双峰聚乙烯分子量分布及结构调控的若干途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双峰聚乙烯是指分子量呈双峰分布的线性聚乙烯(LPE)和支化聚乙烯(BPE)的共混物。由于双峰聚乙烯能够在许多极端条件下平衡材料的加工性能(低分子量部分)和使用性能(高分子量部分),目前已经成为聚烯烃合成树脂高性能化的重要方向。
     目前生产双峰聚乙烯的工艺主要有串联反应器法和单反应器法。单反应器法相比于串联反应器法具有设备投资低,工艺操作简单,开停车方便,而且高、低分子量产物混合比较均匀(较好的产品性能)等优点,是生产双峰聚乙烯的重要研究方向。
     论文根据“Reactor Granule Technology——RGT”(颗粒反应器技术)的设计思想,围绕单反应器生产双峰聚乙烯,开展了以下四个方面的工作:(1)反应器浓度变量振荡操作生产双峰聚乙烯;(2)受限空间下LPE/BPE原位挤出共混(3)新型铁催化剂体系——乙酰丙酮铁/双亚胺基吡啶体系制备双峰聚乙烯;(4)负载型铁催化剂的制备及其聚合特性的考察。具体的工作及创新成果如下:
     1.单反应器内氢气浓度振荡操作制备双峰聚乙烯。
     (a)氢气振荡操作制备双峰聚乙烯的实验研究。在气相间歇聚合反应釜中采用茂金属催化剂,以氢气振荡为操作手段制备双峰聚乙烯。考察了氢气浓度,振荡时间分配和振荡周期对聚乙烯分子量分布的影响。实验结果表明,氢气的加入使得催化剂活性降低,分子量也降低,通过调节氢气振荡操作的实验条件,尤其是振荡时间分配,可以很好地实现聚乙烯产物分子量及分子量分布的调控。
     (b)连续聚合过程中氢气振荡操作制备双峰聚乙烯的模拟研究。以Flory分布函数描述单活性中心的分子量分布,模拟单反应器内氢气振荡操作生产双峰聚乙烯。模拟结果表明,在氢气的振荡操作下可获得分子量呈双峰分布的聚乙烯树脂,并且振荡的可操作性与催化剂的相对氢转移速率常数(氢转移速率常数和链增长速率常数之比K_(trH)/K_p)和氢转移速率常数k_(trH)密切相关。k_(trH)/K_P)和K_(trH)越大,通过改变氢气浓度调节树脂分子量分布越容易实现,而且氢气浓度切换所需时间越短,振荡操作生产双峰聚乙烯可操作性就越强。
     2.受限空间下LPE/BPE原位挤出共混。
     (a)茂金属/后过渡复合催化剂乙烯均相聚合。以二氯二茂钛(Cp_2TiCl_2)和α-二亚胺溴化镍催化剂(ArN=C(CH_3)-C(CH_3)=NAr,Ar=-2,6-(i-Pr)_2 C_6H_3)(DMN)组成复合催化剂体系,MAO为助催化剂催化乙烯聚合制备LPE/BPE共混物,考察了温度和催化剂摩尔比对复合催化剂的乙烯聚合性能的影响。DSC和SEM分析结果发现,LPE/BPE共混物,BPE支化度较低时能均匀混合,而在BPE支化度较高时共混物存在明显的相分离。
     (b)受限空间下LPE/BPE原位挤出共混。以介孔分子筛MCM-41为载体,负载茂金属催化剂(Cp_2TiCl_2)和后过渡金属催化剂α-二亚胺溴化镍(ArN=C(CH_3)-C(CH_3)=NAr,Ar=2,6-(i-Pr)_2C_6H_3)(DMN),以MAO为助催化剂,催化乙烯聚合制备LPE/BPE共混物。DSC,XRD和SEM等分析结果表明,以介孔MCM—41的纳米孔道为聚合场所,通过LPE/BPE的原位“挤出”共混,改变了共混物的结晶过程,促使两种支化度不同的聚乙烯更均匀的共混,有效地消除了相分离。
     3.新型铁催化剂体系——乙酰丙酮铁/双亚胺基吡啶体系制备双峰聚乙烯。
     (a)乙酰丙酮铁/双亚胺基吡啶体系聚合特性的考察。本文发现一种新的铁催化剂体系——乙酰丙酮铁和双亚胺基吡啶体系,在MAO作用下能原位形成活性中心并催化乙烯聚合得到分子量呈宽峰/双峰分布的聚乙烯。本文系统考察了聚合条件对7种乙酰丙酮铁/双亚胺基吡啶(2-R_1N=C(Me)-6-R_2N=C(Me)C_5H_3N)(L_1:R_1=R_2=2,6-Me_2C_6H_3;L_2:R_1=R_2=2-Me-6-(i-Pr)C_6H_3;L_3:R_1=R_2=2,6-(i-Pr)_2C_6H_3;L_4:R_1=R_2=2-MeC_6H_4;L_5:R_1=R_2=2-(i-Pr)C_6H_4;L_6:R_1=2-MeC_6H_4,R_2=2,6-(i-Pr)_2C_6H_3;L_7:R_1=cyclohexyl,R_2=2,6-(i-Pr)_2C_6H_3)催化剂体系的聚合活性和产物性能的影响。实验结果表明双亚胺基吡啶在催化剂体系中起着至关重要的作用,单独的Fe(acac)_3在MAO作用下不能催化乙烯聚合。但是Fe(acac)_3和双亚胺基吡啶组成的催化剂体系,在MAO作用下能够原位形成活性中心催化乙烯聚合,得到分子量呈宽峰/双峰分布的聚乙烯。Fe(acac)_3/L_1~L_3催化剂体系的产物为高分子量聚乙烯;Fe(acac)_3/L_4,L_5催化剂体系的产物中既有低聚物,也有高聚物;而Fe(acac)_3/L_6,L_7催化剂体系的产物除了高聚物还有极少量的低聚物。升高聚合温度有利于生成低分子量的聚乙烯,而且配体位阻越小,聚合温度对分子量分布的影响越明显。当使用商业MAO时(含有三甲基铝),增加Al/Fe摩尔比可以显著提高向铝的链转移反应,产物分子量变小,而且配体位阻越大,Al/Fe摩尔比对产物分子量分布的影响越明显。
     (b)多活性中心和向铝链转移共同作用机理的提出。通过聚合条件对双峰聚乙烯分子量分布变化规律的研究,以及不同助催化剂对分布量分布的影响的佐证,本文认为双峰聚乙烯的产生是多活性中心和向铝链转移共同作用的结果。温度变化时,活性中心的变化对分子量分布的影响占主导地位。而且配体位阻越小,形成高分子量聚乙烯的活性中心越不稳定,聚合温度对活性中心分布的影响就越明显。以商用MAO(含有三甲基铝)为助催化剂,改变Al/Fe比时,向铝链转移的变化对分子量分布的影响占主导地位。配体位阻越大,β-H转移越小,向铝链转移起的作用就越明显,Al/Fe摩尔比对分子量分布的影响就越大。以MAO-2(商用MAO去除三甲基铝)为助催化剂,Al/Fe改变时,活性中心的变化对分子量分布的影响占主导地位。Al/Fe比增大,产生了更多的形成高分子量聚乙烯的活性中心,分子量变大。
     4.负载型铁催化剂的制备及其聚合特性的考察。为了能使新的催化剂体系在现有的淤浆和气相流化床反应器中使用,本文以硅胶同时负载催化剂体系和助催化剂。鉴于本文催化剂体系的特殊性,当载体先负载MAO然后负载催化剂体系时,负载型催化剂没有活性。本文以活化的Davison 955硅胶先负载乙酰丙酮铁/双亚胺基吡啶催化剂体系,然后负载助催化剂MAO。得到的负载型催化剂,在聚合过程中不再加入助催化剂情况下,仍然能较好的催化乙烯聚合。聚合过程中加压反应器没有粘壁现象。所得聚乙烯都有很高的熔融温度,达到135℃。在聚合温度较低时,分子量超过100×10~4 g·mol~(-1),接近超高分子量聚乙烯。实验结果表明负载型催化剂的催化活性与乙烯压力呈一次方关系,而产物分子量不随压力改变;聚合温度对负载型催化剂催化活性和产物分子量的影响规律与均相时基本相同,聚合活性在30℃时达到最大值。随着聚合温度升高产物分子量显著降低,而且产物的分子量分布不断变宽。在本文考察的Al/Fe比范围内,随着Al/Fe摩尔比从32增大到59,催化活性显著增大,但是分子量变化很小。研究表明链增长与乙烯压力呈一次方关系,链转移与乙烯压力也呈一次方关系,而且聚合时β-H转移占绝对优势。
Bimodal polyethylene with bimodal molecular weight distribution and bimodal composition distribution include low molecular species for processability and high molecular weight species for properties have gained considerable popularity due to a better balance of processability and properties. Dual reactor systems and single reactor are main bimodal technology. There are many advantages in using single reactor bimodal technology vis-a-vis dual reactor systems. Lower investment costs, intimate mixing of high and low molecular weight components (improved product property).
    New technology and novel catalyst system were developed to produce bimodal polyethylene in single reactor based on the concept of "reactor granule technology". The thesis focuses on the four parts as follows:
    1. A new process to produce bimodal polyethylene through oscillating operatio in single reactor was presented.
    (a) Bimodal polyethylene was produced with the metallocene catalyst in a gas-phase reactor through oscillating operation of hydrogen periodically. Effects of hydrogen concentration, time distribution, oscillating operation period on molecular weight distributions with oscillating operation were studied. It was viable to control molecular weight distributions of bimodal polyethylene through hydrogen oscillating operation.
    (b) Bimodal polyethylene production in a continuous gas-phase fluidized bed through oscillating operation of hydrogen periodically was simulated. Flory distribution function was adopted to simulate the molecular weight distributions of single-site activity. Bimodal polyethylene was obtained through oscillating hydrogen concentration periodically. It shows that the feasibility of oscillating operation depended on the values of k_(trH)/kp (the ratio of termination rate constant by chain transfer to hydrogen to the propagation rate constant) and k_(trH) (termination rate constant by chain transfer to hydrogen). The bimodality of polyethylene will be easier to obtain by metallocene catalyst with the higher of k_(trH)/kp and k_(trH). It also shows that the key factor to achieve oscillating operation is the changeover time from high to low hydrogen concentration in the fluidized bed reactor. The shorter the transition time is, the easier of oscillating operation will be.
