POM/PEO晶/晶共混体系多尺度结晶结构的形成、调控及POM高性能化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚甲醛(POM)是一种重要的工程塑料,其高性能化是国民经济关键需求。本文创造性地制备和研究了POM/PEO晶/晶共混体系,采用聚氧化乙烯(PEO)改性POM,通过调节共混物组成、加工中的温度和应力等形成共混物中不同尺度的共混晶结构,制备高性能POM/PEO共混材料,发展聚合物晶/晶共混理论。
     本文研究了POM与PEO的相容性,尤其是链构象空间特性与相容性的关系。研究了POM/PEO晶/晶共混体系的结晶行为,通过调节PEO与POM的分子量、POM的种类、POM与PEO的比例、降温方式以及加工中的剪切力场等控制共混物的结晶结构,获得了具有不同尺度共混晶结构和性能的POM/PEO共混物,讨论不同尺度结晶结构与共混物性能之间的关系,提出利用不同尺度结晶结构增韧POM的新理论,制备了具有高韧性、高耐磨自润滑POM/PEO共混材料。
     具体结论如下:
     1.POM与PEO在无定形态和熔融态相容性较好,这是由于POM与PEO链构象空间特性使其分子链可包合、缠结。
     2.PEO含量和分子量对POM/PEO共混物结晶结构影响较大。当PEO含量较小或分子量较低时,PEO不能结晶,无定形PEO穿插在POM微纤晶间;PEO含量或分子量增大,PEO受限结晶,结晶温度较纯PEO降低了35℃,形成微纤晶与POM微纤晶互相穿插。随PEO含量或分子量提高,POM微纤晶间距增大,球晶尺寸增大;继续增大PEO的含量和分子量,PEO形成独立的球晶结构。
     3.PEO没有改变POM的成核方式,但抑制了POM的成核速度和晶体生长速度,使共混物中POM的结晶温度、相对结晶度以及熔融温度下降;在PEO含量较高时,共混物中PEO受POM的影响,结晶成核方式由均相三维成核转变为异相三维成核,PEO的结晶温度升高,但由于POM抑制作用使PEO相对结晶度和熔点下降。
     4.共混物的韧性与其结晶结构有关,无定形PEO与POM微纤晶穿插结构有利于提高其韧性,而PEO与POR微纤晶相互穿插或球晶相互独立的结构均不利于改善材料的韧性。
     5.PEO能改善POM的摩擦磨损性能,原因是在摩擦过程中,PEO熔融并在摩擦界面形成润滑层。随PEO含量增大,共混物的摩擦系数迅速减小。磨痕宽度则先减小后增加,这是因为随PEO含量增加,其结晶结构发生了变化,无定形PEO与POM微纤晶穿插有利于减小磨痕宽度。
     6.降温方式对POM/PEO的结晶结构和力学性能影响较大。降温过程中POM晶体间无定形区域的大小和PEO结晶是影响共混物结晶形态的主要因素。控制POM的结晶,调节POM晶体间的无定形区域的大小以及PEO的结晶,可分别得到无定形PEO夹杂在POM微纤晶间、PEO微纤晶和POM微纤晶相互穿插以及PEO球晶和POM球晶相互独立的结晶结构。
     在降温模式1中(将试样直接从熔融态淬冷至PEO的结晶温度以下,越过POM与PEO的结晶温度),POM与PEO共混物主要形成无定形态PEO夹杂在POM微纤晶间或PEO与POM微纤晶穿插的结晶结构,材料韧性较高;
     降温模式2中(试样从熔融态骤冷至PEO结晶温度,越过POM结晶区,让PEO充分结晶),不同PEO含量的共混物都形成PEO球晶与POM晶体互相独立的结晶结构,韧性较差;
     在降温模式3中(将试样从熔融态冷却至POM的结晶温度,使POM充分结晶,再骤冷至PEO结晶温度以下,越过PEO的结晶区),在PEO含量为5%和10%的共混物中主要形成无定形PEO夹杂在POM微纤晶间的结晶结构,具有较高韧性,而PEO含量为50%的共混物则形成了PEO与POM球晶互相独立的结晶结构,但由于PEO已经形成互串网络结构,具有较高韧性,但拉伸强度较低;
     在降温模式4(先将试样从熔融态冷却至POM的结晶温度,使POM充分结晶,再降温至PEO结晶温度,让PEO充分结晶)和降温模式5(以10℃/min从熔融态降温至PEO的结晶温度以下)中,当PEO含量为5%时,共混物形成无定形PEO夹杂在POM微纤晶间的结晶结构,而PEO含量为10%的共混物形成PEO微纤晶与POM微纤晶互相穿插的结晶结构,PEO含量为50%共混物形成了PEO球晶POM球晶互相独立的结晶结构。
     在所有降温模式的共混物中,当PEO含量为5%,降温模式4时共混物的综合力学性能最优,原因是此时形成了无定形PEO存在于POM球晶微纤晶间的结晶结构,且POM的结晶度最大。
     7.POM/PEO共混体系熔体粘度对温度不敏感,但对剪切较为敏感,可以在加工中通过改变剪切速率调节POM/PEO的分散相尺寸、结晶结构和力学性能,获得具有不同结晶结构和缺口冲击强度的POM/PEO共混物。对PEO含量为5%的共混体系,随剪切速率增加,PEO分散相尺寸减小,但共混体系的结晶结构不发生变化,仍为无定形的PEO夹杂在POM微纤晶间的结晶结构,缺口冲击强度和拉伸强度变化不大;在PEO含量为10%和20%的共混物体系中,随剪切速率增加,PEO的分散相尺寸变小且共混物的结晶结构由PEO与POM球晶互相独立结构向POM与PEO微纤晶穿插的结构转化,提高了共混物的缺口冲击强度,但拉伸强度变化不大。
     8.PEO分散相尺寸直接影响POM/PEO共混物的结晶结构,其在1um附近可能存在一临界值,大于该临界值时,体系形成POM与PEO球晶相互独立的结晶结构,反之,则形成PEO与POM微纤晶互相穿插的结晶结构。
     9.当PEO分子量为50万,含量为5%(wt%)时,共混体系具有优良的综合性能,缺口冲击强度达12.8kJ/m~2,是纯POM缺口冲击强度的2倍左右,而拉伸强度下降不大,同时该体系的摩擦系数和磨痕宽度分别为0.18和3.5mm,较纯POM分别下降~50%和~35%。
Polyoxymethylene (POM) is one of the important engineering plastics. Its modification is in great demand for the national economy. In this thesis, poly oxide ethylene (PEO) was adopted to modify POM, and a novel POM/PEO crystalline/crystalline system was prepared and studied. By controlling the multi-scale crystalline structure through adjusting the content and structure of the components, as well as the processing temperature and shear stress, POM/PEO blend with enhanced mechanical properties was obtained, which contributed to the present polymer crystalline/crystalline theory.
