自主锁止蠕动式微小管道机器人关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内径为15~20 mm的薄壁倒“U”型传热管道广泛应用于核反应堆蒸发器中,长期运行后,容易发生因腐蚀、疲劳破坏或破损而引起泄漏事故等。因此,其监测、诊断、清理和维护就成为保障核反应堆系统安全、畅通和高效运营的关键。然而由于该类管道结构复杂,内部空间狭小,所处环境对人体有害,检修和维护十分困难。因此,开展适应在该类特殊管道环境下工作的新型微小管道机器人设计和研究,实现对核反应堆蒸发器传热管道的无损检测,具有非常重要的意义。
     基于对核反应堆蒸发器传热管道无损检测的迫切需求,本论文依托“十一五”部委预研项目和国家863计划资助项目,开展新型微小管道机器人设计和研究,力争突破“微小型化、大牵引力、快速、长距离运动”的管道机器人关键共性技术。本文系统深入地开展了新型机器人本体结构设计、设计理论建模、运动稳定性分析和多目标优化等关键问题研究。论文的研究工作主要包括以下几个部分:
     1.设计了一种新型具有自主锁止功能的蠕动式微小管道机器人。针对微小管道机器人结构设计中的微小型化、管径适应性及弯管通过性等问题,在比较分析已有驱动方案及移动方式优缺点的基础上,提出了自主锁止蠕动式方案,开展了机器人本体结构设计及优化研究,提出了自调节支撑机构、柔性保持机构和软轴驱动机构的创新设计。虚拟样机仿真表明,所设计的微小管道机器人实现了与管壁间的自主锁止,改善了机器人的管径适应性,有效解决了刚性支撑问题和弯管通过性问题。
     2.系统研究了自主锁止蠕动式微小管道机器人的力学特性问题。针对机器人的管径适应能力,基于力学平衡和虚位移原理,分析了自调节支撑机构的力学性能;分析了机器人的驱动特性,建立了封闭力、牵引力及爬坡能力的数学模型;利用积分原理和运动合成法,建立了机器人管内运动阻力的数学模型;讨论了管内“自转”问题,分析了机器人产生“自转”的机理,提出了支撑轮和保持轮的球形设计方案,有效抑制了“自转”的发生;建立了机器人传动系统的机电动力学方程。上述建立的数学模型及取得的结论,为微小管道机器人的结构设计及优化提供了理论依据。
     3.深入研究了摩擦接触约束下的微小管道机器人运动稳定性问题。针对机器人的管内受限运动,综合考虑滑动摩擦和滚动摩擦接触,建立了基于完整系统第一类拉格朗日方程的受限刚体动力学模型;利用线性互补理论,讨论了动力学方程解的存在性和唯一性问题;结合Kelvin接触模型,利用奇异摄动理论和Layapunov稳定性理论,给出了受限刚体稳定性的附加条件;对所设计的机器人在直管运动的稳定性情况进行了仿真,依据仿真结果提出了柔性保持机构设计方案,有效解决了微小管道机器人管内运动失稳问题。
     4.研究了基于遗传算法的微小管道机器人多目标优化问题。根据机器人的运动特点,建立了速度计算模型;利用能量平衡关系,采用最小二乘法和极值原理,建立了机器人传动系统的功耗模型;在此基础上,建立了以机器人结构尺寸为约束变量,以牵引力、运动速度及系统功耗为目标函数的多目标优化模型;利用遗传算法对微小管道机器人多目标优化模型进行寻优求解。优化结果表明,机器人的牵引力理论值为11.47 N,运动速度可达12.7 mm/s,较好地实现了预期目标。
     5.成功研制了两代试验样机,开发了运动控制箱,搭建了模拟管道试验系统,开展了相关试验研究。试验结果表明,经优化改进后的第二代机器人样机可平稳运行于内径为15~20 mm的管道,可通过曲率半径不小于80 mm的弯管,移动速度为8.7~12 mm/s,具有0~90o爬坡能力,可双向运动,最大牵引力约为9.95 N,载重自重比可达6.77:1,较好地实现了管道机器人“微小型化、大牵引力、快速、长距离运动”的设计目标。
Thin-wall inverted "U" type heat transfer pipelines with inner diameters ranging from 15~20 mm, are extensively used in nuclear reactor evaporators. After a long running, they are prone to corrosion, fatigue failure, or damage to cause leakage accidents, etc. Therefore, it has become a key to monitor, diagnose, clean and maintain for the sake of safety, smoothness and efficient operations of the nuclear reactor system. However, due to their complex structure, constrained internal space, and poisonous environment, repair and maintenance of the pipelines are very difficult. So it is very important to develop a new type of micro in-pipe robot applicable to such special cases, to realize non-destructive testing on the heat transfer pipelines in nuclear reactor evaporators.