    2. Blend of linear polyethylene (LPE) and branch polyethylene (BPE) by in-situ space-confined polymerization was studied.
    (a) Homogeneous polymerization using Cp_2TiCl_2 (Bis(cyclopentadienyl)titanium
    Dichloride)and nickel-diimine (ArN=C(CH_3)-C(CH_3)=NAr, Ar=2,6-(i-Pr)_2C_6H_3) (DMN) binary catalysts with methylaluminoxane (MAO) was studied. The effects of polymerization temperature and Cp_2TiCl_2 molar fraction (X_(Ti)) on binary catalysts performances were investigated. DSC and SEM have been used to study the polyethylene microblends, which both indicate that phase separation occurred in the polyethylene obtained at 50°C, while the linear and branched polyethylene obtained at 0°C are uniformly microblends. The GPC analysis shows that both Cp_2TiCl_2 and nickel-diimine have only one type of active site, while the binary catalysts have two, which are almost the same as that of Cp_2TiCl_2 and nickel-diimine.
    (b) Microblend of linear LPE/BPE by in-situ space-confined polymerization was studied. Cp_2TiCl_2 and a-nickel diimine catalysts (DMN) were supported on mesoporous particles having parallel hexagonal nanotube pore structure (MCM-41) for ethylene polymerization with methylaluminoxane (MAO) as cocatalyst. DSC, XRD and SEM have been used to investigate phase structures of LPE/BPE blends. Comparing with polyethylene obtained by homogeneous binary catalysts, it was able to blend LPE and BPE to microscale range through in-situ reaction without the need of a compatibilizer.
    3. A novel simple catalyst system, iron (III) acetylacetonate and bis(imino)pyridyl ligandmixture activated with methylaluminoxane (MAO) has been found to exhibit high activity for ethylene polymerization.
    (a) Effects of polymerization temperature and Al/Fe molar ratio have been systemically investigated on seven iron (III) acetylacetonate (Fe(acac)_3) and bis(imino)pyridyl ligand ( 2-R_1N=C(Me)-6-R_2N=C (Me)C_5H_3N ) ( L_1: R_1=R_2= 2,6-Me_2C_6H_3; L_2: R_1=R_2=2-Me-6-(i-Pr)C_6H_3; L_3: R,=R_2=2,6- (i-Pr)_2C_6H_3; L_4: R_1=R_2=2-MeC_6H_4; L_5: R_1=R_2=2-(i-Pr)C_6H4; L_6: R_1= 2-MeC_6H_4, R_2=2,6- (i-Pr)_2C_6H_3; L_7: R_1= cyclohexyl, R_2=2,6-(i-Pr)_2C_6H_3) catalyst systems. Fe(acac)_3 could not catalyze ethylene polymerization without bis(imino)pyridyl ligand. However, bimodal polyethylene was produced by active species were formed in situ and when Fe(acac)_3/ bis(imino)pyridyl ligand system was activated by MAO. Bis(imino)pyridyl ligand play a major role in the catalyst system. High molecular weight polyethylene was obtained using Fe(acac)_3/ L_1~L_3 catalyst systems, both liquid and solid products were obtained simultaneously using Fe(acac)_3/L_4, L_5 catalyst systems, and polyethylene with a few oligomers were produced with Fe(acac)_3/L_6, L_7 catalyst systems. As polymerization temperature increased, polyethylene with lower molecular weight was obtained. The effect of polymerization temperature on molecular weight distributions increased when decreasing the bulkiness of
    ligand. The chain transfer to MAO occurs more easily at higher equiv of Al/Fe, and the effect of Al/Fe molar ratio on molecular weight distributions increase when increasing the bulkiness of ligand when commercial MAO (including Al(Me)3) was used as cocatalyst.
    (b) Mechanisms of active species formation and bimodal polyethylene production were investigated. The results indicated that iron metal sites were coordinated with bis(imino)pyridyl ligand according one equiv molar ratio when MAO was added to Fe(acac)_3/ bis(imino)pyridyl ligand catalyst system by detailed study. Several kinds of active species were formed in situ and its action together with transfer to aluminum lead to the polyethylene product with broad/bimodal molecular weight distributions.
    4. Supporting of soluble single-site catalysts on preferably inorganic substrates is essential to provide "drop in" catalysts for use in existing technologies for slurry or gas-phase polymerization processes. Support method different with conventional support sequence was used because there was no activity when MAO was supported first. Activated Davision 955 silica gel was used to support compound by sequence of catalyst system and MAO. The supported catalyst has receivable activity when no more cocatalyst was added to the reactor. In all polymerization runs no reactor fouling was found with the supported catalyst. The polyethylene obtained showed high melting temperature and high molecular weight. The increase in activity is linear and demonstrates that the rate of propagation has a first-order rate dependence on ethylene, in accordance with the proposed Cossee-type mechanism. The fact that molecular weight remained essentially invariant with ethylene pressure indicated that the overall rate of chain transfer must also be first order in ethylene and β-H transfer was predominant chain transfer process. Experiments in which the temperature of the polymerization reaction was varied revealed that an increase in temperature results in large decreased in activity and molecular weight. As Al/Fe molar ratio increased from 32 to 59, the activity of supported catalysts increased obviously, while molecular weight remained constant indicated β-H transfer was predominant chain transfer process.
引文
[1] Bohm L L. The ethylene polymerization with Ziegler catalysts: Fifty years after the discovery. Angewandte Chemie-International Edition, 2003, 42(41) : 5010-5030.
    [2] Galli P, Vecellio G. Technology: driving force behind innovation and growth of polyolefins. Progress in Polymer Science, 2001, 26 (8) : 1287-1336.
    [3] Larcher A W, Pease D C. U. S. Pat. 2816883, 1951.
    [4] Zietz X. U. S. Pat. , 2692257, 1954.
    [5] Hogan J P, Banks R L. U. S. Pat. 2825721, 1958.
    [6] Kaminsky W, Laban A. Metallocene catalysis. Applied Catalysis a-General, 2001, 222(1-2) : 47-61.
    [7] Terunori F; Yasuhi T. EP 0874005 A1, 1998.
    [8] Britovsek G J P, Gibson V C, Wass D F. The search for new-generation olefm polymerization catalysts: Life beyond metallocenes. Angewandte Chemie-International Edition, 1999, 38(4) : 428-447.
    [9] Ittel S D, Johnson L K, Brookhart M. Late-metal catalysts for ethylene homo-and copolymerization. Chemical Reviews, 2000, 100(4) : 1169-1203.
    [10] Alt F P, Bohm L L, Endede H F, Berthold J. Bimodal polyethylene-Interplay of catalyst and process. Macromolecular Symposia, 2001, 163: 135-143.
    [11] Covezzi M, Mei G. The multizone circulating reactor technology. Chemical Engineering Science, 2001, 56 (13) : 4059-4067.
    [12] Arriola D J, Camahan E M, Hustad P D, Kuhlman R L, Wenzel T T. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science, 2006, 312(5774) : 714-719.
    [13] Kageyama K, Tamazawa J, Aida T. Extrusion polymerization: Catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science, 1999, 285(5436) : 2113-2115.
    [14] Lehmus P, Rieger B. Perspectives: Polymer chemistry-Nanoscale polymerization reactors for polymer fibers. Science, 1999, 285 (5436) : 2081-2082.
    [1] Bohm L L. The ethylene polymerization with Ziegler catalysts: Fifty years after the discovery. Angewandte Chemie-International Edition, 2003, 42(41) : 5010-5030.
    [2] Galli P, Vecellio G. Polyolefins: The most promising large-volume materials for the 21st century. Journal of Polymer Science Part A-Polymer Chemistry, 2004, 42 (3) : 396-415.
    [3] Galli P, Vecellio G. Technology: driving force behind innovation and growth of polyolefins. Progress in Polymer Science, 2001, 26 (8) : 1287-1336.
    [4] 柴国梁.国内聚乙烯市场分析(上).上海化工,2006,31(4):49-52.
    [5] 柴国梁.国内聚乙烯市场分析(下).上海化工,2006,31(5):48-52.
    [6] 王晔,刘重为,张维,赵坤.国内外聚乙烯生产现状及市场分析.弹性体,2006,16(2):73-78.
    [7] 余皎.聚乙烯市场现状及发展预测.现代化工,2003,23(9):54-57.
    [8] 桂祖桐,谢建玲.聚乙烯树脂及其应用.北京:化学工业出版社.2002,1-13.
    [9] Facett E W, Gibson R O, Perrin M W, Patton J G, Williams E G. Br. Pat., 471590, 1937.
    [10] Larcher A W, Pease D C. U.S. Pat., 2816883, 1951.
    [11] Zietz X. U.S. Pat. 2692257, 1954.
    [12] Hogan J P, Banks R L. Belg. Pat., 530617, 1955.
    [13] Hogan J P, Banks R L. U.S. Pat., 2825721, 1958.
    [14] Clark A. Olefin polymerization on supported chromium oxide catalysts. Catalysis Review, 1969, 3(2): 145-173.
    [15] Hogan J P. Ethylene polymerization catalysis over chromium oxide. Journal of Polymer Science Part A-1, 1970, 8: 2637-2652.
    [16] McDaniel M P. Supported chromium catalysts for ethylene polymerization. Advances in Catalysis, 1985, 33: 47-98.
    [17] Ziegler K, Breil H, Martin H, Holzkamp E. Ger. Pat., 973626, 1953.
    [18] Ziegler K, Breil H, Martin H, Holzkamp E. U.S. Pat., 3257332, 1954.
    [19] Ballard D G H B, Jones E, Pioli A J P, Robinson P A, Wyatt R J. U. S. Pat., 3840508, 1974.
    [20] 黄葆同,陈伟.茂金属催化剂及其烯烃聚合物.北京:化学工业出版社.2000,1-11.
    [21] Kaminsky W, Laban A. Metallocene catalysis. Applied Catalysis a-General, 2001, 222(1-2): 47-61.
    [22] 王焙,李建忠,任敦泾.世界聚乙烯生产技术进展.石化技校,2005,12(1):40-44.