     In this thesis, compatibility of POM/PEO blend, particularly their compatibility induced by the space characteristic of the chain conformation of both PEO and POM molecules was discussed. POM/PEO blends with high impact strength, self-lubrication and anti-wear properties were prepared by controlling the multi-scale crystalline structure in POM/PEO blends through changing the content of components, the temperature and stress during processing, which provides a new way to modify POM with enhanced performances.
     The main conclusions of the research are as follows:
     1. Due to their special chain conformations, POM and PEO chain segments can include or tangle each other, endowing POM/PEO with pretty good compatibility at the amorphous state.
     2. PEO content and molecular weight have great influence on the crystalline structure in POM/PEO blends. PEO with low content or small molecular weight does not crystallize due to the restriction of the confined environment, only exists as amorphous state in the space among POM lamellae, thus enlarging the spherulite size of POM. When increasing PEO content or molecular weight, although the confined environment is extended and PEO can crystallize, the crystallization of PEO is still retrained and crystallization temperature decreases to 5℃, 35℃lower than the crystallization temperature of neat PEO, forming POM/PEO interfibrillar segregation. With further increase of PEO content or molecular weight, PEO crystallizes independently, forming POM/PEO interspherilute segregation.
     3. In POM/PEO blends, PEO doesn't change the nucleating way of POM but restrains its nucleating rate and crystal growing, resulting in that the crystallization temperature, melting point and relative crystallinity of POM decrease. However, the nucleating way of PEO in the blends changes. POM crystal acts as nucleating agent for PEO, inducing that the crystallization temperature of PEO increases, and melting point and relative crystallinity of PEO decrease.
     4. The toughness of POM/PEO blend depends on the crystalline structure of the blend. The materials with the crystalline structure that amorphous PEO exists among POM lamellae have the best toughness. However, POM/PEO interfibrillar segregation and the interspherilute segregation crystalline structures seem unfavourable for the toughness of the blends.
     5. PEO can improve the friction and wear properties of POM/PEO blends because PEO in the blend melts during friction and transfers to the friction surface, forming a lubricative layer. With PEO content increasing, the friction coefficient decreases greatly. The materials with the crystalline structure that amorphous PEO exists among POM lamellae have a less abrasion.
