聚碳酸亚丙酯/层状硅酸盐纳米复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,可降解高分子材料因具有绿色环保概念而引起了人们极大的兴趣。并为生态环境以及可持续发展提供一个可能的选择。当前,全世界的高分子材料每年的产量已超过1.2亿吨,使用后产生的不可自然分解的大量废弃物变成污染源,造成地下水质及土壤污染,妨碍动植物生长,危及人类健康和生存。可降解高分子材料为解决废弃物所造成的环境问题提供了较好的途径。而由于成本、技术水平等因素的制约,虽然对可降解高分子材料已有研究和试用,但其发展和应用还远没有达到令人满意的程度。
     聚碳酸亚丙酯(PPC)是由环氧丙烷和二氧化碳为原料合成的热塑性可降解树脂,但玻璃化温度低、不结晶、力学性能差且对热敏感,应用范围受到限制。聚合物/粘土纳米复合材料(PCN)是以聚合物为基体,粘土以纳米尺度分散于聚合物基体中的新型高分子复合材料,与纯聚合物或传统复合材料相比,其力学性能、热稳定性等方面得到明显提高。若能通过层状硅酸盐纳米复合改善PPC的力学性能和热性能,将具有较大的适用价值和经济意义。
     本论文采用两种季铵盐作为蒙脱土和累托石的有机改性试剂,通过阳离子交换反应制备有机蒙脱土(OMMT)和有机累托石(OREC),采用熔融共混法制备了聚碳酸亚丙酯/蒙脱土和聚碳酸亚丙酯/累托石纳米复合材料;采用X-射线衍射(XRD)、透射电镜(TEM)、原子力显微镜(AFM)等手段表征了复合材料的微观结构;差示扫描量热仪(DSC)研究了各种改性体系的热学性能、测试了复合材料的静态力学性能、动态力学性能(DMA)、热稳定性、耐油、耐水和空气老化性等。主要研究结果如下:
     (1)采用阳离子交换法,制备了不同的有机胺改性的有机蒙脱土和有机累托石,用XRD,FTIR,TGA表征了插层效果。研究结果发现有机季胺盐可与蒙脱土和累托石发生阳离子交换反应得到层间距较大并易于在有机介质中分散的有机蒙脱土和有机累托石。
     (2)采用熔融插层法,制备了PPC/硅酸盐纳米复合材料,通过X射线衍射、透射电镜(TEM)、原子力显微镜(AFM)对PPC/硅酸盐纳米复合材料的微观结构进行了表征。结果表明有机化蒙脱土和累托石能较好的分散于PPC基体中形成了纳米复合材料。
     (3) PPC/粘土的静态力学性能研究表明,OMMT和OREC用量为3%时的拉伸强度和冲击强度均最高,7%时的断裂伸长率最小,这种性能与粘土的插层效果、复合材料的微相结构及组分间强烈的相界面作用有关。
     (4)采用DSC,TGA和DMA等分析仪器对PPC/累托石纳米复合材料的热学性能和动态力学性能进行了研究,结果表明,纳米复合材料的玻璃化转变温度Tg比纯PPC聚合物明显提高,热稳定性、储能模量和损耗模量也有较大提高,而损耗角正切值tand下降。
     (5) PPC/累托石纳米复合材料的耐介质性能研究结果表明:插层效果较好的复合材料具有较好的耐介质性能,这归因于粘土片层有效地阻止了溶剂分子向材料内部的渗透。PPC/累托石形成插层型纳米复合材料后,PPC的耐水性和耐机油性得到明显改善。
Biodegradable polymers from renewable resources have attracted much attention in recent years. Renewable sources of polymeric materials offer an alternative to maintaining sustainable development of economically and ecologically attractive technology. The whole world polymers material output already exceed 120 million tons on every year. The waste coming into being has become a pollution source, lead to ground water quality and soil contaminated, and prevent animal and plant from growing, and endanger human being health. Restraint because of cost and factors such as technology and level, though to biodegradable polymers material already had studying and put on probation, but, it's the level developing and applying can not be all that could be desired.
     Poly(propylene carbonate) (PPC) is a new thermoplastic biodegradable polymers derived from carbon dioxide and propylene oxide. However, its poor mechanical properties and thermal stability has limited its application. If its mechanical and thermal properties could be remarkably enhanced through compounding layered silicate such as montmorillonite and rectorite. Will have bigger value suitable for use and economy significance.