     Based on the urgent need of automatic detection of micro heat transfer pipelines in nuclear reactor evaporators, this thesis carries out the design and research of a new type micro in-pipe robot supported by the "Eleventh Five-Year Plan" Ministry Pre-research Project and the Hi-Tech Research and Development Program (863) of China. Aiming at technological breakthrough of "microminiaturization, large traction, fast, long-distance movement" for in-pipe robot, this thesis is focused on the structure design, theoretical modeling, motion stability analysis and multi-objective optimization and other key issues of the robot. The research efforts mainly include the following points:
     1. A new type of creeping micro in-pipe robot with autonomous lockup function is designed. Aiming at the issues of microminiaturization, diameter adaptation and elbow trafficability, and based on the analysis of the advantages and disadvantages of the existing driving schemes, an autonomous lockup creeping micro in-pipe robot is proposed. Then the body structure is designed and optimized. As a result, innovative design of self-regulating supporting mechanism, flexible holding mechanism and flexible-shaft driving mechanism is presented. The virtual prototype simulation shows that the optimized micro in-pipe robot possesses the advantages of autonomous lockup and improved diameter adaptability, and efficiently solves the problems of rigid braces and elbow trafficability.
     2. The mechanical characteristics of the micro in-pipe robot are researched systematically. Based on the principles of mechanical equilibrium and virtual displacement, the mechanical properties of self-regulating supporting mechanism are discussed in respect of diameter adaptability. Then the driving characteristics of the robot are analyzed, and mathematical models of closed-force, traction and climbing ability are established. As a result, the monotonically decreasing law of the traction changing with the diameter is discovered. Using integral theory and motion synthesis, the movement resistance and the "autorotation" problem are discussed. After the mechanism of robot’s "autorotation" analyzed, the spherical design of supporting and holding wheels is presented to efficiently restrain the "autorotation". At last, the mechatronics dynamic equations of the robot’s drive system are established. The above-mentioned established mathematical models and the conclusions provide theoretical basis for structure design and optimization of the micro in-pipe robot.
     3. Motion stability of micro in-pipe robot with frictional contacts is studied in depth. With sliding and rolling friction contacts considered, the limited rigid body dynamics model is established in respect of the robot’s restricted movement, which is based on the first Lagrangian equation for holonomic system. Using linear complementarity theory, the existence and uniqueness of dynamic equation is discussed. Combining Kelvin’s contact model, using singular perturbation and Layapunov’s stability theory, the additional conditions of stability of constrained rigid body are given. With the stability conditions of the robot movement in straight pipes simulated, the flexible holding mechanism is presented, which efficiently solves the instability problem of micro in-pipe robot moving in pipelines.
     4. Based on the genetic algorithm, the multi-objective optimization problem of micro in-pipe robot is studied. According to characteristics of the robot's movement, the speed calculation model is established. Using energy balance, the least square method and extremum principle, the power model for the robot transmission system is established. On this basis, the multi-objective optimization model is established, where some sizes of the robot are taken as the variables, and traction, kinematic velocity and system power consumption are taken as the objective functions. Using genetic algorithm, optimization solution to the multi-objective model of the micro in-pipe robot is obtained. The results show that the theoretical value of robot's traction is 11.47 N, with velocity of movement up to 12.7 mm/s, well conformed to the design specifications.
     5. Two-generation test prototypes and motion control box of the robot are developed successfully. Then the test system is established with experiments conducted. The experimental result shows that the optimized second-generation prototype can smoothly run in 15~20 mm diameter pipelines, pass the elbow with radius of curvature no less than 80 mm, move bidirectionally with a speed of 8.7~12 mm/s, climb the oblique pipelines angled 0~90o, and carry load about 9.95 N. And the load weight ratio is up to 6.77:1, which well meets the design goals of "microminiaturization, large traction, fast, long-distance movement" for the pipeline robot.
引文
[1]朱齐荣.核电厂机械设备及其设计[M].北京:原子能出版社, 1990.
    [2]甘建衡.秦山核电二期工程蒸汽发生器的设计特点[J].核动力工程, 1995, 16(1): 18-22.
    [3]杨宝初.我国核蒸汽发生器传热管在役检测现状[J].无损检测, 2000, 22(5): 215-218.
    [4]丁训慎,杨宝初.大亚湾核电站蒸汽发生器传热管的涡流检查[J].核动力工程, 1999, 20(5): 417-420.