     6. The way of temperature decreasing in sample preparation has great influence on the crystalline structures and therefore mechanical properties of POM/PEO blends. The size of POM amorphous region and the crystallization of PEO in the process of temperature decrease are the main factors determining the multi-scale crystalline structures in POM/PEO blends: amorphous PEO among POM lamellae, POM/PEO interfibrillar segregation crystalline structure or POM/PEO interspherilute segregation crystalline structure.
     By model 1 (directly quenching samples from the melt to the temperature below PEO crystallization point), amorphous PEO exiting among POM lamellae or POM/PEO interfibrillar segregation are formed, and the material has pretty good toughness.
     By model 2 (quenching samples from the melt to PEO crystallization temperature, getting across POM crystallization temperature and allowing PEO to well crystallize), POM/PEO interspherilute segregation crystalline structure in all blends is formed, and the toughness of the materials become worse.
     By model 3 (decreasing temperature from the melt to POM crystallization temperature and allowing POM to well crystallize, then quenching to the temperature below PEO crystallization point ), When PEO contents are 5% and 10%, interfibrillar segregation crystalline structure is formed, and the blends have higher notched impact strength. But when PEO content is 50%, the crystalline structure of the blend is interspherilute segregation. The blend has better toughness due to the formation of internet phase morphology, but the tensile decreases greatly.
     By model 4 (letting both PEO and POM well crystallize) and model 5 (decreasing temperature at a rate of 10°C/min), when PEO content is 5%, the blend forms amorphous PEO existing among POM lamellae. When PEO content is 10%, the blend forms interfibrillar segregation crystalline structure. However, when PEO content is 50%, the blend forms interspherilute segregation crystalline structure.
     In all the decreasing temperature models, when PEO content is 5%, the material prepared by models 4 has the best comprehensive mechanical properties because the crystalline structure of amorphous PEO existing among POM lamellae is formed, and POM also has the highest crystallinity.
     7. The melt viscosity of POM/PEO blend is sensitive to shear rate. The crystalline structure of POM/PEO blend can be controlled by adjusting the injection speed and the size of dispersing phase in injection process. When PEO content is 5%, with the shear rate increasing, although the dispersing phase of PEO becomes smaller, the crystalline structure that amorphous PEO exists among POM lamellae doesn't change. When PEO content is 10% and 20%, with the shear rate increasing, the crystalline structure of POM/PEO blend changes from interspherilute segregation to interfibrillar segregation, resulting in an increase of notched impact strength.
     8. The size of PEO dispersing phase affects the crystalline structure in POM/PEO blend. There may be a critical value of PEO dispersing phase size around 1μm, lager than which forming POM/PEO interspherilute segregation crystalline structure, smaller than which forming POM/PEO interfibrillar segregation crystalline structure.