     In this paper, the organic montmorillonite(OMMT) and organic rectorite (OREC) is synthesized through cation exchange reaction with two kinds of quaternary ammonium salt, poly(propylene carbonate)/montmorillonite and poly(propylene carbonate)/rectorite nanocomposites are prepared via melt blending. The microstructures of nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope(AFM). And its composites is investigated by differential scanning calorimetry (DSC). and wide X-ray diffraction (WXRD). The mechanical properties, dynamic mechanical analysis (DMA), thermogravimeric analysis (TG), oil resistance and water resistance and air abing resistance properties of composites are also investigated. The main results obtained are as follows:
     (1) The organic ammonium modified montmorillonite and rectorite of different kinds has been prepared using cation exchange in water. The intercalation effect was characterized by XRD,FTIR and TGA. It is found that quaternary ammonium salt and alkylamine can react with montmorillonite and rectorite via cation exchange reaction and the resulting OMMT and OREC can act as nano-scale filler to PPC materials due to its increasingly swollen gallery spacing.
     (2) Poly(propylene carbonate)/OMMT and Poly(propylene carbonate)/OREC nanocomposites were prepared by melt blending PPC directly with OMMT and OREC. The microstructure, morphology of PPC/clay nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope(AFM). The XRD pattern and TEM images show that the intercalation of OMMT and OREC in PPC matrix was achieved as revealed and OREC is finely dispersed in PPC matrix.
     (3) The tensile strength and impact strength of PPC/clay nanocomposites is maximal when the loading of OREC is 3phr and the elongation is minimum when the loading is 7phr, which is associated with the hood compatibility and strong interaction between clay and matrix.
     (4) The thermal stability properties and dynamic mechanical behavior of the nanocomposites are investigated by DSC,TGA and DMA. The results show that the glass transition temperature (Tg) is increased and that the thermal stability, the storage modulus (E') and the loss modulus (E") of NC are improved, but the tand are decreased.
     (5) Chemical Resistance results showed : intercalation better results of composite materials with high dielectric resistance to the better performance, Note composite material effect intercalation good clay layers can effectively prevent the solvent molecules into the interior of infiltration. PPC/OREC formation of intercalated nanocomposites, the PPC water resistance and oil resistance sexual improved noticeably.
引文
[1] Suprakas Sinha Ray, Masami Okamoto. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 2003, 28: 1539-1641.
    [2] Xu. J, R. K. Y. Li, Y. Z. Meng, Y-. W. Mai. Biodegradable poly(propylene carbonate)/montmorillonite nanocomposites prepared by direct melt intercalation Materials Research Bulletin 2006, 41: 244-252.
    [3] Xu. J, R. K. Y. Li, Y. Xu, L. Li, Y. Z. Meng. Preparation of poly(propylene carbonate)/organo-vermiculite nanocomposites via direct melt intercalation. European Polymer Journal, 2005, 41: 881-888.
    [4] P. J. Yoon, D. L. Hunter, D. R. Paul. Polycarbonate nanocomposites. Part 1. Effect of organoclay structure on morphology and properties. Polymer, 2003, 44: 5323-5339.
    [5] F. Chavarria, D.R. Paul. Comparison of nanocomposites based on nylon 6 and ny-lon 66. Polymer, 2004, 45: 8501-8515.
    [6] Zhang, Jinguo Charles A. Wilkie. A carbocation substituted clay and its styrene nanocomposite. Polymer Degradation and Stability, 2004, 83: 301-307.
    [7] LI. X. H, MENG, Y. Z. WANG, S. J. A. Completely Biodegradable Composites of Poly(propylene carbonate) and Short, Lignocellulose Fiber populifolia. J. Polym Sci Part B: Polym Phys., 2004, 42: 666-675.
    [8] ErikT. Thostenson, Chunyu Li, Tsu-Wei Chou. Nanocomposites in context, Composites Science and Technology, 2005, 65: 491-516.
    [9] Wang. M., A. J. Hsieh, G. C. Rutledge. Electrospinning of poly(MMA-co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties. Polymer, 2005, 46: 3407-3418.
    [10] Joy K. Mishra, Keun-Joon Hwang, Chang-Sik Ha. Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer, 2005, 46: 1995-2002.
    [11] Ren Jie, Yanxia Huang, Yan Liu. Preparation, characterization and propertiesofpoly(vinylchloride)/compatibilizer/organophilic-montmorillonite nanocomposites by melt intercalation. Polymer Testing, 2005, 24: 316-323.
    [12] Anna C. Balazs. Predicting the morphology of nanostructured composites. Current Opinion in Solid State and Materials Science, 2003, 7: 27-33.
