高分子链缠结对玻璃化转变的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缠结对玻璃化转变的影响是高分子科学中的一个有趣的基本问题,迄今尚无定论。近年来,有许多关于聚合物受限状态的玻璃化转变的研究。冷冻升华试样、由稀溶液的沉淀试样以及高分子薄膜的研究,都观察到玻璃化转变温度(T_g)的降低。对此提出了不同的解释,包括缠结浓度降低、表面层分子运动能力增强、和薄膜密度降低等。但有一些研究者提出T_g的降低与缠结浓度降低无关。另一方面,冷冻升华试样以及高分子薄膜的研究也观察到T_g的增高。为阐明玻璃化转变中缠结的作用,本文对无规聚苯乙烯的冷冻升华试样的玻璃化转变进行了详细研究。
     由无规聚苯乙烯苯溶液制备冷冻升华试样,制备溶液的浓度范围为:1×10~(-1)~2×10~(-5)g/ml。用差示扫描量热仪研究冷冻升华试样的玻璃化转变行为。研究发现;存在一临界浓度C_g~*(4×10~(-3)g/ml),当制备溶液浓度大于G_g~*时,T_g不随制备溶液浓度的增加而变化,且与本体的玻璃化转变温度相同;当制备溶液的浓度小于C_g~*时,T_g随制备溶液浓度的对数的降低而线性降低。制备溶液浓度在C_g~*以上,溶液中的大分子链如同熔体中的一样,仍旧相互贯穿和缠结;冷冻升华后得到链的缠结网络,因而其T_g与本体试样相同。制备溶液浓度在C_g~*以下,随着溶液浓度降低,更多的孤立单链、寡链线团存在于溶液中;冷冻升华后得到更多的单链、寡链粒子,伴随着链间、链内缠结浓度降低。当由低于动态接触浓度,Cs,的溶液制备冷冻升华试样时,单链粒子的比例大大增加了,使缠结浓度进一步降低。链间、链内缠结浓度的降低增加了分子运动、降低了玻璃化转变温度。前人没有认识到动态接触浓度的存在,他们用了较高浓度的溶液(1×10~(-3)g/ml)去制备试样,分子链没有很好分开。在这样的溶液中,缠结浓度的降低是有限的,所以观察到较小的玻璃化温度降低。
     玻璃化转变温度降低也可能因冷冻升华试样密度降低引起。在稀溶液中,高分子链线团采取伸展链构,经冷冻升华的过程后,线团塌缩成紧密小球。球的堆积和链段在球内的堆积都很松,导致较低的密度。低密度对玻璃化温度降低会有部分贡献。
     冷冻升华试样的凝聚态远离平衡态,在高于试样玻璃化温度以上温度热处理,就会向平衡态过渡。在热处理过程中,孤立的单链、寡链线团通过热扩散会逐渐贯穿、再缠结。随着热处理时间延长,链间、链内的缠结浓度增加,同时链段的分子运动受到愈来愈大的阻碍,所以T_g不断移向高温、最后缓慢地接近本体的玻璃化转变温度。热处理过程中,链段的堆砌密度增加,也会对T_g移向高温有部分贡献。随着热处理温度的提高,链的热扩散和贯穿速度增加,T_g恢复到本体玻璃化转变温度的速度加快。随着制备溶液浓度的降低,T_g恢复到本体玻璃化转变温度的速度降低,很长时间退火以后,由极稀溶液制的冷冻升华的T_g仍旧不能恢复到本体玻璃化转变温度。
     用分子量低于临界缠结分子量的a-PS做了一组平行的实验。低分子量的冷冻升华试样的玻璃化温度比本体试样低2~4℃,而高分子量的冷冻升华试样的玻璃化温度的下降能达到~23℃。热处理时,低分子量的冷冻升华试样的玻璃化温度很快达到本体试样的T_g。低分子量的冷冻升华试样的玻璃化温度的降低可以认为是由于密度的下降。
     FTIR测量证实了冷冻升华试样中的链段堆积很松。比较本体试样,与苯环相关的分子振动谱带1601,1493,1452和698 cm~(-1)吸收峰变窄、变高,特别是吸收峰698 cm~(-1)更为明显。随着制备溶液浓度的降低,这些谱带的线宽和吸收强度的变化更为明显。退火时,链段的堆砌密度逐渐增加,并最后恢复到本体的水平,冷冻升华试样和本体试样的FTIR的差异随之消失。与玻璃化温度恢复本体的T_g相比,链段的密堆砌是一相对快的过程,因为后者仅需要链段的局部分子运动。
     二维FTIR测量指出:单、寡粒子附聚体退火时,与苯环相关的分子振动强度的变化先于CH_2基团而发生。这是因为前者对链段的密堆积更为敏感。可以认为缠结浓度的增加对分子振动只有很小的影响,因为链上两个缠结点之间约有200个重复单元。缠结对分子振动的影响,如果有的话,主要和CH_2基团有关,而且发生在退火过程的后期阶段,因为链的贯穿和缠结是较慢的过程,需要很长的时间才能完成。
     NMR技术也被用来研究由1×10~(-2) g/ml、1×10~(-3) g/ml和1×10~(-4) g/ml溶液制备的冷冻升华试样,研究发现1×10~(-4) g/ml溶液制备的试样的缠结浓度大大地降低了,而由两个较浓溶液制备的试样未见缠结浓度的明显降低。这一结果与DSC和FTIR的研究结果是一致的。
The influence of entanglements on glass transition is an interesting and fundamental issue of polymer science, but so far it is still an open question. In recent years, there have been many investigations of glass transition on the confined polymer systems. The depression of the glass transition temperature (T_g) has been observed for the freeze-dried samples and precipitated samples from dilute solution, and for polymeric thin films. Different explanations were proposed for the T_g decrease, including a decrease in the entanglement, the enhanced mobility of surface layers, and a decrease in film density etc. However, some investigators proposed that the T_g depression is not related to entanglement reduction. On the other hand, the T_g increase was also observed for the freeze-dried samples and for thin films. In order to clarify the role of the entanglements in glass transition, a detailed study was carried out on the glass transition of a-PS freeze-dried samples.