    [23] 李春山.双峰聚乙烯的发展概况.现代塑料加工应用.2002,14(6):57-60.
    [24] 刘妍,李旭慧,刘照辉.双峰聚乙烯的生产.化工科技,2003,11(3):53-57.
    [25] Scheirs J, Bohm L L, Boot J C, Leevers P S. PE100 resins for pipe applications: Continuing the development into the 21st century. Trends in Polymer Science, 1996, 4(12): 408-415.
    [26] Liu H T, Davey C R, Shirodkar P P. Bimodal polyethylene products from UNIPOL (TM) single gas phase reactor using engineered catalysts. Macromolecular Symposia, 2003, 195: 309-316.
    [27] Alt F P, Bohm L L, Enderle H F, Berthold J. Bimodal polyethylene-Interplay of catalyst and process. Macromolecular Symposia, 2001, 163: 135-143.
    [28] Santos J L, Asua J M, de la Cal J C. Modeling of olefin gas-phase polymerization in a multizone circulating reactor. Industrial & Engineering Chemistry Research, 2006, 45(9): 3081-3094.
    [29] Fernandes F A N, Lona L M F. Multizone circulating reactor modeling for gas-phase polymerization. Ⅱ. Reactor operating with gas barrier in the downer section. Journal of Applied Polymer Science, 2004, 93(3): 1053-1059.
    [30] Fernandes F A N, Lona L M F. Multizone circulating reactor modeling for gas-phase polymerization. Ⅰ. Reactor modeling. Journal of Applied Polymer Science, 2004, 93(3): 1042-1052.
    [31] Covezzi M, Mei G. The multizone circulating reactor technology. Chemical Engineering Science, 2001, 56(13): 4059-4067.
    [32] Hompens G K. Polyolefins production technology advance. Chemical Week, 2002, 164(13): 35-36
    [33] 张雪珍.世界聚乙烯新进展.当代石油石化,2003,11(4):22-25.
    [34] Lopez-Linares F, Barrios A D, Ortega H, Matos J O, Joskowicz P, Agrifoglio G. Toward the bimodality of polyethylene, initiated with a mixture of a Ziegler-Natta and a metallocene/MAO catalyst system. Journal of Molecular Catalysis a-Chemical, 2000, 159(2): 269-272.
    [35] Cho H S, Chung J S, Lee W Y. Control of molecular weight distribution for polyethylene catalyzed over Ziegler-Natta/Metallocene hybrid and mixed catalysts. Journal of Molecular Catalysis a-Chemical, 2000, 159(2): 203-213.
    [36] Cho H S, Choi Y H, Lee W Y. Characteristics of ethylene polymerization over Ziegler-Natta/metallocene catalysts-Comparison between hybrid and mixed catalysts. Catalysis Today, 2000, 63(2-4): 523-530.
    [37] Chung J S, Cho H S, Ko Y G, Lee W Y. Preparation of the Ziegler-Natta/metallocene hybrid catalysts on SiO_2/MgCl_2 bisupport and ethylene polymerization. Journal of Molecular Catalysis a-Chemical, 1999, 144(1): 61-69.
    [38] Cho H S, Chung J S, Ko Y G, Choi K H, Lee W Y, Ziegler-Natta/Metallocene hybrid catalysts on SiO_2/MgCl_2 bisupport for the ethylene polymerization with respect to the Mg/Si mole ratio. In Science and Technology in Catalysis 1998, 1999, 121,481-484.
    [39] Ahn T O, Hong S C, Huh W S, Lee Y C, Lee D H. Modification of a Ziegler-Natta catalyst with a metallocene catalyst and its olefin polymerization behavior. Polymer Engineering and Science, 1999, 39(7): 1257-1264.
    [40] Kaminsky W. Variation of molecular weight distribution of polyethylenes obtained with homogeneous Ziegler-Natta catalysts. Macromol Chem. Rapid. Common. (Die Makromolekulare Chemie, Rapid Communications), 1988, 9(7): 457-462.
    [41] Kim J D, Soares J B P, Rempel G L. Synthesis of tailor-made polyethylene through the control of polymerization conditions using selectively combined metallocene catalysts in a supported system. Journal of Polymer Science Part A-Polymer Chemistry, 1999, 37(3): 331-339.
    [42] Kim J D, Soares J B P, Rempel G L. Use of hydrogen for the tailoring of the molecular weight distribution of polyethylene in a bimetallic supported metallocene catalyst system. Macromolecular Rapid Communications, 1998, 19(4): 197-199.
    [43] Kim L D, Soares J B P. Copolymerization of ethylene and alpha-olefins with combined metallocene catalysts. Ⅲ. Production of polyolefins with controlled microstructures. Journal of Polymer Science Part A-Polymer Chemistry, 2000, 38(9): 1427-1432.
    [44] Soares J B P, Kim J D. Copolymerization of ethylene and alpha-olefins with combined metallocene catalysts. Ⅰ. A formal criterion for molecular weight bimodality. Journal of Polymer Science Part A-Polymer Chemistry, 2000, 38(9): 1408-1416.
    [45] Hong S C, Mihan S, Lilge D, Delux L, Rief U. Immobilized Me_2Si(C_5Me_4)(N-tBu)TiCl_2/(nBuCp)_2ZrCl_2 hybrid metallocene catalyst system for the production of poly(ethylene-co-hexene) with pseudo-bimodal molecular weight and inverse comonomer distribution. Polymer Engineering and Science, 2007, 47(2): 131-139.
    [46] Razavi A, Debras G LG. U. S. Pat., 6541413, 2003.
    [47] 王立,封麟先,袁幼菱.CN1247875,2000.
    [48] D'Agnillo L, Soares J B P, Penlidis A. Controlling molecular weight distributions of polyethylene by combining soluble metallocene MAO catalysts. Journal of Polymer Science Part A-Polymer Chemistry, 1998, 36(5): 831-840.
    [49] Winter A, Dolle V, Spaleck W. U. S. Pat., 5539066, 1996.
    [50] Mecking S. Reactor blending with early/late transition metal catalyst combinations in ethylene polymerization. Macromolecular Rapid Communications, 1999, 20(3) 139-143.
    [51] Kunrathl F A, de Souza R F, Casagrande Jr O L. Combination of nickel and titanium complexes containing nitrogen ligands as catalyst for polyethylene reactor blending. Macromolecular Rapid Communications 2000, 21(6): 277-280.
    [52] Mota F F, Mauler R S, de Souza R F, Casagrande Jr O L. Tailoring Polyethylene Characteristics Using a Combination of Nickel a-Diimine and Zirconocene Catalysts under Reactor Blending Conditions. Macromolecular Chemistry and Physics 2001,202:1016-1020.
    [53] AlObaidi F, Zhu Shiping. Synthesis of Reactor Blend of Linear and Branched Polyethylene Using Metallocene/Ni-Diimine Binary Catalyst System in a Single Reactor. Journal of Applied Polymer Science, 2005, 96: 2212-2217.
    [54] 朱博超,韦少义,冯玉涛,徐晓敏,魏红,贾军纪,刘燕,杨涛,徐军龙.CN1290710,2001.
    [55] Tohi Y, Nakano T, Makio H, Matsui S, Fujita T, Yamaguchi T. Polyethylenes having well-defined bimodal molecular weight distributions formed with bis(phenoxy-imine) Zr complexes. Macromolecular Chemistry and Physics, 2004, 205(9): 1179-1186.
    [56] Razavi A. U. S. Pat., 6225428, 2001.
    [57] Razavi A. U. S. Pat., 5914289, 1999.
    [58] DesLauriers P J, McDaniel M P, Rohlfing D C, Krishnaswamy R K, Secora S J, Benham E A, Maeger P L, Wolfe A R, Sukhadia A M, Beaulieu B B. A comparative study of multimodal vs. bimodal polyethylene pipe resins for PE-100 applications. Polymer Engineering and Science, 2005, 45(9): 1203-1213.
    [59] McDaniel M P. Controlling polymer properties with the Phillips chromium catalysts. Ind Eng Chem Res, 1988, 27(9): 1559-1564.
    [60] McDaniel M P, Johnson M M. A comparison of Cr/SiO_2 and Cr/AlPO_4 polymerization catalysis 1. Kinetics. Journal of Catalysis, 1986, 101: 446-457.
    [61] McDaniel M P, Johnson M M. Comparison of Cr/SiO_2 and Cr/AlPO_4 Polymerization Catalysts.2. Chain Transfer. Macromolecules, 1987, 20(4): 773-778.
    [62] Britovsek G J P, Gibson V C, Kimberley B S, Maddox P J, McTavish S J, Solan G A, White A J P, Williams D J. Novel olefin polymerization catalysts based on iron and cobalt. Chemical Communications, 1998, (7): 849-850.
    [63] Small B L, Brookhart M, Bennett A M A. Highly active iron and cobalt catalysts for the polymerization of ethylene. Journal of the American Chemical Society, 1998, 120(16): 4049-4050.
    [64] Britovsek G J P, Bruce M, Gibson V C, Kimberley B S, Maddox P J, Mastroianni S, McTavish S J, Redshaw C, Solan G A, Stromberg S, White A J P, Williams D J. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: Synthesis, structures, and polymerization studies. Journal of the American Chemical Society, 1999, 121(38): 8728-8740.
    [65] Britovsek G J P, Gibson V C, Wass D F. The search for new-generation olefin polymerization catalysts: Life beyond metallocenes. Angewandte Chemie-International Edition, 1999, 38(4): 428-447.
    [66] Gibson V C, Spitzmesser S K. Advances in non-metallocene olefin polymerization catalysis. Chemical Reviews, 2003, 103(1): 283-315.
    [67] Bianchini C, Giambastiani G, Rios I G, Mantovani G, Meli A, Segarra A M. Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands. Coordination Chemistry Reviews, 2006, 250(11-12): 1391-1418.
    [68] Wang Q, Li L D, Fan Z Q. Effect of alkylaluminum on ethylene polymerization catalyzed by 2,6-bis(imino)pyridyl complexes of Fe(Ⅱ). Journal of Polymer Science Part A-Polymer Chemistry, 2005, 43(8): 1599-1606.
    [69] Wang Q, Li L D, Fan Z Q. Effects of tetraalkylaluminoxane activators on ethylene polymerization catalyzed by iron-based complexes. European Polymer Journal 2005, 41(6): 1170-1176.