    [13] Tony McNallya, W. Raymond Murphyb, Chun Y. Lew. Polyamide-12 layered silicate nanocomposites by melt blending. Polymer, 2003, 44: 2761-2772.
    [14] Song. M., Xia. H. S., Yao. K. J, Hourston, D. J. A study on phase morphology and surface properties of polyurethane/organoclay nanocomposite. European Polymer Journal, 2005, 41: 259-266.
    [15] Liu, T. X., Liu, Z. H. Ma, K. X., Shen, L. Zeng, K. Y. C. B. He Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. Composites Science and Technology 2003, 63: 331-337.
    [16] Chen Yongchun, Zhou Shuxue, Yang Haihua, Gu Guangxin, Wu Limin. Preparation and characterization of nanocomposite polyurethane. Journal of Colloid and Interface Science, 2004, 279: 370-378.
    [17] Kyung Min Lee, Chang Dae Han. Effect of hydrogen bonding on the rheology of polycarbonate/organoclay Nanocomposites. Polymer, 2003, 44: 4573-4588.
    [18] R. Ali, S. Iannace, L. Nicolais. Effect of Processing Conditions on Mechanical and Viscoelastic Properties of Biocomposites. J. Appl. Polym. Sci., 2003, 88: 1637-1642.
    [19] Sofi Dammstrom, Lennart Salme'n, Paul Gatenholm. The effect of mois-ture on the dynamical mechanical properties of bacterial cellulose/glucuronoxylan nanocomposites. Polymer, 2005, 46: 10364-10371.
    [20] Wang Yeh, Feng. Chen, Yann. Li, Kai. Wu. Melt processing of polypro-pylene/clay nanocomposites modified with maleated polypropylene compatibilizers. Composites: Part B, 2004, 35: 111-124.
    [21] Ceren ozdilek, Krzysztof Kazimierczak, David van der Beck, Stephen J. Picken. Preparation and properties of polyamide-6-boehmite nanocomposites. Polymer, 2004, 45: 5207-5214.
    [22] Chen Yongchun, Shuxue Zhou, Yang Haihua, Guangxin Gu, Limin Wu. Preparation and characterization of nanocomposite polyurethane. Journal of Colloid and Interface Science, 2004. 279: 370-378.
    [23] Emo Chiellini, Patrizia cinelli, Federica Chiellini. Environmentally Degradable Bio-Based Polymeric Blends and Composites. Macromol. Biosci. 2004, 4: 218-231.
    [24] Zhang Jinguo, Charles A. Wilkie. A carbocation substituted clay and its styrene nanocomposite. Polymer Degradation and Stability, 2004, 83: 301-307.
    [25] S. Kawi. A high-surface-area silica-clay composite material. Materials Letters, 1999, 38: 351-355.
    [26] Dua Jianxin, Jin Zhub, Charles A. Wilkie b, Jianqi Wanga, An XPS investigation of thermal degradation and charring on PMMA clay nanocomposites. Polymer Degradation and Stability, 2002, 77: 377-381.
    [27] Wan Chaoying, Oiao Xiuying, Zhang Yong., Zhang Yinxi Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polymer Testing, 2003, 22: 453-461.
    [28] Kyung Min Lee, Chang Dae Han. Effect of hydrogen bonding on the rheology of polycarbonate/organoclay Nanocomposites. Polymer, 2003, 44: 4573-4588.
    [29] T. G. Gopakumar, J. A. Lee, M. Kontopoulou, J. S. Parent. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer, 2002, 43: 5483-5491.
    [30] S. Hottal, D. R. Paul. Nanocomposites formed from linear low density polyethylene and Organoclays. Polymer, 2004, 45: 7639-7654.
    [31] Daniel Schmidt, Deepak Shah, Emmanuel P. Giannelis. N ew advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6: 205-212.
    [32] Marie-Ame'lie Paula, Michae"l Alexandrea, , Philippe Dege'e, , Catherine Henrist, Andre Rulmontc, Philippe Dubois. New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer, 2003, 44: 443-450.
    [33] Suprakas Sinha Ray, Kazunobu Yamada, Masami Okamotoa, Kazue Uedo New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer, 2003, 44: 857-866
    [34] P. J. Yoona, D. L. Hunterb, D. R. Paul. Polycarbonate nanocomposites: Part 2. Degradation and color formation. Polymer, 2003, 44:5341-5354.
    [35] Benedicte Lepoittevina, Nadege Pantoustiera, Myriam Devalckenaere. Polymer/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation: a masterbatch process. Polymer, 2003, 44:2033-2040.