     Freeze-dried samples were prepared from dilute solutions of atactic polystyrene (a-Ps) in benzene in a concentration range from 1×10~(-1) to 2×10~(-5) g/ml, and their glass transition temperatures (T_g) were determined by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR). It was found that below a critical concentration C*_g(4×10~(-3) g/ml), the T_g of samples decreases linearly with decreasing logarithmic concentration of solutions; while the T_g is not changed above C*_g with increasing solution concentration and it is the same as the glass transition temperature of the bulk sample. Above C*_g, the macromolecular coils still interpenetrate and entangle each other in the solution as in the melt, thus a network of chains obtained by freeze-drying method has a T_g just same as the bulk sample. Below C*_g, more isolated single-, and few-chain coils would exist in the solution with decreasing solution concentration, and thus more single-and few-particles were obtained by freeze-drying method, accompan?ng a decrease of inter-and intra-chain entanglements. The ratio of single-chain particles in the freeze-dried samples should greatly increases while the solution concentration is less than dynamic contact concentration, C_s, thus leading to further decrease of entanglements. The decrease of entanglements would enhance the mobility of segments and consequently reduce glass transition temperature. Prior investigators did not recognize the existence of dynamic contact concentration, and they used solution with a higher concentration (1×10~(-3) g/mL) to prepare freeze-dried samples. Coils could not be well separated in this solution and the decrease of entanglements was limited in the freeze-dried samples, and therefore, a smaller depression of T_g was observed.
     The T_g reduction could be also due to lower density of the freeze-dried samples. The coils would have an extended conformation in the dilute solution and collapse into compact globules after freeze-drying procedure. Loose packing of both globules in the freeze-dried sample and the segments within globules leads to a lower density, which would have a partial contribution to the depression of glass transition temperature.
     The condensed state of the freeze-dried samples is far from equilibrium state and will change towards equilibrium state as long as the annealing temperature is higher than the glass transition temperature of the samples. During annealing process, the isolated single-and few-chain coils would gradually interpenetrate and re-entangle through thermal diffusion. As the number of inter-and intra-chain entanglements increases with annealing time, the molecular motion of segments is increasingly hindered. Therefore, T_g should shift to higher temperature, and finally, slowly approach the bulk T_g. Dense packing of segments during annealing may take place and also have some contribution to the T_g shifting to higher temperature. The thermal diffusion and the interpenetrating rate of chains would rapidly increase with increasing temperature, and thus the T_g return to equilibrium state would be faster on annealing at higher temperature. With decreasing the solution concentration used for the preparation of freeze-dried samples, the T_g of freeze-dried samples prepared from very dilute solution recover back very slowly to bulk T_g, and could not reach bulk T_g after annealing for very long time.
     A parallel study was performed on the glass transition temperature of a-PS freeze-dried sample with molar mass of 1.32×10~4 g/mol, which is lower than the entanglement molar mass (M_e~2×10~4 g/mol). Such low molar mass sample has a bulk T_g of 101℃, while the freeze-dried samples prepared from various solutions have a lower T_g, 2~4℃lower than the bulk value. For freeze-dried a-PS samples with high molar mass, prepared from very dilute solution, the T_g depression can be as large as~23℃. Also, the T_g of the freeze-dried samples with low molar mass is easy to attain the glass transition temperature of bulk sample. It could be assumed that the T_g depression is caused by the density reduction.
     By FTIR measurement, loose packing of segments in the freeze-dried samples was demonstrated. All absorption bands at 1601,1493,1452 and 698 cm~(-1) related to the molecular vibration of phenyl rings exhibit sharper and higher peaks compared with bulk sample, especially for the band at 698 cm~(-1) . Such change in line width and absorption intensity was more significant with decreasing the solution concentration. During annealing, the packing of segments in the samples gradually increases, and finally, approach to that of the bulk sample, diminishing the differences in FTIR spectra between freeze-dried samples and bulk sample. Comparing the recovery of T_g to bulk glass transition temperature, dense packing of the segments is a relatively fast process because the latter only needs local molecular motion of segments.
     2-dimensional FTIR indicated the occurrence of change in the molecular vibration intensity of phenyl rings prior to one of CH_2 groups on annealing samples. This is because the former is more sensitive to dense packing of segments. The increase of entanglement concentration on annealing is assumed to have minor effect on molecular vibration since there are about 200 repeat units between two entanglements on the backbone, and the effect of entanglements on molecular vibration, if any, would mainly relate to CH_2 groups. Moreover, annealing for long time is needed to cause the increase of entanglement concentration and thus the effect of entanglements on molecular vibration would appear at the latter stage of the annealing process.
     NMR technique was also used to investigate the entanglement of freeze-dried samples prepared from 1×10~(-2) g/ml, 1×10~(-3) g/ml and 1×10~(-4) g/ml solutions. A great decrease of entanglement concentration was found only in the sample prepared from 1×10~(-4) g/ml, but not in the samples prepared from other two more concentrate solutions. The observation is consistent with the results from DSC and FTIR investigations.