    [70] Chen Z J, Zhang D, Jin G X. Bimodal-distribution polyethylene produced by group IVB complexes beating allyl substitutes on the imine-N sites of phenoxyimine chelate ligands. Chinese Journal of Inorganic Chemistry, 2005, 21(12): 1775-1783.
    [71] Wang Q, Yang H X, Fan Z Q, Xu H. Performance of various activators in ethylene polymerization based on an iron(Ⅱ) catalyst system. Journal of Polymer Science Part A-Polymer Chemistry, 2004, 42(5): 1093-1099.
    [72] Wang Q, Li L D, Fan Z Q. Polyethylene with bimodal molecular weight distribution synthesized by 2,6-bis(imino)pyridyl complexes of Fe(Ⅱ) activated with various activators. European Polymer Journal 2004, 40(8): 1881-1886.
    [73] Wang Q, Li L D. Effect of aluminoxane on molecular weight and molecular weight distribution of polyethylene prepared by an iron-based catalyst. Polymer International 2004, 53(10): 1473-1478.
    [74] Li L D, Wang Q, Fan Z Q. Synthesis of polyethylene with bimodal molecular weight distribution by iron-based late transition metal catalyst/various aluminoxanes system. Chemical Journal of Chinese Universities-Chinese, 2004, 25(9): 1777-1779.
    [75] Li L D, Wang Q. Synthesis of polyethylene with bimodal molecular weight by supported iron-based catalyst. Journal of Polymer Science Part A-Polymer Chemistry, 2004, 42(22): 5662-5669.
    [76] Wang S B, Liu D B, Huang R B, Zhang Y D, Mao B Q. Studies on the activation and polymerization mechanism or ethylene polymerization catalyzed by bis(imino)pyridyl iron(Ⅱ) precatalyst with alkylaluminum. Journal of Molecular Catalysis a-Chemical, 2006, 245(1-2): 122-131.
    [77] Kissin Y V, Qian C T, Xie G Y, Chen Y F. Multi-center nature of ethylene polymerization catalysts based on 2,6-bis(imino)pyridyl complexes of iron and cobalt. Journal of Polymer Science Part A-Polymer Chemistry, 2006, 44(21): 6159-6170.
    [78] Bryliakov K P, Semikolenova N V, Zakharov V A, Talsi E P. Active intermediates of ethylene polymerization over 2,6-bis(imino)pyridyl iron complex activated with aluminum trialkyls and methylaluminoxane. Organometallics, 2004, 23(22): 5375-5378.
    [79] Reardon D, Conan F, Gambarotta S, Yap G, Wang Q Y. Life and death of an active ethylene polymerization catalyst. Ligand involvement in catalyst activation and deactivation. Isolation and characterization of two unprecedented neutral and anionic vanadium(Ⅰ) alkyls. Journal of the American Chemical Society, 1999, 121(40): 9318-9325.
    [80] Wang Q, Liu P. Dual bimodal polyethylene prepared by intercalated silicate with nickle diimine complex. Journal of Polymer Science Part A-Polymer Chemistry, 2005, 43(22): 5506-5511.
    [81] Shan C L P, Soares J B P, Penlidis A. HDPE/LLDPE reactor blends with bimodal microstructures-Part Ⅱ: rheological properties. Polymer, 2003, 44(1): 177-185.
    [82] Shan C L, Soares J B P, Penlidis A. HDPE/LLDPE reactor blends with bimodal microstructures-part 1: mechanical properties. Polymer, 2002, 43(26): 7345-7365.
    [83] Arriola D J, Carnahan E M, Hustad P D, Kuhlman R L, Wenzel T T. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science, 2006, 312(5774): 714-719.
    [84] Coates G W. Precise control of polyolefin stereochemistry using single-site metal catalysts. Chemical Reviews, 2000, 100(4): 1223-1252.
    [85] Coates G W, Hustad P D, Reinartz S. Catalysts for the living insertion polymerization of alkenes: Access to new polyolefin architectures using Ziegler-Natta chemistry. Angewandte Chemie-International Edition, 2002, 41(13): 2236-2257.
    [86] Gibson V C. Shuttling polyolefins to a new materials dimension. Science, 2006, 312(5774): 703-704.
    [87] Zintl M, Rieger B. Novel olefin block copolymers through chain-shuttling polymerization. Angewandte Chemie-International Edition, 2007, 46(3): 333-335.
    [88] 胡海青,李俊宇,苗兵,韩志超.线性和非线性聚合物的相分离.高分子学报,2006,(2):193-208.
    [89] 赵孝彬,杜磊,张小平,郑剑.聚合物共混物的相容性及相分离.高分子通报,2001,(4):75-80.
    [90] Cho K C, Lee B H, Hwang K M, Lee H S, Choe S J. Rheological and mechanical properties in polyethylene blends. Polymer Engineering and Science, 1998, 38(12): 1969-1975.
    [91] Fang Y L, Carreau P J, Lafleur P G. Thermal and rheological properties of mLLDPE/LDPE blends. Polymer Engineering and Science, 2005, 45(9): 1254-1264.
    [92] Hussein I A, Williams M C. Rheological study of the miscibility of LLDPE/LDPE blends and the influence of T-mix. Polymer Engineering and Science, 2001,41(4): 696-701.
    [93] Rana D, Lee C H, Cho K, Lee B H, Choe S. Thermal and mechanical properties for binary blends of metallocene polyethylene with conventional polyolefins. Journal of Applied Polymer Science, 1998, 69(12): 2441-2450.
    [94] Hill M J. Liquid-liquid phase separation in binary blends of a branched polyethylene with linear polyethylenes of differing molecular weight. Polymer, 1994,35(9): 1991-1993.
    [95] Hill M J, Morgan R L, Barham P J. Minimum branch content for detection of liquid-liquid phase separation, using indirect techniques, in blends of polyethylene with ethylene-octene and ethylene-butene copolymers. Polymer, 1997,38(12): 3003-3009.
    [96] Tanem B S, Stori A. Blends of single-site linear and branched polyethylene. I. Thermal characterisation. Polymer, 2001,42(12): 5389-5399.
    [97] Wignall G D, Alamo R G, Londono J D, Mandelkern L, Kim M H, Lin J S, Brown G M. Morphology of blends of linear and short-chain branched polyethylenes in the solid state by small-angle neutron and X-ray scattering, differential scanning calorimetry, and transmission electron microscopy. Macromolecules, 2000,33(2): 551-561.
    [98] Alamo R G, Graessley W W, Krishnamoorti R, Lohse D J, Londono J D, Mandelkern L, Stehling F C, Wignall G D. Small angle neutron scattering investigations of melt miscibility and phase segregation in blends of linear and branched polyethylenes as a function of the branch content. Macromolecules, 1997,30(3): 561-566.
    [99] Bensason S, Nazarenko S, Chum S, Hiltner A, Baer E. Blends of homogeneous ethylene-octene copolymers. Polymer, 1997,38(14): 3513-3520.
    [100] Hussein I A. Implications of melt compatibility/incompatibility on thermal and mechanical properties of metallocene and Ziegler-Natta linear low density polyethylene (LLDPE) blends with high density polyethylene (HDPE): influence of composition distribution and branch content of LLDPE. Polymer International, 2004,53(9): 1327-1335.
    [101] Hussein I A. Melt miscibility and mechanical properties of metallocene linear low-density polyethylene blends with high-density polyethylene: influence of comonomer type. Polymer International, 2005, 54(9): 1330-1336.
    [102] Hussein I A, Hameed T. Influence of branching characteristics on thermal and mechanical properties of Ziegler-Natta and metallocene hexene linear low-density polyethylene blends with low-density polyethylene. Journal of Applied Polymer Science, 2005,97(6): 2488-2498.
    [103] Lee H S, Denn M M. Blends of linear and branched polyethylenes. Polymer Engineering and Science, 2000,40(5): 1132-1142.
    [104] Liu C Y, Wang J, He J S. Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE. Polymer, 2002, 43(13): 3811-3818.
    [105] Xu J T, Xu X R, Chen L S, Feng L X, Chen W. Effect of composition distribution on miscibility and co-crystallization phenomena in the blends of low density polyethylene with conventional and metallocene-based ethylene-butene copolymers. Polymer, 2001,42(8): 3867-3874.
    [106] Zhao Y, Liu S S, Yang D C. Crystallization behavior of blends of high-density polyethylene with novel linear low-density polyethylene. Macromolecular Chemistry and Physics, 1997, 198(5): 1427-1436.
    [107] Arnal M L, Sanchez J J, Muller A J. Miscibility of linear and branched polyethylene blends by thermal fractionation: use of the successive self-nucleation and annealing (SSA) technique. Polymer, 2001,42(16): 6877-6890.
    [108] Chen F, Shanks R A, Amarasinghe G. Crystallisation of single-site polyethylene blends investigated by thermal fractionation techniques. Polymer, 2001,42(10): 4579-4587.
    [109] Hameed T, Hussein I A. Rheological study of the influence of M-w and comonomer type on the miscibility of m-LLDPE and LDPE blends. Polymer, 2002,43(25): 6911-6929.
    [110] Hameed T, Hussein I A. Effect of short chain branching of LDPE on its miscibility with linear HDPE. Macromolecular Materials and Engineering, 2004,289(2): 198-203.
    [111] Hussein I A. Influence of composition distribution and branch content on the miscibility of m-LLDPE and HDPE blends: Rheological investigation. Macromolecules, 2003,36(6): 2024-2031.
    [112] Hussein I A, Hameed T, Sharkh B F A, Mezghani K. Miscibility of hexene-LLDPE and LDPE blends: influence of branch content and composition distribution. Polymer, 2003,44(16): 4665-4672.
    [113] Hussein I A, Williams M C. Rheological study of heterogeneities in melt blends of ZN-LLDPE and LDPE: Influence of M-w and comonomer type, and implications for miscibility. Rheologica Acta, 2004,43(6): 602-614.
    [114] Hussein I A, Williams M C. Rheological study of the influence of branch content on the miscibility of octene m-LLDPE and ZN-LLDPE in LDPE. Polymer Engineering and Science, 2004, 44(4): 660-672.
    [115] Alamo R G Glaser R H, Mandelkern L. Cocrystallization of polymers: polyethylene and its copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1988, 26(10): 2169-2195.