    [36] Jie Rena, Yanxia Huanga, Yan Liua, Xiaozhen Tang. Preparation, characterization and properties of poly (vinyl chloride)/compatibilizer/organophilicmontmorillonite nanocomposites by melt intercalation. Polymer Testing, 2005, 24: 316-323.
    [37] Rathanawan Magaraphan, Wittaya Lilayuthalert, Anuvat Sirivat. Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Composites Science and Technology, 2001, 61: 1253-1264.
    [38] J.S. Shelleya, P.T. Matherb, K.L. DeVries. Reinforcement and environmental degradation of nylon-6/clay nanocomposites. Polymer, 2001, 42: 5849-5858.
    [39] D.J. Suh, Y.T. Lim, O.O. Park. The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods. Polymer, 2000, 41: 8557-8563.
    [40] Xiuqin Zhang, Mingshu Yang, Ying Zhao. Polypropylene/Montmorillonite Composites and TheirApplication in Hybrid Fiber Preparation byMelt-Spinning. J. Appl. Polym.Sci., 2004, 92: 552-558.
    [41] Marco Zanetti, Pierangiola Bracco, Luigi Costa Thermal degradation behaviour of PE/clay nanocomposites. Polymer Degradation and Stability, 2004, 85: 657-665.
    [42] Chang, Jin-Haea; An, Yeong Uka; Cho, Donghwana; Giannelis, Emmanuel P. Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (Ⅱ). polymer, 2003,44(13): 3715-3720.
    [43] Lai, Mingfanga; Kim, Jang-Kyoa. Effects of epoxy treatment of organoclay on structure, thermo-mechanical and transport properties of poly(ethylene terephthalate-co-ethylene naphthalate)/organoclay nanocomposites, polymer,2005,46(13): 4722-4734.
    [44] AAnal, MAAAAerref; AAelik, Meltema. Polymethacrylamide/Na-montmori-llonite nanocomposites synthesized by free-radical polymerization. Materials Letters, 2006, 60(1): 48-52.
    [45] Choi, Yeong Suk; Xu, Mingzhe; Chung, In Jaeb. Synthesis of exfoliated acrylonitrile-butadiene-styrene copolymer (ABS) clay nanocomposites: role of clay as a colloidal stabilizer. Polymer, 2005, 46(2): 531-538.
    [46] Zhao, Lijuana; Li, Jianga; Guo, Shaoyuna; Du, Qina. Ultrasonic oscillations induced morphology and property development of polypropylene/montmorillonite nanocomposites. Polymer, 2006, 7: 2460-2469.
    [47] Pourabas, Behzada; Raeesi, Vahida. Preparation of ABS/montmorillonite nanocomposite using a solvent/non-solvent method. Polymer, 2005, 15: 5533-5540.
    [48] Zhang, Zhenjuna; Zhang, Linaa; Li, Yangc; Xu, Hongdec. New fabricate of styrene-butadiene rubber/montmorillonite nanocomposites by anionic polymerization, polymer, 2005, 1:129-136.
    [49] Wooster, Tim J.; Abrol, Simmib; MacFarlane, Douglas R.. Rheological and mechanical properties of percolated cyanate ester nanocomposites.polymer, 2005,19: 8011-8017.
    [50] Wang, S.F.; Shen, L.; Tong, Y.J.; Chen, L.; Phang, I.Y.; Lim, P.Q.; Liu, T.X.. Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization. Polymer Degradation and Stability, 2005, 1: 123-131.
    [51] Homminga, Douwe S.; Goderis, Barta; Mathot, Vincent B.F.a; Groeninckx, Gabriela. Crystallization behavior of polymer/montmorillonite nanocomposites. Part Ⅲ. Polyamide-6/montmorillonite nanocomposites, influence of matrix molecular weight, and of montmorillonite type and concentration.polymer, 2006, 5: 1630-1639.
    [52] Boukerma, Kada; Piquemal, Jean-Yvesa; Chehimi, Mohamed M.; Synthesis and interracial properties of montmorillonite/polypyrrole nanocomposites.polymer,2006,2: 569-576.
    [53] Diagne, M.; GuAAye, Mo; Vidal, L.; Tidjani, A.. Thermal stability and fire retardant performance of photo-oxidized nanocomposites of polypropylene-graft-maleic anhydride/clay. Polymer Degradation and Stability, 2005, 3: 418-426.