引文
1 Busse W F, J. Phys. Chem., [J], 1932, 36:2862
    2 Treloar I R G; Trans. Faraday Soc.,[J], 1940, 36:538
    3 Flory P J, Chem. Rev., 1944, 35:51
    4 Green M S, Tobolsky A V, J. Chem. Phys.,[J], 1946, 14:80
    5 Buchdahl R, J. Colloid Sci., [J],1948, 3:87
    6 Lodge A S, Trans. Faraday Soc., [J],1956, 52:120
    7 Yamamoto M, J. Phys. Soc. Japan, [J],1956, 11:413
    8 Bagley E B, West D C, J. Appl. Phys., [J], 1958, 29:1511
    9.Nielsen L E, Buchdahl R, J. Colloid Sci.,[J], 1950, 5:282
    10 Doi M, Edwards S F, The Theory of Polymer Dynamics [M]. UK: Clarendon, Oxford, 1986
    11 Bueche F J, Viscosity, Self-Diffusion, and Allied Effects in Solid Polymers, J. Chem. Phys,[J], 1952, 20:1959-1964
    12 Qian R, Wu L, Shen D, Napper D H, Mann R A, Sangster D F, Single-chain polystyrene glasses, Macromolecules, [J],1993, 26:2950-2953
    13 Kawana, S, Jones R A L, Effect of physical ageing in thin glassy polymer films, European Physical Journal E, [J], 2003,10 (3), 223-230.
    14 Priestley R D, Broadbelt L J, Torkelson J M, Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: Effects of attractive vs neutral polymer-substrate interactions measured by fluorescence, Macromolecules,[J],2005, 38 (3): 654-657.
    15 Van Zanten J H, Wallace W E, Wu W-L, Effect of strongly favorable substrate interactions on the thermal properties of ultrathin polymer films, Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics,[J], 1996,53 (3): R2053-R2056.
    16 Reiter G., Sharma A, Casoli A, David M-O, Khanna R, Auroy P, Thin film instability induced by long-range forces, Langmuir, [J], 1999,15 (7): 2551-2558
    17 Wang L-M, He F, Richert R, Intramicellar glass transition and liquid dynamics in soft confinement, Physical Review Letters, [J],2004,92 (9): pp 095701-1
    18 Pham J Q, Green P F, Effective T of confined polymer-Polymer mixtures. Influence of molecular size, Macromolecules, [J],2003, 36 (5): 1665-1669.
    19 Robertson C G, Wang X, Nanoscale cooperative length of local segmental motion in polybutadiene, Macromolecules,[J],2004, 37(11): 4266-4270
    20 Sch6hhals, A, Goering H, Schick C, Segmental and chain dynamics of polymers: From the bulk to the confined state, Journal of Non-Crystalline Solids, [J], 2002, 305 (1-3): 140-149
    21 Kawana S, Jones R A L, Character of the glass transition in thin supported polymer films, Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, [J],2001, 63 (21): 0215011-0215016
    22 De Gennes P G, Scaling Concepts in Polymer Physics;[M], NY, Ithaca: Cornell University Press, 1979
    23 钱人元;曹锑;陈尚贤;用分子间激基缔合物荧光研究聚苯乙烯良溶液—从稀区到亚浓区和浓区的转变;中国科学(B辑),[J],1983,13(12):1080-1087
    24 Dondos A, Skondras P, Pierri E, Makromol Chem,[J], 1983, 184:2153
    25 Dondos A, Papanagopoulos D, Makromol Chem, Rapid Commun,[J],1993, 14:7
    26 Cheng R, Shao Y, Liu M, Qian R. Eur Polym J, [J],1998, 34(11): 1613
    27 Cheng R, The Concentration Dependence of Viscosity of Polymer Down to Extremely Dilute Region. In: Shi L, Zhu D, Eds. Polymers and Organic Solids. [M], Beij ing:Science Press, 1997,69