    [116] Chiu G, Alamo R G, Mandelkern L. Formation of ringed spherulites in polyethylenes. Journal of Polymer Science, Part B: Polymer Physics, 1990,28(8): 1207-1221.
    [117] Mandelkern L, Alamo R G Kennedy M A. Interphase thickness of linear polyethylene. Macromolecules, 1990,23(21): 4721-4723.
    [118] Alamo R G Mandelkern L. Crystallization kinetics of random ethylene copolymers. Macromolecules, 1991,24(24): 6480-6493.
    [119] Alamo R G Mandelkern L. Crystallization of polyethylene mixtures. Linear polyethylene/high pressure polymerized-long chain branched polyethylenes. Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 1992,33(1): 1208.
    [120] Alamo R G, Londono J D, Mandelkern L, Stehling F C, Wignall G D. Phase behavior of blends of linear and branched polyethylenes in the molten and solid states by small-angle neutron scattering. Macromolecules, 1994,27(2): 411-417.
    [121] Wignall G D, Londono J D, Lin J S, Alamo R G, Galante M J, Mandelkern L. Morphology of blends of linear and long-chain-branched polyethylenes in the solid state: a study by SANS, SAXS, and DSC. Macromolecules, 1995,28(9): 3156-3167.
    [122] Isasi J R, Haigh J A, Graham J T, Mandelkern L, Alamo R G Some aspects of the crystallization of ethylene copolymers. Polymer, 2000, 41(25): 8813-8823.
    [123] Wignall G D, Alamo R G, Ritchson E J, Mandelkern L, Schwahn D. SANS studies of liquid-liquid phase separation in heterogeneous and metallocene-based linear low-density polyethylenes. Macromolecules, 2001, 34(23): 8160-8165.
    [124] Spells S J, Hill M J. Morphological changes on annealing polyethylene single crystals. Polymer, 1991,32(15): 2716-2723.
    [125] Puig C C, Odell J A, Hill M J, Barham P J, Folkes M J. Comparison of blends of linear with branched polyethylenes prepared by melt mixing and by solution blending. Polymer, 1994, 35(11): 2452-2457.
    [126] Morgan R L, Hill M J, Barham P J. Morphology, melting behaviour and co-crystallization in polyethylene blends: the effect of cooling rate on two homogeneously mixed blends. Polymer, 1999, 40(2): 337-348.
    [127] Hill M J, Barham P J. Morphology maps of binary blends of copolymers produced using the metallocene catalyst process. Polymer, 2000,41(4): 1621-1625.
    [128] Morgan R L, Hill M J, Barham P J, van der Pol A, Kip B J, Ottjes R, van Ruiten J. Study of the phase behaviour of polyethylene blends using micro-Raman imaging. Polymer, 2001,42(5): 2121-2135.
    [129] Finlay J, Hill M J, Barham P J, Byrne K, Woogara A. Mechanical properties and characterization of slowly cooled isotactic polypropylene/high-density polyethylene blends. Journal of Polymer Science, Part B: Polymer Physics, 2003,41(12): 1384-1392.
    [130] Wignall G D, Alamo R G, Londono J D, Mandelkern L, Kim M H, Lin J S, Brown G M. Morphology of blends of linear and short-chain branched polyethylenes in the solid state by small-angle neutron and X-ray scattering, differential scanning calorimetry, and transmission electron microscopy. Macromolecules, 2000,33(2): 551-561.
    [131] Kageyama K, Tamazawa J, Aida T. Extrusion polymerization: Catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science, 1999,285 (5436): 2113-2115
    [132] Dong X C, Wang L, Wang W Q, Yu H J, Wang J F, Chen T, Zhao Z R. Preparation of nano-polyethylene fibers and floccules using MCM-41 -supported metallocene catalytic system under atmospheric pressure. European Polymer Journal, 2005,41(4): 797-803.
    [133] Nair S, Naredi P, Kim S H. Formation of high-stress phase and extrusion of polyethylene due to nanoconfinements during Ziegler-Natta polymerization inside nanochannels. Journal of Physical Chemistry B, 2005, 109(25): 12491-12497.
    [134] Zhang M G, Xu H, Guo C Y, Ma Z, Dong J X, Ke Y C, Hu Y L. Ethylene polymerization with iron-based diimine catalyst supported on MCM-41. Polymer International, 2005, 54(2): 274-278.
    [135] Ye Z B, Zhu S P, Wang W J, Alsyouri H, Lin Y S. Morphological and mechanical properties of nascent polyethylene fibers produced via ethylene extrusion polymerization with a metallocene catalyst supported on MCM-41 particles. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41(20): 2433-2443.
    [136] Peng C Y, Nam W J, Fonash S J, Gu B, Sen A, Strawhecker K, Natarajan S, Foley H C, Kim S H. Formation of nanostructured polymer filaments in nanochannels. Journal of the American Chemical Society, 2003, 125(31): 9298-9299.
    [137] Ye Z B, Alsyouri H, Zhu S P, Lin Y S. Catalyst impregnation and ethylene polymerization with mesoporous particle supported nickel-diimine catalyst. Polymer, 2003, 44(4): 969-980.
    [138] Chan S H, Lin Y Y, Ting C. Nanoblends of incompatible polymers by direct space-confined polymerization. Macromolecules, 2003, 36 (24): 8910-8912.
    [139] Terunori F; Yasuhi T. EP 0874005 A1, 1998.
    [140] Ittel S D, Johnson L K, Brookhart M. Late-metal catalysts for ethylene homo- and copolymerization. Chemical Reviews, 2000, 100(4): 1169-1203.
    [141] Breslow D S, Newburg N R.Bis-(cyclopentadienyl)-titanium dichloride -alkylaluminum complexes as soluble catalysts for the polymerization of ethylene. Journal of the American Chemical Society, 1959, 81(1): 81-86.
    [142] Breslow D S, Newburg N R. Bis-(cyclopentadienyl)-titanium dichloride -alkylalumnum complexls as catalysts for the polymerization of ethylene. Journal of the American Chemical Society, 1957, 79(18): 5072-5073.
    [143] Sinn H, Kaminsky W, Vollmer H J, Woldt R. "Living polymers" on polymerization with extremely productive Ziegler catalysts. Angewandte Chemie-International Edition, 1980, 19(5): 390-392.
    [144] Kaminsky W, Kulper K, Brintzinger H H, Wild F. Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalyst. Angewandte Chemie-International Edition, 1985, 24(6): 507~5508.
    [145] Ewen J A. Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts. Journal of the American Chemical Society, 1984, 10(21): 6355~6364.
    [146] Kaminsky W. Polymerization catalysis. Catalysis Today, 2000, 62(1): 23-34.
    [147] Johnson L K, Killian C M, Brookhart M.New Pd(Ⅱ)- and Ni(Ⅱ)-based catalysts for polymerization of ethylene and α-olefins. Journal of the American Chemical Society, 1995, 117(23): 6414-6415.
    [148] Svejda S A, Johnson L K, Brookhart M. Low-temperature spectroscopic observation of chain growth and migratory Insertion barriers in (α-Diimine)Ni(Ⅱ) olefin polymerization Catalysts. Journal of the American Chemical Society, 1999, 121(45): 10634-10635.
    [149] Guan Z B, Cotts P M, McCord E F. Chain walking: a new strategy to control polymer topology. Science, 1999, 283: 2059-2062.
    [150] Younkin T R, Conner E F, Henderson J I, Friedrich S K, Grubbs R H, Bansleben D A. Neutral, single-component nickel (Ⅱ) polyolefin catalysts that tolerate heteroatoms. Science, 2000, 287(5452): 460-462.
    [151] Sun W H, He S Y, Zhang S, Zhang W, Song Y X, Ma H W. Iron complexes bearing 2-imino-1,10-phenanthrolinyl ligands as highly active catalysts for ethylene oligomerization. Organometallics, 2006, 25(3): 666-677.
    [152] Ionkin A S, Marshall W J, Adelman D J, Fones B B, Fish B M, Schiffhauer M F. High-temperature catalysts for the production of alpha-olefins based on Iron(Ⅱ) and iron(Ⅲ) tridentate bis(imino) pyridine complexes with double pattern of substitution: ortho-methyl plus meta-aryl. Organometallics, 2006, 25(12): 2978-2992.
    [153] Zhang Z C, Chen S T, Zhang X F, Li H Y, Ke Y C, Lu Y Y, Hu Y L. A series of novel 2,6-bis(imino)pyridyl iron catalysts: synthesis, characterization and ethylene oligomerization. Journal of Molecular Catalysis a-ChemicaL 2005, 230(1-2): 1-8.
    [154] Vedder C, Schaper F, Brintzinger H H, Kettunen M, Babik S, Fink G.Chiral iron(Ⅱ) and cobalt(Ⅱ) complexes with biphenyl-bridged bis(pyridylimine) ligands-Syntheses, structures and reactivities. European Journal of Inorganic Chemistry, 2005, (6): 1071-1080.
    [155] Liu J Y, Zheng Y, Li Y G, Pan L, Li Y S, Hu N H. Fe(Ⅱ) and Co(Ⅱ) pyridinebisimine complexes bearing different substituents on ortho- and pare-position of imines: synthesis, characterization and behavior of ethylene polymerization. Journal of Organometallic Chemistry, 2005, 690(5): 1233-1239.
    [156] Kim I, Han B H, Kim J S, Ha C S. Allyloxy- and benzyloxy-substituted pyridine-bis-imine iron(Ⅱ) and cobalt(Ⅱ) complexes for ethylene polymerization. Macromolecular Research, 2005, 13(1): 2-7.
    [157] Karam A R, Catari E L, Lopez-Linares F, Agrifoglio G, Albano C L, Diaz-Barrios A, Lehmann T E, Pekerar S V, Albomoz L A, Atencio R, Gonzalez T, Ortega H B, Joskowics P. Synthesis, characterization and olefin polymerization studies of iron(Ⅱ) and cobalt(Ⅱ) catalysts bearing 2,6-bis(pyrazol-1-yl)pyridines and 2,6-bis(pyrazol-1-ylmethyl)pyridines ligands. Applied Catalysis a-General, 2005, 280(2): 165-173.