    [5] 863计划MEMS技术发展战略研究专家组.“十五”863计划重大专项可行性研究报告[R],2001.
    [6]莫锦秋.微机电系统设计与制造[M].北京:化学工业出版社, 2004.
    [7]邓宗全,毕德学.管道机器人[J].机器人技术与应用, 1996, (6): 12-14.
    [8]周晓,张晓华,邓宗全等.管内作业机器人的发展与展望[J].机器人, 1998, 20(6): 471-478.
    [9]蔡自兴.机器人学[M].北京:清华大学出版社, 2000.
    [10] Z. Hu, E. Appleton. Dynamic Characteristics of a Novel Self-Drive Pipeline Pig [J]. IEEE Transactions on Robotics, 2005, 21(5): 781-789.
    [11] A. O. Nieckele, A. M. B. Braga, L. F. A. Azevedo. Transient Pig Motion Through Gas and Liquid Pipelines [J]. Journal of Energy Resources Technology, 2001, 123: 260-269.
    [12] T. Jin, P. Que, Z. Tao. Designing and Signal Processing of Intelligent Inspection Pig Applying Magnetic Flux Leakage Methods [C]. Int. Conf. on Intelligent Mechatronics & Automation, Chengdu, China, 2004: 815-819.
    [13] J. Vertut, P. Marchal. Vehicles with Wheels and Legs, The In-Pipe Remote Inspection Vehicle & His Family. 3rd Symp. On Theory and Practice of Robot & Manipulators, 1978: 476-487.
    [14]沈功田,景为科,左延田.埋地管道无损检测技术[J].无损检测, 2006, 28(3): 137-141.
    [15]唐东林,陈才和,崔宇明等.海底管道缺陷在线智能检测机器人[J].传感技术学报, 2005, 18(4): 818-821.
    [16]李著信,苏毅,吕宏庆等.管道在线检测技术及其检测机器人研究[J].后勤工程学院学报, 2006, (4): 41-45.
    [17]白素平,杨晓月,阎钰锋.管道机器人检测系统研究[J].长春理工大学学报, 2005, 28(4): 27-29.
    [18]邓宗全,王永福,张晓华等.小口径管内补口作业机器人的研究[J].机器人, 1997, 19(4): 277-278.
    [19] T. Shibata, T. Sasaya. Microwave Energy Supply System for In-Pipe Micromachine [C]. Int. Symposium on Micro-mechatronics & Human Science. 1998, 237-242.
    [20] K. Tsuruta, T. Sasaya. Control Circuit in an In-Pipe Wireless Micro Inspection Robot [C]. Int. Symposium on Micro-mechatronics & Human Science. 2000, 59-64.
    [21]孙麟治,孙萍,秦新捷等.细小管道内爬行的微机器人[J].光学精密工程, 1998, 6(5): 57-63.
    [22]程良伦,杨宜民.一种新型管道内微机器人的研究[J].机器人, 1999, 21(4): 249-255.
    [23]王坤东,颜国正,施建.微机器人结肠镜样机及离体肠道试验研究[J].中国生物医学工程学报, 2006, 25(5): 547-551.
    [24]邓宗全,孙序梁,刘成林.管内行走机器人机构的研究[J].机器人, 1989, 3(6): 45-48.
    [25]邓宗全,刘福利,李笑等.管内机器人研究中的几项新技术[J].高技术通讯, 1994, 4(5): 12-14.
    [26]邓宗全,王永福,张晓华等.小口径管内补口作业机器人的研究[J].机器人, 1997, 19(4): 277-281.
    [27]钱晋武,章亚男,孙麟治等.螺旋轮驱动的细小管内移动机器人研究[J].光学精密工程, 1999, 7(4): 54-58.
    [28]姜生元.管内X射线探伤机器人技术及理论研究[D].哈尔滨:哈尔滨工业大学, 2001.
    [29]陈军.海底管道检测机器人技术的研究[D].哈尔滨:哈尔滨工业大学, 2005.
    [30]徐小云.管道检测机器人系统及其基于模糊神经网络控制的研究[D].上海:上海交通大学, 2003.
    [31]张云伟.煤气管道检测机器人系统及其运动控制技术研究[D].上海:上海交通大学, 2007.
    [32]罗怡.双压电薄膜细小管道机器人的研究[D].上海:上海大学, 2002.
    [33]何斌.医用微型机器人动力学建模及其行为智能控制研究[D].杭州:浙江大学, 2001.
    [34]陈柏.基于液体环境的内窥镜机器人的研究[D].杭州:浙江大学, 2005.