    28 Cheng R, Yang Y, Yah X. Polymer, [J],1999, 40:377
    29 Cheng R, Macromol Symp,[J], 1997, 124:27
    30 潘雁,程容时,高分子通报,[J],2000,2:10
    31 Cheng R and Yan X J, Appl. Polym. Sci., Appl. Polym. Symp.[J], 1991, 48:123
    32 Liu M, Cheng R S and Qian R Y, J. Polym. Sci., Polym. Phys. Ed.,[J],1995, 33: 1731
    33 Yu Y, Yan X H, Cheng R S, J. Macromol. Sci.-Phys.,[J],1999, 38 B: 237
    34 柳明珠.高分子溶液的临界浓度与链缠结.[博士论文]。南京大学,1995
    35 钱人元.高分子通报,[J],2000,2:1
    36 A. Bondi, J. Phys. Chem.,1954, 58: 929.
    37 Bu H S, Pang Y W, Song D D, Yu T Y, Voll T M, Czomyj G and Wunderlich B J, Single-molecule single crystals, Polym. Sci., Polym. Phys. Ed.,[J], 1991,29: 139-152
    38 Haishan Bu, Erqiang Chen, Shengyong Xu, Kexin Guo, Bernhard Wunderlich, Single-Molecule single crystals of isotactic polystyrene, Journal of Polymer Science Part B: Polymer Physics,[J], 1994, 32(8): 1351-1357
    39 Songhua Shi, Erqiang Chen, Hanjie Hu, Haishan Bu, Ze Zhang, Morphology of single-chain single crystals of poly(ethylene oxide), Macromolecular Rapid Communications, [J],1995,16(1):77-80
    40 Cao J, Gu F M and Bu H S, Macromol. Symp.,[J],1997, 124:89
    41 Haishan Bu, Jie Cao, Zhensheng Zhang, Ze Zhang, Reinhard Festag, David C. Joy, Yong Ku Kwon, Bernhard Wunderlich, Structure of single-molecule single crystals of isotactic polystyrene and their radiation resistance, Polym. Sci., Polym. Phys. Ed.,[J],1998, 36:105-112
    42 Gu F M, Bao L R, Chen M and Bu H S, Conformation analysis of freeze-dried isotactic polystyrene from dilute solutions, Macromol. Rapid Commun.,[J],1998, 19:367
    43 Bu H S, Gu F M, Bao L R, Chen M, Influence of Entanglements on Crystallization of Macromolecules, Macromolecules,[J], 1998, 31:7108
    44 Chen M, Fan Z Y, Bu H S, FTIR Analysis of Nanoparticles of Syndiotactic Polystyrene Containing Single and/or Multiple Chains, J. Macromol. Sci.-Phys.,[J],2000, B39(4):387
    45 Gu F M, Bu H S, Macromol. Rapid Commun., Unique thermal behaviors of collective single and few-chain compact globules of isotactic polystyrene, [J],1999,20:595
    46 Erqiang Chen, Haishan Bu, Xiulan Hu, Statistical thermodynamics of single-chain single crystals, Macromolecular Theory and Simulations,[J],1994, 3(2): 409-415
    47 Haishan Bu, Erqiang Chen, Junen Yao, Shengyong Xu, Yalei Kuang, Scanning tunneling microscopy studies of single-molecule single-crystals, Polymer Engineering & Science, [J], 1992, 32(17): 1209-1212
    48 Fangming Gu, Haishan Bu, Ze Zhang, Unique morphologies found in freeze-dried poly(ethylene oxide) prepared from dilute solutions, Macromolecular Chemistry and Physics, [J], 1998, 199(11): 2597-2600
    49 Fangming Gu, Haishan Bu, Unique thermal behaviors of collective single and few-chain compact globules of isotactic polystyrene, Macromolecular Rapid Communications,[J], 1999, 20(11), 595-597
    50 Haishan Bu, Gu Fangming, Chen Min, Bao Lirong,Cao Jie, Crystallization and Melting Behavior of Nanopolymeric Particles Containing Single or a Few Chains, Journal of Macromolecular Science: Physics,[J], 2000, 39 (1): 93
    51 Fan Z Y, Wang Y R, Ni N, Bu H S, J. Macromol. Sci.-Phys., Melting Behavior and Morphology of Freeze-Dried Ultra-High Molar Mass Polyethylene,[J], 2003, 41(1): 129
    52 Fan Z Y, Wang Y R, Bu H S, Influence of Intermolecular Entanglements on Crystallization Behavior of Ultra-High Molar Mass Polyethylene, Polym. Eng. Sci.,[J],2003, 43(3): 607
    53 Bu H S, Gu F M, Chen M, Bao L R, Cao J, J. Macromol. Sci.-Phys., [J], 2000, 39 B (1): 93
    54 Huang D, Yang Y, Zhuang G and Li B, Macromolecules, Influence of Entanglements on the Glass Transition and Structural Relaxation Behaviors of Macromolecules. 1. Polycarbonate, [J], 1999, 32:6675
    55 Huang D, Yang Y, Zhuang G and Li B, Influence of Intermolecular Entanglements on the Glass Transition and Structural Relaxation Behaviors of Macromolecules. 2. Polystyrene and Phenolphthalein Poly(ether sulfone), Macromolecules, [J],2000, 33: 461
    56 Bernazzani P, Simon S L, Plazek D J and Ngai K L, Effects of entanglement concentration on T_g and local segmental motions, Eur. Phys. J. E. Soft Matter., [J],2002, E8, 201-207
    57 Simon S L, Sobieski J W and Plazek D J, Polymer, Volume and enthalpy recovery of polystyrene, [J], 2001,42:2555
    58 Simon S L, Bernazzani P and McKenna G B, Effects of freeze-drying on the glass temperature of cyclic polystyrenes, Polymer, [J], 2003,44: 8025-8032
    59 Braun G and Kovacs A J, Phys. Chem. Glasses,[J],1963, 4(4): 152
    60 Ding J, Xue G, Dai Q and Cheng R, Polymer, Glass transition temperature of polystyrene microparticles, [J], 1993,34:3325
    61 Park J-Y and McKenna G B, Size and confinement effects on the glass transition behavior of polystyrene/o-terphenyl polymer solutions, Phys. Rev. B,[J], 2000, 61(10): 6667
    62 Mattsson J, Forrest J A and Borjesson L, Quantifying glass transition behavior in ultrathin free-standing polymer films, Phys. Rev. E., [J], 2000,62(4): 5187
    63 Forrest J A, Dalnoki-Veress K, Stevens J R, Dutcher J R, Effect of free surfaces on the glass transition temperature of thin polymer films, Physical Review Letters, [J], 1996,77 (10): 2002-2005
    64 Sharp J S, Forrest J A, Free Surfaces Cause Reductions in the Glass Transition Temperature of Thin Polystyrene Films, Physical Review Letters,[J], 2003, 91 (23): 2357011-2357014.
    65 Forrest J A, Dalnoki-Veress K, Dutcher J R, Interface and chain confinement effects on the glass transition temperature of thin polymer films, Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics,[J], 1997, 56 (5 Suppl. B): 5705-5716.
    66 Forrest J A, Dalnoki-Veress K, The glass transition in thin polymer films, Advances in Colloid and Interface Science, [J], 2001,94 (1-3): 167-196
    67 Forrest J A, Jones R A L, Polymer Surfaces, Interfaces and Thin Films. Karim A, Kumar S, Eds.;[M], Singapore: World Scientific, 2000
    68 Forrest J A, Dalnoki-Veress K, Dutcher J R, Brillouin light scattering studies of the mechanical properties of thin freely standing polystyrene films, Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, [J], 1998,58 (5B): 6109-6114
    69 Forrest J A, Mattsson J, Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics, Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, [J], 2000,61 (1): R53-R56
    70 Dalnoki-Veress K, Forrest J A, Murray C, Gigault C, Dutcher J R, Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films, Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, [J], 2001,63 (31): 0318011-03180110
    71 Ellison C J, Ruszkowski R L, Fredin N J, Torkelson J M, Dramatic reduction of the effect of nanoconfinement on the glass transition of polymer films via addition of small-molecule diluent, Physical Review Letters,[J], 2004, 92 (9): 095702-1.