     9. When PEO content is 5% and molecular weight is 5.0×10~5, the blend has pretty good comprehensive mechanical properties. The notched impact strength can reach 12.9 kJ/m~2, double that of POM, and the wear scar width and the friction coefficient are 0.18 and 3.5mm respectively, only about 50% and 35% of that of POM.
引文
1.刘际,塑料,2003,1:102
    2.刘际,中国塑料,2002:2,26
    3.汪晓东,金日光,合成树脂及塑料,1995,12:47
    4.张玉龙,田淑玲,塑料技术,1992,1:30
    5. Boehme, Edith, Plastica, 1972, 25:114
    6.汪多仁编,合成树脂与工程塑料生产技术,北京,中国轻工业出版社,2001
    7.黄锐主编,工程塑料手册(上册),北京,机械工业出版社,2000
    8. Schweitzer C E, Macdonald R N, Punderson J O, Journal of Applied Polymer Science, 1959, 1:158
    9. Koch T A, Lindvig P E, Journal of Applied Polymer Science, 1959, 1: 164
    10. Linton W H, Goodman H H, Journal of Applied Polymer Science, 1959, 1: 179
    11. Kobayashi Y, Suzuki I, Ishida S, Hydrocarbon Process, 1972, 11: 111
    12. Blair L M, Technical Paper, 1976, 8:164
    13. Matsuzaki K, Hata T, Sone T, Masamoto, Bull J, Chemical Society of Japan, 1989, 5:98
    14. Hertzberg R W, Skibo M D, Manson J A, Journal of Material Science, 1978, 13: 1038
    15.吴建华,李生柱,上海塑料,2003,3:3
    16.王志刚,化工中间体,2005,4:17
    17.纪立春,刘志富,李美荣,等,精细化工及中间体,2006,6:23
    18.石安富,龚云表,工程塑料性能·成型·应用,上海,科学技术出版社,1986.5
    19.王志刚,甲醛与甲醇,2005,3:38
    20.金国珍,工程塑料,北京,化学工业出版社,2001
    21.邓如生,共混改性工程塑料,北京,化学工业出版社,2003
    22. Sadao I, Machine Design, 2004, 4:98
    23. Robert P K, John Q W, Advance Materials and Process, 2004, 5:55
    24. Terlemeayan L, Mihailov M, Europe Polymer Journal, 1981, 17:1115
    25. Flexman E A., Modern Plastics, 1985, 2:72
    26. Flexman E A., Hdeng D D., Snyder H L, Polymer Properties, 1988, 29:189
    27. Chang W Y., Huang CY, Journal of Polymer Science, 1989, 38:951
    28. Chang F C, Yang M Y, Polymer Engineer Science, 1991, 30:543.
    29. Mehrabzaden M, Rezaie D, Journal of Applied Polymer Science, 2002, 84:2573
    30.温变英,张学东,李迎春,等,塑料工业,2000,1:7
    31.徐卫兵,朱士旺,蔡琼英,中国塑料,1994,3:35
    32.汪晓东,金日光,合成树脂及塑料,1995,12:47
    33.邬素华,文志红,赵鸣山,中国塑料,1999,11:39.
    34.刘伟利,中国塑料,1995,1:74
    35.徐卫兵,工程塑料应用,1995,1:9
    36.于建,王书武,黄国峰,高分子材料科学与工程,2000,1:100
    37. Droscher M, Hertwich K, Reiman H, Wegner G,, Makro, Molecular Chemistry, 1976, 177: 1695.
    38. Droscher M, Lieser G, Reiman H, Wegner G, Polymer, 1975, 16: 497.
    39. Mateva R, Sirashkl G, et al., Journal of Applied Polymer Science, 1999, 78:2813
    40. Masamoto J, et al., Polymer, 2000, 40:7283
    41.王承鹤,塑料摩擦学.塑料的摩擦、磨损、润滑理论与实践,北京机械工业出版社,1994
    42.何春霞,史丽萍,机械设计和制造工程,1998,27:48
    43.刘功德,超高分子量聚乙烯的加工和高性能化研究,四川大学博士论文,2003
    44. Atkinson J R, Brown K.J, OwsonD D, Journal of Lubrication Technology, 1978, 100:208
    45. Atkinson J R., Brown K.J, OwsonD D, Journal of Lubrication Technology, 1982, 104:17
    46. Bohm H, Betz S, BallA, Tribology International, 1990, 23:399
    47.刘家浚,材料磨损原理及其耐磨性,北京,清华大学出版社,1993
    48. Horio Mitsuhiro, Yoshinaga Yuuji, US6,391,956 (2002)