    [158] Zhang Z C, Zou J F, Cui N N, Ke Y C, Hu Y L. Ethylene oligomerization catalyzed by a novel iron complex containing fluoro and methyl substituents. Journal of Molecular Catalysis a-ChemicaL 2004, 219(2): 249-254.
    [159] Chen Y F, Chen R F, Qian C T, Dong X C, Sun J. Halogen-substituted 2,6-bis(imino)pyridyl iron and cobalt complexes: Highly active catalysts for polymerization and oligomerization of ethylene. Organometallics, 2003,22(21): 4312-4321.
    [160] Abu-Surrah A S, Lappalainen K, Piironen U, Lehmus P, Repo T, Leskela M. New bis(imino)pyridine-iron(II)- and cobalt(II)-based catalysts: synthesis characterization and activity towards polymerization of ethylene. Journal of Organometallic Chemistry, 2002, 648(1-2): 55-61.
    [161] Ma Z, Wang H, Qiu J M, Xu D M, Hu Y L. A novel highly active iron/2,6-bis(imino)pyridyl catalyst for ethylene polymerization. Macromolecular Rapid Communications, 2001, 22(15): 1280-1283.
    [162] Qiu J M, Li Y F, Hu Y L. A new iron-based catalyst for ethylene polymerization. Polymer International, 2000,49(1): 5-7.
    [163] Bianchini C, Giambastiani G, Guerrero I R, Meli A, Passaglia E, Gragnoli T. Simultaneous polymerization and Schulz-Flory oligomerization of ethylene made possible by activation with MAO of a C-1 -symmetric [2,6-bis(arylimino)pyridyl] iron dichloride precursor. Organometallics, 2004, 23(26): 6087-6089.
    [164] Bianchini C, Mantovani G, Meli A, Migliacci F, Zanobini F, Laschi F, Sommazzi A. Oligomerisation of ethylene to linear alpha-olefins by new C-s- and C-1-symmetric [2,6-bis(imino)pyridyl]iron and -cobalt dichloride complexes. European Journal of Inorganic Chemistry, 2003,(8): 1620-1631.
    [165] Britovsek G J P, Clentsmith G K B, Gibson V C, Goodgame D M L, McTavish S J, Pankhurst Q A. The nature of the active site in bis(imino)pyridine iron ethylene polymerisation catalysts. Catalysis Communications, 2002,3(5): 207-211.
    [166] Griffiths E A H, Britovsek G J P, Gibson V C, Gould I R. Highly active ethylene polymerisation catalysts based on iron: an ab initio study. Chemical Communications, 1999, (14): 1333-1334
    [167] Khoroshun D V, Musaev D G, Vreven T, Morokuma K. Theoretical study on bis(imino)pyridyl-Fe(II) olefin poly- and oligomerization catalysts. Dominance of different spin states in propagation and beta-hydride transfer pathways. Organometallics, 2001,20(10): 2007-2026.
    [168] Semikolenova N V, Zakharov V A, Talsi E P, Babushkin D E, Sobolev A P, Echevskaya L G, Khysniyarov M M. Study of the ethylene polymerization over homogeneous and supported catalysts based on 2,6-bis(imino)pyridyl complexes of Fe(II) and Co(II). Journal of Molecular Catalysis a-Chemical, 2002,182(1): 283-294.
    [169] Bryliakov K P, Semikolenova N V, Zudin V N, Zakharov V A, Talsi E P. Ferrous rather than ferric species are the active sites in bis(imino)pyridine iron ethylene polymerization catalysts. Catalysis Communications, 2004, 5(1): 45-48.
    [170] Bryliakov K P, Semikolenova N V, Zakharov V A, Talsi E P. Active intermediates of ethylene polymerization over 2,6-bis(imino)pyridyl iron complex activated with aluminum trialkyls and methylaluminoxane. Organometallics, 2004, 23(22): 5375-5378.
    [171] Gibson V C, Humphries M J, Tellmann K P, Wass D F, White A J P, Williams D J. The nature of the active species in bis(imino) pyridyl cobalt ethylene polymerisation catalysts. Chemical Communications, 2001, (21): 2252-2253.
    [172] Kooistra T M, Knijnenburg Q, Smits J M M, Horton A D, Budzelaar P H M, Gal A W. Olefin polymerization with [(CoC_(12))-Cl-Ⅱ]: Generation of the active species involves Co-Ⅰ. Angewandte Chemic-International Edition, 2001, 40(24): 4719-4722.
    [173] Britovsek G J P, Cohen S A, Gibson V C, van Meurs M. Iron catalyzed polyethylene chain growthon zinc: A study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems. Journal of the American Chemical Society, 2004, 126(34): 10701-10712.
    [174] Britovsek G J P, Cohen S A, Gibson V C, Maddox P J, van Meurs M. Iron-catalyzed polyethylene chain growth on zinc: Linear alpha-olefins with a Poisson distribution. Angewandte Chemic-International Edition, 2002, 41(3): 489-491.
    [175] Bryliakov K P, Semikolenova N V, Zakharov V A, Talsi E P. Active intermediates of ethylene polymerization over 2,6-bis(imino)pyridyl iron complex activated with aluminum trialkyls and methylaluminoxane. Organometallics, 2004, 23(22): 5375-5378.
    [176] Wang S B, Liu D B, Huang R B, Zhang Y D, Mao B Q. Studies on the activation and polymerization mechanism of ethylene polymerization catalyzed by bis(imino)pyridyl iron(Ⅱ) precatalyst with alkylaluminum. Journal of Molecular Catalysis a-Chemical, 2006, 245(1-2): 122-131.
    [177] Kissin Y V, Qian C T, Xie G Y, Chen Y F. Multi-center nature of ethylene polymerization catalysts based on 2,6-bis(imino)pyridyl complexes of iron and cobalt. Journal of Polymer Science Part A-Polymer Chemistry, 2006, 44(21): 6159-6170.
    [1] http://www.gloveboxsystems.com.cn.
    [2] http://www.solventpurification.com.cn.
    [3] 黄枢,谢如刚,田宝芝,秦圣英.有机合成试剂制备手册.北京:科学出版社.第二版,2005:345.
    [4] 刘伯平.硅胶负载型高效钛系聚乙烯催化剂的研究[博士论文].浙江杭州:浙江大学.1996.
    [5] Britovsek G J P, Gibson V C, Spitzrnesser S K, Tellmann K P, White A J P, Williams D J. Cationic 2,6-bis(imino)pyridine iron and cobalt complexes: synthesis, structures, ethylene polymerisation and ethylene/polar monomer co-polymerisation studies. Journal of the Chemical Society-Dalton Transactions, 2002, (6): 1159-1171.
    [6] Wang S B, Liu D B, Huang R B, Zhang Y D, Mao B Q. Studies on the activation and polymerization mechanism of ethylene polymerization catalyzed by bis(imino)pyridyl iron(Ⅱ) preeatalyst with alkylaluminum. Journal of Molecular Catalysis a-ChemicaL 2006, 245(1-2): 122-131.
    [7] Small B L, Brookhart M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear alpha-olefins. Journal of the American Chemical Society, 1998, 120(28): 7143-7144.
    [8] Bianchini C, Giambastiani G, Guerrero I R, Meli A, Passaglia E, Gragnoli T. Simultaneous polymerization and Schulz-Flory oligomerization of ethylene made possible by activation with MAO of a C-1-symmetric [2,6-bis(arylimino)pyridyl] iron dichloride precursor. Organometallics, 2004, 23(26): 6087-6089.
    [9] Bianchini C, Mantovani G, Meli A, Migliacci F, Zanobini F, Laschi F, Sommazzi A. Oligomerisation of ethylene to linear alpha-olefins by new C-s- and C-1-symmetric [2,6-bis(imino)pyridyl]iron and-cobalt dichloride complexes. European Journal of Inorganic Chemistry, 2003, (8): 1620-1631.
    [10] Zhang Z C, Chen S T, Zhang X F, Li H Y, Ke Y C, Lu Y Y, Hu Y L. A series of novel 2,6-bis(imino)pyridyl iron catalysts: synthesis, characterization and ethylene oligomerization. Journal of Molecular Catalysis a-ChemicaL 2005, 230(1-2): 1-8.
    [11] Sun W H, He S Y, Zhang S, Zhang W, Song Y X, Ma H W. Iron complexes bearing 2-imino-1,10-phenanthrolinyl ligands as highly active catalysts for ethylene oligomerization. Organometallics, 2006, 25(3): 666-677.
    [12] 周贵恩.聚合物X射线衍射.合肥:中国科学技术大学出版社.1989:131-137.
    [1] Scheirs J, Bohm L L, Boot J C, Leevers P S. PE100 resins for pipe applications: Continuing the development into the 21st century. Trends in Polymer Science, 1996, 4(12): 408-415.
    [2] Heidemeyer P, Pfeiffer J. Special requirements on compounding technology for bimodal polyolefines and their industrial application. Macromolecular Symposia, 2002, 181: 167-176.
    [3] Alt F P, Bohm L L, Enderle H F, Berthold J. Bimodal polyethylene-Interplay of catalyst and process. Macromolecular Symposia, 2001, 163: 135-143.
    [4] Lopez-Linares F, Barrios A D, Ortega H, Matos J O, Joskowicz P, Agrifoglio G. Toward the bimodality of polyethylene, initiated with a mixture of a Ziegler-Natta and a metallocene/MAO catalyst system. Journal of Molecular Catalysis a-Chemical. 2000, 159(2): 269-272.
    [5] Ahn T O, Hong S C, Huh W S, Lee Y C, Lee D H. Modification of a Ziegler-Natta catalyst with a metallocene catalyst and its olefin polymerization behavior. Polymer Engineering and Science, 1999, 39(7): 1257-1264.
    [6] Soares J B P, Kim J D. Copolymerization of ethylene and alpha-olefins with combined metallocene catalysts. I. A formal criterion for molecular weight bimodality. Journal of Polymer Science Part a-Polymer Chemistry, 2000, 38(9): 1408-1416.
    [7] Hong S C, Mihan S, Lilge D, Delux L, Rief U. Immobilized Me_2Si(C_5Me_4)(N-tBu)TiCl_2/(nBuCp)_2 ZrCl_2 hybrid metallocene catalyst system for the production of poly(ethylene-co-hexene) with pseudobimodal molecular weight and inverse comonomer distribution. Polymer Engineering and Science, 2007, 47(2): 131-139.