    72 Ellison C J, Torketson J M, Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels, Journal of Polymer Science, Part B: Polymer Physics,[J], 2002, 40 (24): 2745-2758
    73 Ellison C J, Kim S D, Hall D B, Torkelson J M, Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: Novel fluorescence measurements, European Physical Journal E, [J], 2002,8 (2): pp.155-166
    74 Ellison C J and Torkelson J M, The distribution of glass-transition temperatures in nanoscopically confined glass formers Nat. Mater.[J], 2003, 2:695-700
    75 Dalnoki-Veress K, Forrest J A, Murray C, Gigault C and Dutcher J R, Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films, Phys. Rev.,[J], 2001, 63 E: 031801
    76 Forrest J A and Dalnoki-Veress K, The glass transition in thin polymer films, Adv. Colloid Interface Sci.,[J], 2001, 94(1-3): 167
    77 Fryer D S, Nealey P F and de Pablo J J, Macromolecules, Thermal Probe Measurements of the Glass Transition Temperature for Ultrathin Polymer Films as a Function of Thickness,[J], 2000, 33:6439
    78 Tsui K C, Ophelia H, Zhang F, Macromolecules, Effects of Chain Ends and Chain Entanglement on the Glass Transition Temperature of Polymer Thin Films,[J], 2001, 34:9139
    79 Dalnoki-Veress K, Forrest J A, Murray C, Gigault C, Dutcher J R, Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films, Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, [J], 2001,63 (31): 0318011-03180110
    80 Fukao K, Miyamoto Y, Glass transition temperature and dynamics of a-process in thin polymer films, Europhysics Letters, [J], 1999,46 (5): 649-654
    81 Fukao K, Uno S, Miyamoto Y, Hoshino A, Miyaji H, Relaxation dynamics in thin supported polymer films, Journal of Non-Crystalline Solids, [J], 2002,307-310:. 517-523.
    82 Park C H, Kim J H, Ree M, Sohn B-H, Jung J C, Zin W-C, Thickness and composition dependence of the glass transition temperature in thin random copolymer films, Polymer, [J], 2004,45 (13): 4507-4513
    83 Fryer D S, Peters R D, Kim E J, Tomaszewski J E, De Pablo J J, Nealey P F, White C C, Wu W-L, Dependence of the glass transition temperature of polymer films on interfacial energy and thickness, Macromolecules, [J], 2001, 34 (16): 5627-5634
    84 Hall D B, Hooker J C, Torkelson J M, Ultrathin polymer films near the glass transition: Effect on the distribution of a-relaxation times as measured by second harmonic generation, Macromolecules, [J], 1997,30 (3):667-669
    85 Orts W J, Van Zanten J H, Wu W-L, Satija S K, Observation of temperature dependent thicknesses in ultrathin polystyrene films on silicon, Physical Review Letters,[J], 1993, 71 (6): 867-870
    86 Soles C L, Douglas J F, Jones R L, Wu W-L, Unusual Expansion and Contraction in Ultrathin Glassy Polycarbonate Films, Macromolecules,[J], 2004, 37 (8): 2901-2908
    87 Donth E, Characteristic length of the glass transition, Journal of Polymer Science, Part B: Polymer Physics, [J], 1996,34 (17): 2881-2892
    88 Hempel E, Hempel G, Hensel A, Schick C, Donth E, Characteristic Length of Dynamic Glass Transition near T for a Wide Assortment of Glass-Forming Substances, Journal of Physical Chemistry B, [J], 2000,104 (11): 2460-2466
    89 Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess H W, Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance, Physical Review Letters,[J], 1998, 81 (13): 2727-2730
    90 Jain T S, De Pablo J J, Investigation of transition states in bulk and freestanding film polymer glasses, Physical Review Letters, [J], 2004,92 (15): 155505
    91 Schwab A D, Agra D M G, Kim J-H, Kumar S, Dhinojwala A, Surface dynamics in rubbed polymer thin films probed with optical birefringence measurements, Macromolecules, [J[, 2000,33 (13): 4903-4909
    92 Torres J A, Nealey P F, De Pablo J J, Molecular simulation of ultrathin polymeric films near the glass transition, Physical Review Letters,[J], 2000, 85 (15): 3221-3224
    93 Pochan D J, Lin E K, Satija S K, Wu W-L, Thermal expansion of supported thin polymer films: A direct comparison of free surface vs total confinement, Macromolecules, [J], 2001, 34 (9): 3041-3045
    94 Kajiyama T, Tanaka K, Takahara A, Surface molecular motion of the monodisperse polystyrene films, Macromolecules, [J], 1997,30 (2): 280-285
    95 Majeste J-C, Montfort J-P, Allal A, Matin G, Viscoelasticity of low molecular weight polymers and the transition to the entangled regime, Rheologica Acta, [J], 1998,37 (5): 486-499
    96 Hall D B, Underhill P, Torkelson J M, Spin coating of thin and ultrathin polymer films, Polymer Engineering and Science,[J], 1998, 38 (12): 2039-2045
    97 Mi Y L, Xue G and Lu X, A New Perspective of the Glass Transition of Polymer Single-Chain Nanoglobules, Macromolecules,[J], 2003, 36: 7560
    1 钱人元,吴立衡,化学进展,[J],1996,8(3):381.