    49. Niino Masahiko, JP3,070,764 (1991)
    50. Sadao I, Masahiko N., CN1,219,186 (1999)
    51. Gerhard H, Wilhelm S, Georgn S, US4,645,785 (1987)
    52.于建,秦燕,工程塑料应用,1998,26:28
    53.于建,机械科学与技术,1997,16(增):27
    54. Takahashi Tatsuhiro, EP0,617,085 (1994)
    55. Huang Chiyuan, Chiang Wenyen, Journal of Europe polymer, 1993, 29:843
    56. Chiang Wenyen, Huang Chiyuan, Journal of Europe polymer, 1992, 28:583
    57. Huang Chiyuan, Tseng Chaoi, Journal of Applied Polymer Science, 2000, 78: 800
    58.王洪涛,杨生荣,薛群基,高分子材料科学与工程,1996,12:115
    59.徐卫兵,朱士旺,现代塑料加工应用,1994,6:6
    60.吴周安,徐国耀,叶昌明,中国塑料,2001,15:42
    61.李家琳,饶立滨,工程塑料应用,1998,6:28
    62.王文英,张振亮,现代塑料加工应用,1999,2:25
    63.李刚,张延,工程塑料应用,1991,19:12
    64.徐卫兵,朱士旺,蔡琼英,现代塑料加工应用,1994,6:6
    65.徐卫兵,朱士旺,蔡琼英,塑料科技,1994,3:13
    66.曹正松,陈丙康,史宏,现代塑料加工应用,1992,1:13
    67.郭敏,王桂岚,化学工程师,1998,69:60
    68.朱伟平,韩秀山,石化技术与应用,1999,17:246
    69.张月娟,赵维君,王效廉,塑料,1990,19:45
    70.郁小强,塑料工业,1986,2:42
    71.张秀斌,沈阳化工学院学报,1996,10:161
    72.王洪涛,刘伟民,杨生荣,薛群基,高分子材料科学与工程,1997,13:126
    73.龚战平,化工新型材料,1999,27:42
    74.龚战平,徐世忠,化工新型材料,1999,27:40
    75.周晓安,塑料开发,1991,18:152
    76.冯新,吕家祯,复合材料学报,1999,16:132
    77.王洪涛,刘伟民,杨生荣,薛群基,高分子材料科学与工程,1997,13:79
    78. Laigui Y, Shengrong Y, Hongtao W, Qunji X, Journal of Applied Polymer Science, 2000, 77: 2404
    79.于建,工程塑料应用,2001,29:39
    80.严瑞瑄等,水溶性高分子,北京,化学工业出版社,1998,6.
    81.张亨,江苏化工,2000,28:25
    82.崔凤霞,郭春梅,王开林等,精细石油化工,1999,6:41
    83. Vandenberg E J, Journal of Polymer Science: Part A: 1969, 7:525
    84. Hsieh H L, Journal of Applies Polymer Science, 1971, 15:2425
    85.何曼君,高分子物理,上海,复旦大学出版社,2001,6.
    86.殷敬华,莫志深主编,现代高分子物理学(上册),科学出版社,北京,2001
    87.莫志深,张宏放主编,晶态聚合物结构和X射线衍射,科学出版社,北京,2003
    88. Kirk O, Encyclopedia of Chemical Techmology, 1982, 18:616
    89. Desai N P, Hubbell J A, Macromolecules 1992, 25: 226.
    90. Moe S T, Skjak-brek G, Ichijo H, Journal of Applies Polymer Science, 1994, 51:1773
    91. Babich M W, B enrashid R, Mounts R D. Thermochim Acta 1994, 243:193.
    92. Medellin Rodriguez F J, Phillips P J, Lin J S, Macromolecules, 1996, 29:7491
    93. Craig D Q M. Thermochim Acta 1995, 248:189.
    94. Acosta J L, Morales E J, Journal of Applies Polymer Science, 1996, 60:1185.
    95. MastragostinoM, Arbizzani C, Meneghelo L, Paraventi R, Advance Materials 1996, 4:331.
    96. Ishikinyanma K, Wunderlich B C, Journal of Polymer Science: Polymer physics, 1997, 35:1877
    97. Ishikinyama K, Wunderlich B, Macromolecules, 1997, 30:4126
    98. De Paoli M A, Zanelli A, Mastragostino M, Rocco A M. J Electroanal Chem 1997, 435:217
    99. Rocco A M, Bielschowsky C E, Pereira R P. Polymer, 2003, 44:361.
    100. Cheung Y W, Stain R S, Macromolecules, 1994, 27:2512
    101. Kyu T, Shiru, Stein R S, Journal of Polymer Science, Part B:1987,25: 89
    102. Kyu T, Vsdhar P, Journal of Applies Polymer Science, 1986,32:5575
    103. Tashiro K, Izuchi M,et al.. Macromolecules,1994,27:1234
    104. Bank M I, Krimm S, Journal of Polymer Science, Part B: Polym Phys, 1969,7: 1785
    