    [54] Chigwada, Gracea; Wang, Dongyana; Jiang, David D.a; Wilkie, Charles A.a. Styrenic nanocomposites prepared using a novel biphenyl-containing modified clay. Polymer Degradation and Stability, 2006, 4: 755-762.
    [55] Le Pluart, LoAAca; Duchet, Jannickb; Sautereau, Henryb. Epoxy/montmorillonite nanocomposites: influence of organophilic treatment on reactivity, morphology and fracture properties.polymer, 2005, 26: 12267-12278.
    [56] MravAAAAKov,AA, Miroslavaa; Boukerma, Kadab; OmastovAA, MAAriaa; Montmorillonite/polypyrrole nanocomposites. The effect of organic modification of clay on the chemical and electrical properties. Materials Science & Engineering C, 2006, 2-3: 306-313.
    [57] S. Kawi. A high-surface-area silica-clay composite material. Materials Letters, 1999, 38: 351-355.
    [58] T.G. Gopakumar, J.A. Lee, M. Kontopoulou, J.S. Parent. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer, 2002, 43: 5483-5491.
    [59] Marie-Amelie Paul, Michael Alexandre, Philippe Degee, Catherine Henrist. New nanocomposite materials based on plasticized poly(L-lactide) andorgano-modified montmorillonites: thermal and morphological study. Polymer, 2003 , 44: 443-450.
    [60] Rathanawan Magaraphan, Wittaya Lilayuthalert, Anuvat Sirivat,Johannes W. Schwank. Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Composites Science and Technology, 2001, 61: 1253-1264.
    [61] M. L. Occelli, and S. A. C. Gouldy. Examination of Coked Surfaces of Pillared Rectorite Catalysts. Journal of Catalysis with the Atomic Force Microscope. Microscope, 2001, 198: 41-46.
    [62] James P. Olivier, Mario L. Occell. Surface area and microporosity of pillared rectorite catalysts from a hybrid density functional theory method. Microporous and Mesoporous Materials, 2003, 57: 291-296.
    [63] Wang Z.F., Wang, N. Qi, H.F. Zhang, L.Q. Zhang. Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studied by positrons. Polymer, 2005, 46: 719-724.
    [64] J.S. Shelley, P.T. Mather, K.L. DeVries. Reinforcement and environmental degradation of nylon-6/clay nanocomposites. Polymer, 2001, 42:5849-5858.
    [65] Kyung Min Lee, Chang Dae Han. Effect of hydrogen bonding on the rheo-logy of polycarbonate/organoclay nanocomposites. Polymer, 2003, 44: 4573-4588.
    [66] Wan Chaoying, Qiao Xiuying, Yong Zhang. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polymer Testing, 2003, 22: 453-461.
    [67] S. Hottal, D.R. Paul. Nanocomposites formed from linear low density polyethylene and organoclays. Polymer, 2004, 45: 7639-7654.
    [68] Suprakas Sinha Raya, Kazunobu Yamadab, Masami Okamoto. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer, 2003, 44: 857-866.
    [69] Marie-Amelie Paula, Michael Alexandrea, Philippe Degee. New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer, 2003, 44: 443-450.
    [70] Rathanawan Magaraphan, Wittaya Lilayuthalert, Anuvat Sirivat. Prepara-tion, structure, properties and thermal behavior of rigid-rod polyimide/montmori-llonite nanocomposites. Composites Science and Technology, 2001, 61: 1253-1264.
    [71] Yoon P.J., Hunter, D.L., D.R. Paul. Polycarbonate nanocomposites. Part 1. Effect of organoclay structure on morphology and properties. Polymer, 2003, 44: 5323-5339.
    [72] Daniel Schmidt, Deepak Shah, Emmanuel P. Giannelis. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6:205-212.
    [73] T.G. Gopakumar, J.A. Lee, M. Kontopoulou, J.S. Parent. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer 2002, 43: 5483-5491.
    [74] Ren Jie, Yanxia Huang, Yan Liu. Preparation, characterization and properties ofpoly(vinyl chloride)/compatibilizer/organophilic-montmorillonitena nocomposites by melt intercalation. Polymer Testing, 2005, 24: 316-323.
    [75] Marco Zanetti, Pierangiola Bracco, Luigi Costa. Thermal degradation behaviour of PE/clay nanocomposites. Polymer Degradation and Stability, 2004, 85: 657-665.
    [76] Du Jianxin, Zhu Jin, Charles A.Wilkie. An XPS investigation of thermal degradation and charring on PMMA clay nanocomposites. Polymer Degradation and Stability, 2002, 77: 377-381.