    2 Boyer R F, and Heidenreich R D, Molecular-Weight Studies on high Polymers with the Electron Microscope J. Appl. Phys., [J], 1945, 16: 621-639.
    3 Siegel B M, Johnson D H, Mark H, Molecular-Weight Investigations of High Polymers with the Electron Microscope, J. Polym. Sci., [J], 1950, 5:111-120.
    4 Kumaki J, Polystyrene Monomolecular Particles Obtained by Spreading Dilute-Solutions on the Water-surface, Macromolecules, [J], 1986, 19(8): 2258-2263.
    5 Kumaki J, Accumulation of Monomolecular Polystyrene Particles from a Water-Surface onto a Substrate, J. Polym. Sci., Polym. Phys. Ed., [J], 1990, 28(1): 105-111.
    6 Bu H S, Pang Y W, Song D D, Yu T Y, Voll T M, Czornyj G., Wunderlich B J, Single-molecule single crystals, Polym. Sci., Polym. Phys. Ed.,[J], 1991,29:139
    7 Haishan Bu, Erqiang Chen, Junen Yao, Shengyong Xu, Yalei Kuang, Scanning tunneling microscopy studies of single-molecule single-crystals, Polymer Engineering and Science, [J], 1992,32,(17), 1209-1212
    8 Erqiang Chen, Haishan Bu, Xiulan Hu, Statistical thermodynamics of single-chain single crystals, Macromolecular Theory and Simulations Volume 3, Issue 2, 409-415, 1994
    9 Haishan Bu, Erqiang Chen, Shengyong Xu, Kexin Guo, Bernhard Wunderlich, Single-Molecule single crystals of isotactic polystyrene, Journal of Polymer Science Part B: Polymer Physics Volume 32, Issue 8, 1351-1357, 1994
    10 Songhua Shi, Erqiang Chen, Hanjie Hu, Haishan Bu, Ze Zhang, Morphology of single-chain single crystals of poly(ethylene oxide), Macromolecular Rapid Communications,[J], 1995, 16(1), 77-80
    11 Haishan Bu, Jie Cao, Zhensheng Zhang, Ze Zhang, Reinhard Festag, David C. Joy, Yong Ku Kwon, Bernhard Wunderlich, Structure of single-molecule single crystals of isotactic polystyrene and their radiation resistance, Polym. Sci., Polym. Phys. Ed.,[J], 1998, 36, 105-112
    12 Gu F M, Bao L R, Chen M, Bu H S, Conformation analysis of freeze-dried isotactic polystyrene from dilute solutions, Macromol. Rapid Commun.,[J],1998, 19:367
    13 Fangming Gu, Haishan Bu, Ze Zhang, Unique morphologies found in freeze-dried poly(ethylene oxide) prepared from dilute solutions, Macromolecular Chemistry and Physics, [J], 1998,199(11): 2597-2600
    14 Fangming Gu, Haishan Bu, Unique thermal behaviors of collective single and few-chain compact globules of isotactic polystyrene, Macromolecular Rapid Communications,[J], 1999, 20(11): 595-597,
    15 Chen M, Fan Z Y, Bu H S, FTIR Analysis of Nanoparticles of Syndiotactic Polystyrene Containing Single and/or Multiple Chains, J. Macromol. Sci.-Phys.,[J], 2000, B39(4), 387
    16 Bernazzani P, Simon S L, Plazek D J, Ngai K L, Effects of entanglement concentration on T_g and local segmental motions, Eur. Phys. J. E. Soft Matter.,[J], 2002, E8:201-207
    17 Simon S L, Bernazzani P, McKenna G. B, Effects of freeze-drying on the glass temperature of cyclic polystyrenes, Polymer, [J], 2003, 44:8025-8032
    18 Braun G, Kovacs A J, Phys. Chem. Glasses,[J], 1963, 4(4): 152
    19 Huang D, Yang Y, Zhuang G., Li B, Influence of Intermolecular Entanglements on the Glass Transition and Structural Relaxation Behaviors of Macromolecules. 2. Polystyrene and Phenolphthalein Poly(ether sulfone), Macromolecules,[J], 2000, 33:461
    20 Ding J,. Xue G, Dai Q, Cheng R, Glass transition temperature of polystyrene microparticles, Polymer,[J], 1993,34:3325
    21 Xue G., Lu Y, Shi G., Dai Q, Glass transition of expanded polystyrene coils, Polymer,[J], 1994,35:892-894
    22 Rong W, Fan Z, Yu Y, Bu H, Wang M, Influence of Entanglements on Glass Transition of Atactic Polystyrene, J. Polym. Sci., Part B: Polym. Phys.,[J],2005, 43:2243-2251
    23 Zheng W, Simon S L, Polystyrene freeze-dried from dilute solution: T_g depression and residual solvent effects, Polymer,[J],2006, 47:3520-3527
    24 de Gennes P G, Scaling Concepts in Polymer Physics,[M], Ithaca, NY: Cornell University Press, 1979
    25 钱人元,曹锑,陈尚贤,用分子间激基缔合物荧光研究聚苯乙烯良溶液—从稀区到亚浓区和浓区的转变;中国科学(B辑),[J],1983,13(12):1080-1087
    26 Huang D, Yang Y, Zhuang G, Li B, Macromolecules, Influence of Entanglements on the Glass Transition and Structural Relaxation Behaviors of Macromolecules. 1. Polycarbonate,[J],1999, 32, 6675