    105. Cheam T C , Krimm S, Journal of Polymer Science , Part B : Polym Phys, 1981,19:423
    
    106. Crist B , Hill M, Journal of Polymer Science , Part B : Polym Phys , 1997 ,35 :2329
    
    107. Alamo R G, Graessl E W W ,et al. Macromolecules ,1997 ,30 : 561
    
    108. Wignall G D ,et al. polymer ,1982 ,23 : 957.
    
    109. Rajasekaran J J, Curro I G, et al., Macromolecules , 1995 ,28 : 6843
    
    110. Lohse D J, Polymer Engineering and Science,1986 ,26 :1500
    
    111. Lohse D J, Fetters L J ,et al. Macromolecules , 1993 ,26 :3444
    
    112. Yamaguchi M, Nitta K H ,et al., Journal of Applies Polymer Science, 1997 ,63 :467
    
    113. Avramov I J, Macromolecule Sci-Phys. 1991,30: 335
    
    114. Liu C Y, Wang J, He J S, Polymer, 2002, 43: 3811
    
    115. Yu Y, Choi K J, Polymer Engineering and Science, 1997, 37: 91
    
    116. Avramov I J, Macromolecule Chemistry. 1992,199: 129
    
    117. Avramova I J , Polymer, 1995, 36, 801
    
    118. Garg, Misra, Thermal Analysis , 1986, 31:165
    
    119. Toshihiro O, J, Physical Chemistry, 1998,102: 7093
    
    120. Yoon K H, Lee S K, Park O O, Polymer Engineering and Science, 1995, 35: 1807
    
    121. Supaphol P, Dangseeyun N, Thanomkizt P, Nithitanakul M, Journal of Polymer Science, Part B: Polymer Physic, 2004, 42: 676
    
    122. Dangseeyun N, Supaphol P, Nithitanakul M, Polymer Testing, 2004, 23:187
    
    123. Rwei S P, Polymer Engineering and Science, 1999, 39: 2475
    
    124. Kruphun P, Supaphol P, Europe Polymer Journal, 2005,41: 1561
    
    125. Mingtao R, Yingjin W, Chenguang Y, Hongchi Z, Journal of Applied Polymer Science, 2007, 103:3316
    
    
    126. Gonza'lez A, Iriarte M, Iriondo P J, Iruin J, Polymer, 2004, 45: 4139
    
    127. Lin J S, Woo E.M., Polymer, 2006,47: 6826
    
    128. Qiu Z B, Takayuki I, Nishi T, Polymer, 2003, 44: 7519
    
    129. Qiu Z, Ikehara T, Nishi T. Polymer, 2003;44:2799
    
    130. Lee J C, Hare T, Ikehara T, Nishi T, Journal of Polymer, 30, 4: 1998
    131. Nijenhuis AJ, Colstee E, Grijpma DW, Pennings A J, Polymer 2000: 37
    
    132. Qiu Z, Ikehara T, Nishi T. Polymer 2003, 44: 3101.
    
    133. Li G M, Qin C, Bei J Z et al. Polymer of Advanced Technology, 2002, 13: 636
    
    134. Li,C X, Kong Q S, Fan Q R, Xia Y Z, Polymer ,2005, 46: 10750
    
    135. Jia-Hsien L, Woo E.M., Polymer, 2006,47: 6826
    
    136. Lee J C, Tazawa H, Ikehara T, Nishi T, Polymer, 1998, 30:780.
    
    137. Ikehara T, Nishi T, Polymer, 2000, 32:683.
    
    138. Terada Y, Ikehara T, Nishi T, Polymer, 2000, 32:900.
    
    139. Hirano S, Nishikawa Y, Terada Y, Ikehara T, Nishi T, Polymer, 2002, 34:85.
    
    140. Chen H L, Wang S F, Polymer 2000, 41:5157.
    
    141. Lee J L, Namura S, Kondo S, Abe A, Polymer, 2001, 42,5453-5461
    
    142. Nakafuku C. Polymer, 1996,28:568
    
    143. Rajasekaran J J, Curro I G, et al, Macromolecules, 1995,28(20): 6843
    
    144. Na Y H, He Y, et al, Macromolecules, 2002, 35(2): 727.
    
    145. Stein R S, Khambatta F B,Warner F P, Russell T, Escala A, Balizer E, Journal of
    Polymer Science, Polym. Symp. 1978, 63: 313
    
