafted chain layer immersed in a solution of mobile polymer Macromolecules," 1991; 24(16); 4679-4690.
    [16]C. M. Wijmans, J. M. H. M. Scheutjens, E. B. Zhulina, Self-consistent field theories for polymer brushes: lattice calculations and an asymptotic analytical description Macromolecules; 1992; 25(10); 2657-2665.
    [17]Aubouy, M.; Raphael, E.; Structure of an Irreversibly Adsorbed Polymer Layer Immersed in a Solution of Mobile Chains; Macromolecules; 1994; 27(18); 5182-5186.
    [18]Aubouy, M.; Fredrickson, G. H.; Pincus, P.; Raphael, E.; End-Tethered Chains in Polymeric Matrixes; Macromolecules; 1995; 28(8); 2979-2981.
    [19]J. I. Martin, Z. G. W ang, J. Phys. Chem. Polymer Brushes: Sealing, Compression Forces, Interbrush Penetration, and Solvent Size Effects; J. Phys. Chem.; 1995; 99(9); 2833-2844
    [20]Itamar Borukhov, Ludiwik Leibler; Enthalpic stabilization of brush-coated particles in a polymer melt; Macromolecules; 2002, 35, 5171-5182
    [21]S. T. Milner, T. A. Witten, M. E. Cates, Theory of the grafted polymer brush; Macromolecules; 1988; 21(8); 2610-2619.
    [22]E. B. Zhulina, O. V. Borisov, V. A. Priamytsin, Theory of sterie stabilization of colloid dispersions by grafted polymers; Journal of Colloid and Interface Science; 1990; 137 (2): 495-511
    [23]Daoud M., Cotton JP, Star shaped polymers-a model for the conformation and its concentration dependence; J. Phys. (Paris); Source: Journal de Physique; 1982; 43 (3): 531-538
    [24]Raphael, E.; Pincus, P.; Fredrickson, G. H.; Conformation of star polymers in high-molecular-weight solvents; Macromolecules[J], 1993, 26, 1996-2006
    [25]R. Baranowski and M. D. Whitmore; Theory of the structure of adsorbed block copolymers: Detailed comparison with experiment; J. Chem. Phys.; 1995; 103(6): 2343-23538
    [26]Witten T. A., Pincus P. A.; Colloid stabilization by long grafted polymers; Macromolecules[J], 1986, 19(10): 2509-2513
    [1]Gast A. P., Russel W. B.; Simple ordering in complex fluids-Colloidal particles suspended in solution provide intriguing models for studying phase transitions; Phys. Today.[J], 1998, 51(12): 24-30.
    [2]Gast A. P.; Structure, interactions, and dynamics in tethered chain systems; Langmuir.[J], 1996, 12(17): 4060-4067
    [3]Gast A. P.; Polymeric micelles; Curr. Opinion Colloid Interface Sci.[J], 1997, 2 (3): 258-263
    [4]Grest G. S., Fetters L. J., Huang J. S, et al.; Star polymers: Experiment, theory, and simulation; Adv. Chem. Phys.[J], 1996, 94: 67-163
    [5]Zhou L. L., Roovers J.; Synthesis of novel earbosilane dendritic macromolecules; Macromolecules.[J], 1993, 26(5): 963-968
    [6]Roovers J., Zhou L. L., Toporowski P. M, et al.; Regular star polymers with 64 and 128 arms. Models for polymeric micelles; Macromolecules[J], 1993, 26(16): 4324-4331
    [7]Likos C. N.; Effective interactions in soft condensed matter physics; Phys. Rep.[J], 2001, 348: 267-439.
    [8]Witten T. A., Pincus P. A.; Colloid stabilization by long grafted polymers; Macromolecules[J], 1986, 19(10): 2509-2513
    [9]Likos C. N., Lowen H., Watzlawek M, et al.; Star Polymers Viewed as Uitrasoft Colloidal Particles; Phys. Rev. Lett.[J], 1998, 80(20): 4450-4453
    [10]Stellbrink J., Allgaier J., Monkenbusch M., et al. Neither Gaussian chains nor hard spheres - star polymers seen as ultrasoft colloids; Prog. Colloid Polym. Sci.[J]2000, 115: 88-92
    [11]Jusufi A, Watzlawek M., Lowen H.; Effective Interaction between Star Polymers; Macromolecules[J], 1999, 32(13): 4470-4473
    [12]Watzlawek M., Lowen H., Likos C. N.; The anomalous structure factor of dense star polymer solutions; J, Phys.: Condens Matter[J]; 1998; 10(37): 8189-8205
    [13]Watzlawek M., Likos C. N., Lowen H.; Phase Diagram of Star Polymer Solutions; Phys. Rev. Lett.[J], 1999, 82(26): 5289-5292
    [14]von Ferber C., Jusufi A., Likos C.N., et al, Triplet interactions in star polymer solutions; Eur. Phys. J. E.[J], 2000, 2(4): 311-318
    [15]McConnell G. A., Gast A. P., Huang J. S., et al. Disorder-order transitions in soft-sphere polymer micelles; Phys. Rev. Lett.[J], 1993, 71(13): 2102-2105
    [16]McConnell G. A., Gast A. P.; Predicting disorder-order phase transitions in polymeric micelles; Phys. Rev. E[J], 1996, 54(5): 5447-5455
    [17]McConnell G. A., Gast A. P.; Melting of ordered arrays and shape transitions in highly concentrated diblock copolymer solutions; Macromolecules[J], 1997, 30(3): 435-444
    [18]Raphael, E.; Pincus, P.; Fredrickson, G. H.; Conformation of star polymers in high-molecular-weight solvents; Macromolecules[J], 1993, 26, 1996-2006
    [19]Jaroslaw Kios, Tadeusz Pakula. Computer Simulations of Chains End-Grafted onto a Spherical Surface. Effect of Matrix Polymer; Macromolecules[J], 2004, 37(21), 8145-8151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700