    27 Fan Z Y, Wang Y R, Ni N, Bu H S, J. Macromol. Sci.-Phys., Melting Behavior and Morphology of Freeze-Dried Ultra-High Molar Mass Polyethylene, [J],2003,41(1): 129
    28 Gu F M,. Bao L R, Chen M, Bu H S, Macromol. Rapid Commun.,[J],1998,19:367
    29 Pouyet G, Kohler A. and Dayantis J., Density difference determinations of ordinary and freeze-dried polystyrenes in bulk in the analytical ultracentrifuge, Macromolecules,[J], 1981,14: 1126
    30 Kumaki J J, Polym. Sci., Polym. Phys. Ed.,[J],1990, 28:105
    31 Ellison C J, Torkelson J M, Nat. Mater.,[J],2003, 2:695
    32 Bernazzani P,. Simon S L, Plazek D J, Ngai K L, Effects of entanglement concentration on Tg and local segmental motions, Eur. Phys. J. E. Soft Matter.,[J],2002, E8, 201-207
    33 de Gennes P G, Glass transitions in thin polymer films, Eur. Phys. J. E, [J],2000,2:201
    34 Mattsson J, Forrest J A, Borjesson L, Phys. Rew. E., Quantifying glass transition behavior in ultrathin free-standing polymer films, [J], 2000,62(4):5187
    35 Dalnoki-Veress K, Forrest J A, Murray C, Gigault C, Dutcher J R, Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films, Phys. Rew. E.,[J], 2001, 63:031801
    36 Forrest J A, Dalnoki-Veress K, Stevens S R, Dutcher J R, Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films, Phys. Rev. Lett.,[J], 1996,77:2002
    37 Gu F M, Bu H S, Macromol. Rapid Commun., Unique thermal behaviors of collective single and few-chain compact globules of isotactic polystyrene,[J], 1999, 20:595
    1. Kabayashi M, Akita K, Tadakoro H, Infrared Spectra and Regular Sequence lengths in Isotactie Polymer Chains. Makromol. Chem. [J] 1968, 118:324-342.
    2. Kabayashi, Tsumura K, Tadakoro H, Infrared Spectra of Solution. I. Conformational Stability of Isotactie Polymer Chains in Solution. J. Polym. Sci., Part A-2, [J],1968, 6: 1493-1508.
    3. Wu S K, Shen M, J. Macromol. Sci. Phys.[J], 1973, B7: 549.
    4. Magonov S N, Vaimilovitch I S, Sheiko S S, Polym. Bull.[J], 1991, 25:491
    5. de Gennes PG, Scaling concepts in polymer physics, [M], Ithaca, New York: Cornell Univ. Press,1979.
    6. Kumaki J, Macromolecules,[J],1989, 19: 2258.
    7. Pouyet, Kohler A, Dayantis J, Density Difference Determinations of Ordinary and Freeze-Dried Polystyrenes in Bulk in the analytical Ultra-Centrifuge, Macromolecules,[J], 1981, 14(4): 1126-1128.
    8. Kumaki J, Accumulation of Monomolecular Polystyrene Particles from a Water-Surface onto a Substrate, J. Polym. Sci., Polym. Phys. Ed., [J], 1990, 28(1): 105-111.
    9. Qian R, Wu L, Shen D, Napper D H,. Mann R A, Sangster D F, Single-Chain Polystyrene Glasses, Macromolecules,[J], 1993, 26(11): 2950-2953.
    10. Magonov S N, Shen D, Qian R, Fourier-Transform Infrared-Spectroscopy of Atactic Polystyrene in the glass-transition Region, Macromol. Chem., [J],1989, 190(10): 2563-2570.
    11. Noda I, Two-dimensional infrared spectroscopy. J Am.Chem.Soc., [J], 1989, 111: 8116-8118.
    12. Noda I, 2-Dimensional Infrared (2D IR) Spectroscopy-Theory and Applications Appl. Spectrosc.,[J], 1990, 44: 550-561.
    13. Noda I, Two-dimensional infrared spectroscopy. J Am.Chem.Soc., [J], 1989, 111: 8116-8118.
    14. Noda I, 2-Dimensional Infrared (2D IR) Spectroscopy-Theory and Applications Applied Spectroscopy,[J], 1990, 44: 550-561.
    15. Noda I, Generalized 2-Dimensional Correlation Method Applicable to Infrared, Raman, and Other Types of Spectroscopy, Appl. Spectrosc.,[J], 1993, 47 (9): 1329-1336.
    16. Noda I, Two-dimensional correlation analysis of unevenly spaced spectral Data, Applied Spectroscopy,[J],2003, 57: 1049-1051.
    17. Marcott C D A E, Noda I, Dynamic 2-Dimensional IR Spectroscopy.Anal. Chem., [J], 1994,66:A1065-A1075
    18. Noda I, Marcott C D A E, Recent Developments in 2-Dimensional Infrared, (2D-IR) Correlation Spectroscopy, Applied Spectroscopy,[J],1993, 47: 1317-1323.
    19.赵海鹰,尾崎幸洋,窦.袁.《广义二维相关光谱及其在分析领域中的应用》,中国科学,[J],2003,33(6):449—458.
    20.吴强,王静.《二维相关分析光谱技术》,化学通报,[J],2000,8:45—53.
    21.宁永成.《有机化合物结构鉴定与有机波谱学》,[M],.2003,348-359
    22. Liang C Y, Krimm S, Infrared Spectra of High Polymers. Ⅵ, Polystyrene, Jounal of Polymer Science, [J], 1958, 241-254.
    23. Huang He, Michael Coleman S M, and Paul Painter, Application of Two-Dimensional Correlation Infrared Spectroscopy to the Study of Immiscible Polymer Blends. Macromolecules, [J], 2003, 36:8148-8155.