    146.童玉华,刘诤,高分子材料科学与工程,1998,14:51
    
    147.陈秦羲,宋文辉,高分子学术报告会论文集,1992,1089
    
    148. Huggins M L, Journal of Chemistry and Physics. 1945, 13: 37
    
    149. Slichter W P, Macromolecular Chemistry, 1959, 34: 67
    
    150. Hikichi K and Furuichi J, Journal of Polymer Science, Part A, 1965, 3: 300
    
    151. Olf H G, Peterlin A, Journal of Applied Physics, 1965, 35: 3108
    
    152. Uchida T. and Tadokoro H., Journal of Polymer Science, Part A, 1967, 25: 63
    
    153. Hasemi S, William J G, Journal of Materials Science, 1985, 20: 4202
    
    154. Connolly R, Gauvin R, Polymer Engineering and Science, 1985, 25: 548
    
    155. Bretz P E, Journal of Applied Polymer Science, 1982, 27: 1707
    
    156. Herhzberg R W, Skibo M D, Manson J A, Journal of Materials Science, 1978, 13: 1038
    
    157. Chiang W Y, Lo M S, Journal of Applied Polymer Science, 1987, 34: 1997
    
    158. Garber C A, Geil P H, Macromolecular Chemistry, 1968, 13:236-245
    159. Pelzbauer Z, Galeski A, Journal of Polymer Science, Part C, 1972, 38:23
    160. Pelzbauer Z, Nedlkov E, Journal of Polymer Science, Part C, 1972, 38:33
    161. Phillips R, Manson J A E, Journal of Applied Polymer Science, 1996 27:875
    162. Xu W B, He P S, Polymer Engineering and Science, 2001, 41(11): 1903
    163. Xu W B, G M, He P S, Journal of Applied Polymer Science, 2001, 82:2281
    164. Hu Y L, Ye L, Polymer Engineering and Science, 2005, 45:1174-1179
    165.于建,刘慧路,韩向明等,塑料工业,2006,4:13
    166.程振刚,热塑性聚氨酯弹性体及无机填料增韧聚甲醛的研究,四川大学博士论文,2006
    167. Kovacs A J, Gonthier A, Straupe C, Journal of Polymer Science: Polymer symp, 1975, 50:283
    168. Bailey F E, Koleske JV. Poly(ethylene oxide). New York: Academic Press; 1976.
    169. Kovacs A J, Gonthier A, Journal of Polymer Science: Polymer symp, 1977, 59:31
    170. Kovacs A J, Straupe C, Faraday Discussion Chemistry Society, 1979, 68:225
    171. Kovacs A J, Straupe C. J Cryst Growth 1980, 48:210.
    172. Bassett D C, Olley R H, Polymer 1988, 29:1745
    173. Song K, Krimm S, Macromolecules, 1989, 22:1504
    174. Song K, Krimm S, Journal of Polymer Science: Polymer physics, 1990, 28:35
    175. Song K, Krimm S, Journal of Polymer Science: Polymer physics, 1990, 28:51
    176. Song K, Krimm S, Macromolecules, 1990, 23:1946
    177. Kim I, Krimm S, Macromolecules, 1996, 29:7186
    178. Cheng S Z D, Wunderlich B, Journal of Polymer Science: Polymer physics, 1986, 24:577
    179. Cheng S Z D, Barley J S, Giusti PA. Polymer 1990, 31:845.
    180. Cheng S Z D, Chen J H, Zhang A Q et al., Macromolecules, 1992, 25: 1453
    181. Cheng S Z D, Chert J H, Heberer D P. Polymer 1992, 33:1429.
    182. Cheng S Z D, Wu S S, Chen J H, Macromolecules, 1993, 26:5105
    183. Starkweather H W, Jr, Zoller P, Jones G, Veg AJ. Journal of Polymer Science, Polymer Physics 1982; 20(4): 751
    184.吴其晔,巫静安,高分子材料流变学,北京,高等教育出版社,2002.
    185. Jeziorny A, Polymer,1978, 19:1142
    186. Wu S, Journal of Applied Polymer Science,1988, 35:549
    187.周彦豪,聚合物加工流变学基础,西安:西安交通大学出版社,1988.27
    188. Tokita N, Rubber and Chemistry Technology, 1977,50: 292
    189. Kyonsuku M, James L W, Polymer Engineering and Science, 1984, 24: 1327
    190. Facis B D, Chalifoux J P, Polymer Engineering and Science, 1987, 27: 1591
    191. Facis B D, Chalifoux J P, Polymer, 1988, 29: 1761

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700