    [8] D'Agnillo L, Soares J B P, Penlidis A. Controlling molecular weight distributions of polyethylene by combining soluble metallocene MAO catalysts. Journal of Polymer Science Part a-Polymer Chemistry, 1998, 36(5): 831-840.
    [9] Mecking S. Reactor blending with early/late transition metal catalyst combinations in ethylene polymerization. Macromolecular Rapid Communications, 1999, 20(3): 139-143.
    [10] Mota F F, Mauler R S, de Souza R F, Casagrande O L. Tailoring polyethylene characteristics using a combination of nickel alpha-diimine and zirconocene catalysts under reactor blending conditions. Macromolecular Chemistry and Physics, 2001, 202(7): 1016-1020.
    [11] AlObaidi F, Ye Z B, Zhu S P. Ethylene polymerization with silica-supported nickel-diimine catalyst: Effect of support and polymerization conditions on catalyst activity and polymer properties. Macromolecular Chemistry and Physics, 2003, 204(13): 1653-1659.
    [12] Hompens G K. Polyolefins production technology advance. Chemical Week, 2002, 164(13): 35-36.
    [13] Shan C L, Soares J B P, Penlidis A. HDPE/LLDPE reactor blends with bimodal microstructures-part 1: mechanical properties. Polymer, 2002, 43(26): 7345-7365.
    [14] Abedi S, Hassanpour N. Preparation of bimodal polypropylene in two-step polymerization. Journal of Applied Polymer Science, 2006, 101(3): 1456-1462.
    [15] Covezzi M, Mei G. The multizone circulating reactor technology. Chemical Engineering Science, 2001, 56(13): 4059-4067.
    [16] Arriola D J, Camahan E M, Hustad P D, Kuhlman R L, Wenzel T T. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science, 2006, 312(5774): 714-719.
    [17] Soares J B P. Mathematical modelling of the microstructure of polyolefins made by coordination polymerization: a review. Chemical Engineering Science, 2001, 56(13): 4131-4153.
    [18] Galli P. The reactor polymer alloys: the shifting of the frontier of polymer research. Macromolecular Symposia. 1996, 112: 1-16.
    [19] Galli P, Vecellio G. Technology:driving force behind innovation and growth of polyolefms. Prog Polym Sci, 2001, 26: 1287-1336.
    [20] Singh D, MerrillR P. Molecular weight distribution of polyethylene produced by Ziegler-Natta catalysts. Maeromolecules, 1971, 4(5): 599-604.
    [21] Nagel E J, Kirillov V A, Ray W H. Prediction of molecular weight distributions for high-density polyolefins. Ind Eng Chem Prod Res Dev, 1980, 19(3): 372-379.
    [22] Floyd S, Choi K Y, Taylor T W, Ray W H. Polymerization of olefins through heterogeneous catalysis. Ⅲ. Polymer particle modelling with an analysis of intraparticle heat and mass transfer effects,Journal of Applied Polymer Science, 1986, 32(1): 2935-2960.
    [23] Floyd S, Choi K Y, Taylor T W, Ray W H. Polymerization of olefines through heterogeneous catalysis Ⅳ. Modeling of heat and mass transfer resistance in the polymer particle boundary layer. Journal of Applied Polymer Science, 1986, 31(7): 2231-2265.
    [24] Floyd S, Hutchinson R A, Ray W H.Polymerization of olefins through heterogeneous catalysis-Ⅴ. Gas-liquid mass transfer limitations in liquid slurry reactors,Journal of Applied Polymer Science, 1986, 32(6): 5451-5479.
    [25] Floyd S, Heiskanen T, Taylor T W, Mann G E, Ray W H. Polymerization of olefins through heterogeneous catalysis. VI. Effect of particle heat and mass transfer on polymerization behavior and polymer properties. Journal of Applied Polymer Science, 1987,33(4): 1021-1065.
    [26] McKenna T F, Soares J B P. Single particle modelling for olefin polymerization on supported catalysts: A review and proposals for future developments. Chemical Engineering Science, 2001, 56(13): 3931-3949.
    [27] Hutchinson R A, Chen C M, Ray W H. Polymerization of olefins through heterogeneous catalysis X: Modeling of particle growth and morphology. Journal of Applied Polymer Science, 1992, 44(8): 1389-1414.
    [28] Flory P J. Molecular size sistribution in linear condensation polymers. Journal of the American Chemical Society, 1936,58: 1877.
    [29] Blom R, Swang O, Heyn R H. Semi-batch polymerisations of ethylene with metallocene catalysts in the presence of hydrogen, 3 - Correlation between hydrogen sensitivity and molecular parameters. Macromolecular Chemistry and Physics, 2002, 203(2): 381-387.
    [30] Blom R, Dahl I M. Semi-batch polymerisation of ethylene with single-site catalysts in the presence of hydrogen, 1 - Modelling of molecular weight distributions. Macromolecular Chemistry and Physics, 2001, 202(5): 719-725.
    [31] Andersen A, Blom R, Dahl I M. Semi-batch polymerisations of ethylene with metallocene catalysts in the presence of hydrogen, 2 - Deduction of kinetic parameters. Macromolecular Chemistry and Physics, 2001, 202(5): 726-733.
    [32] Czaja K, Bialek M. Effect of hydrogen on the ethylene polymerization process over ziegler-natta catalysts supported on MgCl_2(THF)_2. II. Kinetic studies. Journal of Applied Polymer Science, 2001, 79:361-365.
    [33] Choi K Y, Ray W H. Polymerization of olefins through heterogeneous catalysis. II. Kinetics of gas phase propylene polymerization with Ziegler-Natta catalysts. Journal of Applied Polymer Science, 1985, 30(3): 1065-1081.
    [1] Cho K C, Lee B H, Hwang K M, Lee H S, Choe S J. Rheological and mechanical properties in polyethylene blends. Polymer Engineering and Science, 1998, 38(12): 1969-1975.
    [2] Fang Y L, Carreau P J, Lafleur P G. Thermal and rheological properties of mLLDPE/LDPE blends. Polymer Engineering and Science, 2005, 45(9): 1254-1264.
    [3] Hussein I A, Williams M C. Rheological study of the miscibility of LLDPE/LDPE blends and the influence of T-mix. Polymer Engineering and Science, 2001, 41(4): 696-701.
    [4] Rana D, Lee C H, Cho K, Lee B H, Choe S. Thermal and mechanical properties for binary blends of metallocene polyethylene with conventional polyolefins. Journal of Applied Polymer Science, 1998, 69(12): 2441-2450
    [5] Scheirs J, Bohm L L, Boot J C, Leevers P S. PE100 resins for pipe applications: Continuing the development into the 21st century. Trends in Polymer Science, 1996, 4(12): 408-415.
    [6] Liu H T, Davey C R, Shirodkar P P. Bimodal polyethylene products from UNIPOL (TM) single gas phase reactor using engineered catalysts. Macromolecular Symposia, 2003, 195: 309-316.
    [7] 胡海青,李俊宇,苗兵,韩志超.线性和非线性聚合物的相分离.高分子学报 2006,(2):193-208.
    [8] Hill M J. Liquid-liquid phase separation in binary blends of a branched polyethylene with linear polyethylenes of differing molecular weight. Polymer, 1994, 35(9): 1991-1993,
    [9] Hill M J, Morgan R L, Barham P J. Minimum branch content for detection of liquid-liquid phase separation, using indirect techniques, in blends of polyethylene with ethylene-octene and ethylene-butene copolymers. Polymer, 1997, 38(12): 3003-3009.
    [10] Wignall G D, Alamo R G, Londono J D, Mandelkern L, Kim M H, Lin J S, Brown G M. Morphology of blends of linear and short-chain branched polyethylenes in the solid state by small-angle neutron and X-ray scattering, differential scanning calorimetry, and transmission electron microscopy. Macromolecules, 2000, 33(2): 551-561.
    [11] Hussein I A. Implications of melt compatibility/incompatibility on thermal and mechanical properties of metallocene and Ziegler-Natta linear low density polyethylene (LLDPE) blends with high density polyethylene (HDPE): influence of composition distribution and branch content of LLDPE. Polymer International, 2004, 53(9): 1327-1335.
    [12] Hussein I A. Melt miscibility and mechanical properties of metallocene linear low-density polyethylene blends with high-density polyethylene: influence of comonomer type. Polymer International, 2005, 54(9): 1330-1336.
    [13] Wignall G D, Alamo R G, Londono J D, Mandelkern L, Kim M H, Lin J S, Brown G M. Morphology of blends of linear and short-chain branched polyethylenes in the solid state by small-angle neutron and X-ray scattering, differential scanning calorimetry, and transmission electron microscopy. Macromolecules, 2000, 33(2): 551-561.
    [14] Puig C C, Odell J A, Hill M J, Barham P J, Folkes M J. Comparison of blends of linear with branched polyethylenes prepared by melt mixing and by solution blending. Polymer, 1994, 35(11): 2452-2457.
    [15] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710-712
    [16] Kageyama K, Tamazawa J, Aida T. Extrusion polymerization: Catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science, 1999, 285(5436): 2113-2115.
    [17] Lehmus P, Rieger B. Perspectives: Polymer chemistry-Nanoscale polymerization reactors for polymer fibers. Science, 1999, 285(5436): 2081-2082.
    [18] Dong X C, Wang L, Wang W Q, Yu H J, Wang J F, Chen T, Zhao Z R. Preparation of nano-polyethylene fibers and floccules using MCM-41-supported metallocene catalytic system under atmospheric pressure. European Polymer Journal, 2005, 41(4): 797-803.
    [19] Nair S, Naredi P, Kim S H. Formation of high-stress phase and extrusion of polyethylene due to nanoconfinements during Ziegler-Natta polymerization inside nanochannels. Journal of Physical Chemistry B, 2005, 109(25): 12491-12497.
    [20] Zhang M G, Xu H, Guo C Y, Ma Z, Dong J X, Ke Y C, Hu Y L. Ethylene polymerization with iron-based diimine catalyst supported on MCM-41. Polymer International, 2005, 54(2): 274-278.
    [21] Ye Z B, Zhu S P, Wang W J, Alsyouri H, Lin Y S. Morphological and mechanical properties of nascent polyethylene fibers produced via ethylene extrusion polymerization with a metallocene catalyst supported on MCM-41 particles. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41(20): 2433-2443.