    24. Takashi Sasaki, Mitsuhiro Tanaka, Toshisada Takahashi, Fourier Transform infra-red study on the structure of freeze-dried atactic polystyrene from dilute solutions,Polymer, [J], 1997.38(18): 4765-4768,
    25. Magonv S N, Valnllovitch I S, Shelko S S, FTIR spectroscopy of polymer films under uniaxial stretching 1.Atactic polystyrene, Polymer Bulletin, [J], 1991, 25, 491-498.
    26. Chen M, Fan Z, Bu H, FTIR Analysis of Nanoparticles of Syndiotactic Polystyrene Containing Single and/or Multiple Chains. J.Macromol.SCI. PHYS., B, [J],2000, 39(3): 387-395.
    27. Yanzhi Ren, Tsuyoshi Murakami, Toshikatsu Nishioka, Two-Dimensional Fourier Transform Raman Correlation Spectroscopy Studies of Polymer Blends: Conformational Changes and Specific Interactions in Blends of atactic Polystyrene and Poly(2,6-dimethyl-1,4-phenylene ether), Macromolecules, [J], 1999, 32: 6307-6318
    28. Kohji Tashiro, Yoko Ueno, Akiko Yoshioka, Molecular Mechanism of Solvent-induced Crystallization of Syndiotactic Polystyrene Glass. 1. Time-Resolved Measurements of Infrared/Raman Spectra and X-ray Diffraction. Macromolecules, [J], 2001, 34:310-315
    29.贾世军,陈柳生,倪明,钱人元等,寡链聚苯乙烯纳米颗粒的制备及其凝聚态特征;中国科学(B辑),[J],1999,29(1):72-82
    30. Wool.R P, Statton W O, J. Polym. Sci. Poly. Phys. Ed, 1974, 12:1575
    31.沈德言.高分子通报,[J],1989,3
    1、Ferry J D, Viscoelastic properties of Polymers, 3rd ed.[M]; New York: Wiley,1980:
    2、Fox T G., Flory P. J., J. Appl. Phys.,[J],1950, 21:581
    3、Fox T G., Flory P. J., J. Polym. Sci., [J],,14:315
    4、Fox T G., Loshaek S., J. Polym. Sci.,[J],1955, 371
    5、Plazek D J, O'Rourk V M., J. Polym. Sci., A,[J],1971, 9:209
    6、Roland C M, Ngal K L, Maermolecules, [J],1996, 2:5747
    7、Bemazzazi E, Simon S L, Plazek D J, Ngai K L, Eur. Phys. J. E8,[J], 2002,:201
    8、Simon S L, Bemazzani G. B, McKenna G B, Polymer, [J], 2003, 44:8025
    9、Tsui Ophelia K C, Zhang H F, Macromolecules, [J], 2001, 34:9139
    1 赵天增编著.核磁共振碳谱[M].北京:北京大学出版社,1983
    2 沈其丰编著.核磁共振碳谱[M].北京:北京大学出版社,1983
    3 Charlesby A, Jaroszkiewicz E M., Eur Polym J, [J]. 1985,21(1):55
    4 Coben-addad JP, Feio G., J Polym Sci, Polym Phys Edit, [J],1984,22:957
    5 Inoue Y, Konno T. A carbon-13 NMR study of molecular motion of polystyrene in solution. Polym J, [J], 1976,8(5):457
    6 毛诗珍;倪少儒;沈联芳;杜有如;用核磁共振研究浓溶液中高聚物缠结;中国科学(B辑)[J],1996,26(2):139-142
    7 毛诗珍:袁汉珍:冯汉桥:杜有如;用NMR弛豫研究溶液中聚苯乙烯的缠结特性;波谱学杂志,[J],1996,13(2):121-127
    8 毛诗珍,丁广泉,袁汉珍,等,聚苯乙烯在环乙烷溶剂中的核磁共振弛豫和微成像研究;中国科学(A辑),[J],1997,27(1):60-63
    9 贾世军,陈柳生,倪明,钱人元等,寡链聚苯乙烯纳米颗粒的制备及其凝聚态特征;中国科学(B辑),[J],1999,29(1):72-82
    10 Torchia, D. A., J. Magnetic Resonance,[J], 1978, 30:613-616
    11 Folland R, Charlesby A. Pulsed. n m. r. of cis-polyisoprene:2. polymer, [J], 1979, 20:211-214
    12 Charlesby A, Folland R. The use of pulsed NMR to follow radiation effects in long chains polymer. Radiat Phys Chem, [J],1980, 15:393-403
    13 Charlesby A, Bridges B J. NMR measure of entanglement density in irradiated polyisobutylene. Radiat Phys Chem, [J],1982, 19(2):155-165
    14 Schaefer J, SefcikMD, Steiskal EO, et al. Molecule motion in glassy polystyrenes. Macromolecules, [J], 1984,17(6):1118-1124
    15 ALEJANDRO C. OLIVlERI, Concepts MagnReson,[J],1998,10:157-166,
    16 Hanqiao Feng; Zhiliu Feng; A High-Resolution Solid-State NMR Study of the Miscibility, Morphology, and Toughening Mechanism of Polystyrene with Poly(2,6-dimethyl-1,4-phenylene oxide) Blends. Macromolecules, [J], 1992, 28:5981-5985
    17 P.W. Callaghan; D.N. Pinder; Dynamics of Entangled Polystyrene Solutions Studied by Pulsed Field gradient Nuclear Magnetic Resonance, Macromolecules, [J], 1980, 13:1085-1092
    18 Peter Stilbs; Michael E. Moseley; Dynamics of macromolecular chains.~(13)C spin relaxation study of short-chain polystyrenes in deutero-chloroform solution,. Polymer,[J],1981, 22:321-326
    19 薛松编著.有机结构分析.[M]合肥:中国科学技术大学出版社,2005,219-223
    20 陈洁,宋启泽,有机波谱分析[M],北京:北京理工大学出版社,1996,138-140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700