    [35]刘巍.超磁致伸缩薄膜的磁机耦合特性及其在泳动机器人中的应用[D].大连:大连理工大学, 2006.
    [36]谭湘强.液体中微机器人的运动机理与实验研究[D].广州:广东工业大学,2002.
    [37]钟映春.基于泳动方式的微机器人研究[D].广州:广东工业大学, 2003.
    [38] M. Yoshida, K. Endo, N. Masuda, et al. Corrosion Inspection Pig for Gas Pipeline [R]. Nippon Kokan Technical Report. 1990, (133): 43-48.
    [39]彭商贤,刘斌,龚进峰.履带式管道机器人及侧倾问题的研究[J].机器人, 2000, 22(4): 247-250.
    [40]彭商贤,龚进峰,刘斌.履带式管道机器人[P].中国专利: ZL01227512.3, 2002-04-24.
    [41]秦卫东,欧阳卫强,赵小军. TL-I型履带式管道机器人双型控制系统设计[J].九江学院学报(自然科学版), 2005, (4): 17-21.
    [42] E. Rome, J. Hertzberg, F. Kirchner, et al. Towards Autonomous Sewer Robots: the MAKRO Project [J]. Urban Water, 1999, 1: 57-70.
    [43]李明东,奚汉达,储金荻等.一种正方体型管内仿生蠕动机器人[J].上海交通大学学报, 2001, 35(1): 64-67.
    [44] H. Yu, P. Ma, C. Cao. A Novel In-Pipe Worming Robot Based on SMA [C]. Proc. IEEE Int. Conf. on Mechatronics & Automation, Niagara Falls, Canada, 2005:
    [45] M. Horodinca, I. Doroftei, E. Mignon, et al. A Simple Architecture for In-Pipe Inspection Robots [C]. Int. Colloquium on Mobile & Autonomous Systems, Magdeburd, Germany, 2002: 61-64.
    [46] H. R. Choi, S. M. Ryew. Robotic System with Active Steering Capability for Internal Inspection of Urban Gas Pipelines [J]. Mechatronics, 2002, 16(12): 713-736.
    [47] S. G. Roh, S. M. Ryew, H. R. Choi. Development of Differentially Driven Inpipe Inspection Robot for Underground Gas Pipelines [C]. Proceedings of the 32nd Int. Symposium on Robotics, 2001: 165-170.
    [48] S. G. Roh, H. R. Choi. Differential-Drive In-Pipe Robot for Moving Inside Urban Gas Pipelines [J]. IEEE Transactions on Robotics, 2005, 21(1): 1-17.
    [49] S. G. Roh, D. W. Kim, J. S. Lee, et al. In-pipe Robot Based on Selective Drive Mechanism [J]. Int. Journal of Control, Automation, and Systems, 2009, 7(1): 105-112.
    [50]邓宗全,陈军,姜生元等.六独立轮驱动式管内机器人的研制[J].高技术通讯, 2004, 14(9): 54-58.
    [51]张学文,邓宗全,贾亚洲等.管道机器人三轴差动式驱动单元的设计研究[J].机器人, 2008, 30(1): 22-28.
    [52] Y. Ishikawa, T. Kitahara. Present and Future of Micromechatronics [C]. IEEE Int. Symposium on Micro Mechatronics & Human Science, 1997: 13-20.
    [53]杨宜民.日本的“微机器技术”国家研究开发计划简介[J].机器人, 1996, 18(4): 254-256.
    [54] M. Takahashi, I. Hayashi, N. Iwatsuki. The Development of an In-pipe Micro Robot Applying the Motion of an Earthworm [J]. Transactions of JSME, 1995, 6(1): 90-94.
    [55] C. Anthierens, C. Libersa, M. Touaibia, et al. Micro Robots Dedicated to Small Diameter Canalization Exploration [C]. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Takamatsu, Japan, 2000: 480-485.
    [56] H. Robert, J. Sturges, L. Schitt. A Flexible Tendon-Controlled Device for Endscopy [J]. The International Journal of Robotics Research, 1993, 12(2): 121-131.
    [57] S. Brett, B. Joel, G. Warren. Development of a Robotic Endscope [C]. IEEE Int. Conf. on Intelligent Robots & Systems, 1995: 162-171.
    [58] J. Lim, H. Park, J. An, et al. One Pneumatic Line Based Inchworm-like Micro Robot for Half-inch Pipe Inspection [J]. Mechatronics, 2008, 18: 315-322.
    [59] I. Takaharu, K. Hitoshi, O. Nobuyuki, et al. Characteristics of Piezoelectric Locomotive Mechanism for an In-Pipe Micro Inspection Machine [C]. The 6th Int. Symposium on Micro Machine & Human Science, 1995: 193-198.