    [77] Yoon P.J., D.L. Hunter, D.R. Paul. Polycarbonate nanocomposites: Part 2. Degradation and color formation. Polymer, 2003, 44: 5341-5354.
    [78] Benedicte Lepoittevin, Nadege Pantoustier, Myriam Devalckenaere. Polymer/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation: a masterbatch process. Polymer, 2003, 44:2033-2040.
    [79] D.J. Suh, Y.T. Lim, O.O. Park. The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods. Polymer, 2000, 41: 8557-8563.
    [80] F. Chavarria, D.R. Paul. Comparison of nanocomposites based on nylon 6 and nylon 66. Polymer, 2004, 45: 8501-8515.
    [81] Zhang Jinguo, Charles A. Wilkie. A carbocation substituted clay and its styrene nanocomposite. Polymer Degradation and Stability, 2004, 83: 301-307.
    [82] Erik T. Thostenson, Chunyu Li, Tsu-Wei Chou. Nanocomposites in context. Composites Science and Technology, 2005, 65: 491-516.
    [83] Mary Kurian, Mary E. Galvin,, Patrick E. Trap. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications. Electrochimica Acta, 2005, 50: 2125-2134.
    [84] Joy K. Mishra, Keun-Joon Hwang, Chang-Sik Ha. Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer, 2005, 46: 1995-2002.
    [85] Jie Rena, Yanxia Huang, Yan Liu, Xiaozhen Tang. Preparation, characterization and properties of poly(vinyl chloride)/compatibilizer/organophilic montmorillonite nanocomposites by melt intercalation. Polymer Testing, 2005,24: 316-323.
    [86] Anna C. Balazs. Predicting the morphology of nanostructured composites. Current Opinion in Solid State and Materials Science, 2003, 7: 27-33.
    [87] Uthirakumar, Periyayyaa; Nahm, Kee Suka; Hahn, Yoon Bonga; Lee, Youn-Sika. Preparation of polystyrene/montmorillonite nanocomposites using a new radical initiator-montmorillonite hybrid via in situ intercalative polymerization. European Polymer Journal, 2004, 11: 2437-2444.
    [88] Morawiec, J; Pawlak, A.; Slouf, M.; Galeski, A.; Piorkowska, E.; Krasnikowa, N. Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites. European Polymer Journal, 2005, 5: 1115-1122.
    [89] Ding, Chao; Guo, Baochun; He, Huia; Jia, Demina; Hong, Haoquna. Preparation and structure of highly confined intercalated polystyrene/montmorillonite nanocomposite via a two-step method. European Polymer Journal, 2005,8: 1781-1786.
    [90] Bourbigot, Serge; Gilman, Jeffrey W.; Wilkie, Charles A.. Kinetic analysis of the thermal degradation of polystyrene-montmorillonite nanocomposite. Polymer Degradation and Stability, 2004, 3: 483-492.
    [91] Ray, Suprakas Sinha; Bousmin, Mostoa.Poly(butylene sucinate-co-adipate)/montmorillonite nanocomposites: effect of organic modifier miscibility on structure, properties, and viscoelasticity.polymer,2005,26: 12430-12439.
    [92] Jash, Panchatapa; Wilkie, Charles A. Effects of surfactants on the thermal and fire properties of poly(methyl methacrylate)/clay nanocomposites. Polymer Degradation and Stability, 2005, 3: 401-406.
    [93] Barber, Grant D.a; Calhoun, Bret H.a; Moore, Robert B. Poly(ethylene terephthalate) ionomer based clay nanocomposites produced via melt extrusion.polymer,2005,17: 6706-6714.
    [94] Rehab, Ahmed; Salahuddin, Nehal. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay. Materials Science & Engineering A, 2005,1-2: 368-376.
    [95] Jinguo Zhang,; Jiang, David D; Wilkie, Charles A.aPolyethylene and polypropylene nanocomposites based upon an oligomerically modified clay. Thermochimica Acta, 2005, 1-2: 107-113.
    [96] Paul, M.-A; Delcourt, C.; Alexandre, M.; Degee, Ph.; Monteverde, E; Dubois, Ph. Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer Degradation and Stability, 2005, 3: 535-542.
    [97] Lingaiah, Shivalingappa; Shivakumar, Kunigal N; Sadler, Roberta; Sharpe, Matthewa. A method of visualization of dispersion of nanoplatelets in nanocomposites. Composites Science and Technology, 2005, 14: 2276-2280.