    [22] Peng C Y, Nam W J, Fonash S J, Gu B, Sen A, Strawhecker K, Natarajan S, Foley H C, Kim S H. Formation of nanostructured polymer filaments in nanochannels. Journal of the American Chemical Society, 2003, 125(31): 9298-9299.
    [23] Ye Z B, Alsyouri H, Zhu S P, Lin Y S. Catalyst impregnation and ethylene polymerization with mesoporous particle supported nickel-diimine catalyst. Polymer, 2003, 44(4): 969-980.
    [24] Chan S H, Lin Y Y, Ting C. Nanoblends of incompatible polymers by direct space-confined polymerization. Macromolecules, 2003, 36 (24): 8910-8912.
    [25] Soares J B P. Mathematical modelling of the microstructure of polyolefins made by coordination polymerization: a review. Chemical Engineering Science, 2001, 56(13): 4131-4153.
    [26] Galli P. The reactor polymer alloys: the shifting of the frontier of polymer research. Macromolecular Symposia. 1996, 112: 1-16.
    [27] Galli P, Vecellio G. Technology: driving force behind innovation and growth of polyolefins. Progress in Polymer Science, 2001, 26(8): 1287-1336.
    [28] Johnson L K, Killian C M, Brookhart M. New Pd (Ⅱ)-and Ni (Ⅱ)-based catalysts for polymerization of ethylene and α-olefins. Journal of the American Chemical Society, 1995, 117 (23): 6414-6415.
    [29] Preishuber-Pflugl P, Brookhart M. Highly active supported nickel diimine catalysts for polymerization of ethylene. Macromolecules, 2002, 35 (16): 6074-6076.
    [30] Gates D P, Svejda S A, Onate E, et al. Synthesis of branched polyethylene using (α-diimine) nickel(Ⅱ) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules, 2000, 33 (7): 2320-2334.
    [31] Ittel S D, Johnson L K, Brookhart M. Late-metal catalysts for ethylene homo-and copolymerization. ChemicaI Reviews, 2000, 100(4): 1169-1203.
    [32] 艾娇艳,祝方明,林尚安.a-二亚胺镍/C_p~*TiCl_3复式催化剂制备双峰长支链聚乙烯.高分子学报,2005,(1):71-75.
    [33] Flory P J. Molecular size distribution in linear condensation polymers. Journal of the American Chemical Society, 1936, 58(10): 1877-1885.
    [34] Kisson Y V. Molecular weight distributions of linear polymers: detailed analysis from GPC data. Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33(2): 227-237.
    [35] AlObaidi F, Ye Z B, Zhu S P. Ethylene polymerization with silica-supported nickel-diimine catalyst: Effect of support and polymerization conditions on catalyst activity and polymer properties. Macromolecular Chemistry and Physics, 2003, 204(13): 1653-1659.
    [36] Weimann P A, Hajduk D A, Chu C, Chaffin K A, Brodil J C, Bates F S. Crystallization of tethered polyethylene in confined geometries. Journal of Polymer Science Part B-Polymer Physics, 1999, 37: 2053-2068.
    [37] Maiti P, Nam P H, Okamoto M, Hasegawa N, Usuki A. Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules, 2002, 35(6): 2042-2049.
    [38] Nakajima H, Yamada K, Iseki Y, Hosoda S, Hanai A, Oumi Y, Teranish T, Sano T. Preparation and characterization of polypropylene/mesoporous silica nanocomposites with confined polypropylene. Journal of Polymer Science Part B-Polymer Physics, 2003, 41(24): 3324-3332.
    [39] Tanem B S, Stori A. Blends of single-site linear and branched polyethylene. I. Thermal characterisation. Polymer, 2001, 42(12): 5389-5399.
    [40] Hussein I A. Influence of composition distribution and branch content on the miscibility of m-LLDPE and HDPE blends: Rheological investigation. Macromolecules, 2003, 36(6): 2024-2031.
    [1] Britovsek G J P, Bruce M, Gibson V C, Kimberley B S, Maddox P J, Mastroianni S, McTavish S J, Redshaw C, Solan G A, Stromberg S, White A J P, Williams D J. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: Synthesis, structures, and polymerization studies. Journal of the American Chemical Society, 1999, 121(38): 8728-8740.
    [2] Britovsek G J P, Gibson V C, Spitzmesser S K, Tellmann K P, White A J P, Williams D J. Cationic 2,6-bis(imino)pyridine iron and cobalt complexes: synthesis, structures, ethylene polymerisation and ethylene/polar monomer co-polymerisation studies. Journal of the Chemical Society-Dalton Transactions, 2002, (6): 1159-1171.
    [3] Small B L, Brookhart M, Bennett A M A. Highly active iron and cobalt catalysts for the polymerization of ethylene. Journal of the American Chemical Society, 1998, 120(16): 4049-4050.
    [4] Bianchini C, Giambastiani G, Rios I G, Mantovani G, Meli A, Segarra A M. Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6(bis-organylimino)pyridyl ligands. Coordination Chemistry Reviews, 2006, 250(11-12): 1391-1418.
    [5] Li L D, Wang Q. Synthesis of polyethylene with bimodal molecular weight by supported iron-based catalyst. Journal of Polymer Science Part a-Polymer Chemistry, 2004, 42(22): 5662-5669.
    [6] Sun W H, He S Y, Zhang S, Zhang W, Song Y X, Ma H W. Iron complexes bearing 2-imino-1,10-phenanthrolinyl ligands as highly active catalysts for ethylene oligomerization. Organometallics, 2006, 25(3): 666-677.
    [7] Zhang Z C, Chen S T, Zhang X F, Li H Y, Ke Y C, Lu Y Y, Hu Y L. A series of novel 2,6-bis(imino)pyridyl iron catalysts: synthesis, characterization and ethylene oligomerization. Journal of Molecular Catalysis a-Chemical, 2005, 230(1-2): 1-8.
    [8] Britovsek G J P, Clentsmith G K B, Gibson V C, Goodgame D M L, McTavish S J, Pankhurst Q A. The nature of the active site in bis(imino)pyridine iron ethylene polymerisation catalysts. Catalysis Communications, 2002, 3(5): 207-211.
    [9] Small B L, Brookhart M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear alpha-olefins. Journal of the American Chemical Society, 1998, 120(28): 7143-7144
    [10] Bianchini C, Mantovani G; Meli A, Migliacci F, Zanobini F, Laschi F, Sommazzi A. Oligomerisation of ethylene to linear alpha-olefins by new C-s- and C-l-symmetric [2,6-bis(imino)pyridyl]iron and -cobalt dichloride complexes. European Journal of Inorganic Chemistry, 2003, (8): 1620-1631
    [11] Bianchini C, Giambastiani G; Guerrero I R, Meli A, Passaglia E, Gragnoli T. Simultaneous polymerization and Schulz-Flory oligomerization of ethylene made possible by activation with MAO of a C-1-symmetric [2,6-bis(arylimino)pyridyl] iron dichloride precursor. Organometallics, 2004, 23(26):6087-6089
    [12] Sun W H, He S Y, Zhang S, Zhang W, Song Y X, Ma H W. Iron complexes bearing 2-imino-1, 10-phenanthrolinyl ligands as highly active catalysts for ethylene oligomerization. Organometallics, 2006, 25(3): 666-677.
    [13] Wang S B, Liu D B, Huang R B, Zhang Y D, Mao B Q. Studies on the activation and polymerization mechanism of ethylene polymerization catalyzed by bis(imino)pyridyl iron(Ⅱ) precatalyst with alkylaluminum. Journal of Molecular Catalysis a-Chemical, 2006, 2450-2): 122-131.
    [14] Britovsek G J P, Cohen S A, Gibson V C, van Meurs M. Iron catalyzed polyethylene chain growth on zinc: A study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems. Journal of the American Chemical Society, 2004, 126(34): 10701-10712.
    [15] Britovsek G J P, Cohen S A, Gibson V C, Maddox P J, van Meurs M. Iron-catalyzed polyethylene chain growth on zinc: Linear alpha-olefins with a Poisson distribution. Angewandte Chemie-International Edition, 2002, 41(3): 489-491.
    [16] Bryliakov K P, Semikolenova N V, Zakharov V A, Talsi E P. Active intermediates of ethylene polymerization over 2,6-bis(imino)pyridyl iron complex activated with aluminum trialkyls and methylaluminoxane. Organometallics, 2004, 23(22): 5375-5378.
    [17] Kissin Y V, Qian C T, Xie G Y, Chen Y E Multi-center nature of ethylene polymerization catalysts based on 2,6-bis(imino)pyridyl complexes of iron and cobalt. Journal of Polymer Science Part a-Polymer Chemistry, 2006, 44(21): 6159-6170.
    [1] Preishuber-Pflugl P, Brookhart M. Highly active supported nickel diimine catalysts for polymerization of ethylene. Macromolecules, 2002, 35(16): 6074-6076.
    [2] 刘广建.超高分子量聚乙烯.北京:化学工业出版社.2001,16-19.
    [3] Li L D, Wang Q. Synthesis of polyethylene with bimodal molecular weight by supported iron-based catalyst. Journal of Polymer Science Part a-Polymer Chemistry, 2004, 42(22): 5662-5669.
    [4] 茂金属加合物催化剂的中试配制技术总结(内部资料).
    [5] Britovsek G J P, Bruce M, Gibson V C, Kimberley B S, Maddox P J, Mastroianni S, McTavish S J, Redshaw C, Solan G A, Stromberg S, White A J P, Williams D J. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: Synthesis, structures, and polymerization studies. Journal of the American Chemical Society, 1999, 121(38): 8728-8740.
    [6] Cossee P. Ziegler-Natta catalyst I. Mechanism of polymerization of α-olefins with Ziegler-Natta catalysis. Journal of Catalysis, 1964, 3: 80-88.
    [7] Cossee P. On the reaction mechanism of the ethylene polymerization with heterogeneous Ziegler-Natta catalysts. Tetrahedron Letters, 1960, (17): 12-16.
    [8] Cossee P. The formation of isotactic polypropylene under the influence of Ziegler-Natta catalysts. Tetrahedron Letters, 1960, (17): 17-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700