    [98] Hermes, Helen E.; Frielinghaus, Henrich; Pyckhout-Hintzen, Wima; Richter, Dietera. Quantitative analysis of small angle neutron scattering data from montmorillonite dispersions. Polymer, 2006, 6: 2147-2155.
    [99]邱海霞,于九皋,林通.羧甲基纤维素钠/蒙脱土纳米复合膜的制备及性能。高分子学报,2004,(3):419-423.
    [100]郝向阳,刘吉平,冯顺山.蒙脱土(MMT)/PA纳米复合材料的制备与性能研究.胶体与聚合物,2001,19(1):28-31.
    [101]王传洋,黄汉雄,章永化.PP/蒙脱土纳米复合材料的制备及剪切粘度.高分子材料科学与工程,2004,20(2):118-121.
    [102]孙广平,贾树盛,姚军.聚消旋乳酸/蒙脱土纳米复合材料热稳定性的研究,试验与研究,2004,(4):187-190.
    [103]宋军,仇卓,邓军.聚丙烯/蒙脱土纳米复合材料研究.化学工程师,2004,(4):5-7.
    [104]刘盘阁,官同华,王月欣.蒙脱土结构特性及在聚合物基纳米复合材料中的应用.塑料科技,2004,(3):40-45.
    [105]梁云,贾德民.蒙脱土的改性研究进展.化工矿物与加工,2004,(2):1-5.
    [106]周艳,蔡长庚,郑小瑰.蒙脱土的有机改性概述.材料科学与工程学报,2003,(6):927-930.
    [107]任杰,刘艳,唐小真.聚合物/粘土纳米复合材料研究现状及应用前景.建筑材料学报,2002,5(4):353-359.
    [108]李春生,周春晖,李庆伟.聚合物/蒙脱土纳米复合材料的研究进展.化工生产与技术,2002,9(4):22-27.
    [109]张勇,万超瑛,袁茂全.聚氯乙烯/蒙脱土复合材料的结构与性能研究.上海氮碱化工,2003,(3):9-11.
    [110]戈明亮,姚日生,徐卫兵.聚氯乙烯/蒙脱土纳米复合材料的制备与性能.现代塑料加工应用,2001,13(1):11-14.
    [111]李同年,周持兴,庐文奎.聚苯乙烯—蒙脱土插层复合材料的制备与性能。塑料工业,2000,28(2):33-35.
    [112]梁景晖,毛艳.高纯纳米累托石制备方法研究.非金属矿,2002,25(3):34-39.
    [113]马晓燕,鹿海军,梁国正.聚丙烯共混改性体系力学性能研究.中国塑料,2003,17(8):24-27.
    [114]马晓燕,梁国正,曹中林.聚丙烯/累托石纳米复合材料的非等温结晶动力学研究.高分子学报,2004,(3):361-366.
    [115]王益庆,张惠峰,尹丽君.累托石/SBR纳米复合材料的结构与性能.橡胶工业,2003,50(8):457-461.
    [116]马晓燕,鹿海军,梁国正.累托石/聚丙烯插层纳米复合材料的制备与性能.高分子学报,2004,(1):88-92.
    [117]聂国朝.累托石纳米复合材料的结构和性能.纤维复合材料,2004,(1):28-30.
    [118]鹿海军,马晓燕,梁国正.累托石/热塑性聚氨酯弹性体纳米复合材料的制备与性能.复合材料学报,2003,20(5):57-62.
    [119]马晓燕,梁国正,鹿海军.累托石粘土/热塑性聚氨酯弹性体纳米复合材料的热性能研究.高分子学报,2003,(5):655-660.
    [120]马晓燕,鹿海军,梁国正.累托石粘土/热塑性聚氨酯弹性体纳米复合材料的研究.高分子学报,2003,(1):62-67.
    [121]陈济美.钠基累托石粘土的应用.中国非金属矿工业导刊,1998,(2):20-22.
    [122]马晓燕,鹿海军,朱光明.熔融共混法制备粘土/聚氨酯弹性体纳米复合材料的研究.西北工业大学学报,2003,21(1):118—121.
    [123]马晓燕,鹿海军,梁国正.有机累托面/聚烯烃弹性体协同增韧补强聚丙烯的研究.西北工业大学学报,2003,21(5):632-635.
    [124]Marco Zanetti, Pierangiola Bracco, Luigi Costa. Thermal degradation behaviour of PE/clay nanocomposites. Polym Degrad Stab 2004; 85:657-665.
    [125]M. Diagne, M.Gueye, L.Vidal, A.Tidjania. Thermal stability and fire retardant performance of photo-oxidized nanocomposites of polypropylene-graft-maleic anhydride/clay. Polym Degrad Stab 2005;89:418-426.
    [126]Huaili Qina, Quansheng Sub, Shimin Zhanga, et al. Thermal stability and flammability of polyamide 66/montmorillonite Nanocomposites. Polym Degrad Stab2003; 44:7533-7538.
    [127]Florencio G. Ramos Filho, Tomas Jeferson A. Melo,Marcelo S. Rabello,et al。 Thermal stability of nanocomposites based on polypropylene and bentonite. Polym Degrad Stab 2005;89:383-392.
    [128]马晓燕,鹿海军,吕美丽.有机累托石的合成及其复合材料的性能。中国塑料,2002,16(9):37-41.
    [129]庞浩,廖兵,黄玉惠.聚1,2-亚丙基碳酸酯/天然橡胶共混弹性体.高分子材料科学与工程,2002,18
    [130]Wan C,J; Yu J,Y,.Preparation of poly (propylene carbonate)/organophilic rectorite nanocomposites via direct melt intercalation.Transactions of Nonferrous Metals Society of China,2006, 16
    [131]X,H,Li.;Y,Z.; Meng.Q.Zhu.;Y,Xu.Melt Processable and Biodegradable Aliphatic Polycarbonate Derived from Carbon Dioxide and Propylene Oxide.Polym. Sci, 2003, 89
    [132]Xu.J; R, K, Y, Li.; Y, Z, Meng. Biodegradable poly(propylene carbonate)/montmorillonite nanocomposites prepared by direct melt intercalation. Materials Research Bulletin,2006, 41.
    [133]谢苏江.非石棉纤维增强密封材料的研制和蠕变松弛性能研究.华东理工大学报,2001,17.
    [134]马晓燕,梁国正,鹿海军等.累托石粘土/热塑性聚氨酯弹性体纳米复合材料的热性能研究.高分子学报,2003,5
    [135]魏月琳,吴季怀,林建明等.粘土/聚丙烯酰胺系高吸水性复合材料的研究.化工新型材料,2002,30
    [136]L, Zhang;. ERNST L J, BROUWER H R. Transerse behavior of a unidirectional composite (glass fiber reinforced unsarurated polyester). Mechanics of Materials,1998,27.
    [137]SEN S, NUGAY N. Swelling viscosity and static-mechanical behaviour of polyester composites based on hybrid filler system. Macromol Symp, 2001,175
    [138]陈济美,龚关.有机累托石的制备及其应用研究。化学世界,1999,(6):291-295.
    [139]袁莉,马晓燕,刘海林.有机累托石改性不饱和聚酯/玻璃纤维复合材料的研究.中国塑料,2003,17(12):28-31.
    [140]马晓燕,鹿海军,梁国正.粘土/热塑性聚氨酯弹性体插层复合材料制备与性能.材料科学与工程学报,2003,21(2):191-195.
    [141]Wu Chin-San. A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer 2005, 46: 147-155.
    [142]Wu Chin-San, Hsin-Tzu Liao. A new biodegradable blends prepared from polylactide and hyaluronic acid. Polymer, 2005,46:10017-10026。
    [143]Jitendra K. Pandey, K. Raghunatha Reddy, A。 Pratheep Kumar. An overview on the degradability of polymer nanocomposites Polymer Degradation and Stability ,2005,88: 234-250
    [144]Merja Itaavaara, Sari Karjomaa a, Johan-Fredrik Selin. Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere. 2002, 46:879-885.
    [145] Zhao Qiang, Guoxiang Cheng, Cunjiang Song. Crystallization behavior and biodegradation of poly(3-hydroxybutyrate)and poly(ethylene glycol) multiblock copolymers. Polymer Degradation and Stability, 2006,91:1240-1246.
    [146] CHEN G.X.,G.J.HAO,T.Y.GUO, Structure and mechanical properties of poly(3-hydroxybutyrateco-3-hydroxyvalerate) (PHBV)/clay nanocomposites. JOURNAL OF MATERIALS SCIENCE LETTERS. 2002, 21: 1587-1589.
    [147] Wang Shufang, Song Cunjiang, Chen Guangxin. Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polymer Degradation and Stability, 2005, 87: 69-76.
    [148] Ma Xiaofei, Yu Jiugao, Ang Zhao. Properties of biodegradable poly(propylene carbonate)/starch composites with succinic anhydride. Composites Science and Technology, 2006,66:2360-2366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700