    [60] H. Nishikawa, T. Sasaya, T. Shibata, et al. In-Pipe Wireless Micro Locomotive System [C]. IEEE Int. Symposium on Micromechatronics & Human Science, 1999: 141-147.
    [61] I. Hayashi, N. Iwatsuki, K. Morikawa, et al. An In-Pipe Operation Microrobot Driven Based on the Principle of Screw-Development of a Prototype for Running in Long and Bent Pipes [C]. IEEE Int. Symposium on Micromechatronics & Human Science, 1997: 125-129.
    [62] K. Suzumori, T. Miyagawa, M. Kimura, et al. Micro Inspection Robot for 1-in Pipes [J]. IEEE/ASME Transactions on Mechatronics, 1999, 3(4): 286-292.
    [63] T. Fukuda, H. Hosokai, H. Ohyama, et al. Giant Magnetostrictive Alloy (GMA) Applications to Micro Mobile Robot as a Micro Actuator without Power Supply Cables [J]. IEEE Micro Electro Mechanical System, 1991: 210-215.
    [64]程良伦.微管道机器人及其智能控制系统的研究[D].长春:中国科学院长春光学精密机械研究所, 1999.
    [65]孙萍,孙麟治,龚振邦等.压电驱动式细小管道内爬行器[P].中国专利: ZL01210908.8, 2002-04-17.
    [66]周建梁.微小型管内机器人行走机构研究[D].上海:上海大学, 1999.
    [67]钱晋武,章亚男,程维明等.细小管道内机器人移动装置[P].中国专利: ZL99226054.X, 2000-01-19.
    [68] P. Liu, Z. Wen, L. Sun. An In-pipe Micro Robot Actuated by PiezoelectricBimorphs [J]. Chinese Science Bulletin, 2009, 54: 2134-2142.
    [69] Y. S. Zhang, L. W. Ning. New Kind of Wireless Micro Robot Actuated and Controlled through Outside Magnetic Field [J]. Chinese Journal of Mechanical Engineering, 2004, 17(2): 215-218.
    [70]张永顺,刘巍,张瑞侠等.外磁场驱动医用微型机器人的研究现状与展望[J].机器人, 2005, 27(3): 278-283.
    [71]周银生,李立新,赵东福.一种新型的微型机器人[J].机械工程学报, 2001, 37(1): 11-13.
    [72]于莲芝.呼吸参数直接监测仿生微型机器人系统关键技术与实验研究[D].上海:上海交通大学, 2006.
    [73]王坤东.结肠诊查微型仿生机器人系统关键技术及实验研究[D].上海:上海交通大学, 2006.
    [74]韩福峰,王彦,刘立宏等.基于EAP驱动器的并联式管道机器人机构设计[J].机械科学与技术, 2006, 25(2): 214-216.
    [75]郭彤.基于钹形压电复合驱动的微小管内机器人技术研究[D].杭州:浙江大学, 2005.
    [76]郭瑜.微小型螺旋推进管道机器人设计与分析[D].长沙:国防科技大学, 2006.
    [77]尚建忠,罗自荣,乔晋葳等.电磁楔型微小管道机器人[P].中国专利: 200910043103.5, 2009-04-13.
    [78]徐小云,颜国正,丁国清等.管道机器人适应不同管径的三种调节机构的比较[J].光学精密工程, 2004, 12(1): 60-65.
    [79]王宏刚.微小管道机器人结构设计及动力学分析[D].长沙:国防科技大学, 2007.
    [80]解旭辉,李圣怡,徐从启等.蠕动式微小管道机器人[P].中国专利: ZL200710035846.9, 2007-09-30.
    [81]王双有.牵引力就是摩擦力吗[J].物理教师, 1998, 19(1): 32-33.
    [82]刘德华.对汽车牵引力的探讨[J].物理教师, 2004, 25(11): 13-15.
    [83]刘自华.汽车牵引力究竟是什么[J].物理教学探讨, 2006, 24(2): 42-43.
    [84]姜生元,陈明,邓宗全等.管内拖缆作业机器人拖线力计算方法研究[J].管道技术与设备, 1999, (5): 39-41.
    [85]温熙森,邱静,陶俊勇.机电系统分析动力学及其应用[M].北京:科学出版社, 2003.
    [86]程良伦,杨宜民.管道内微机器人弯管运动的动力学稳定性[J].控制理论与应用, 2001, 18(1): 62-68.
    [87]何斌,陈鹰,周银生.医用微机器人的姿态可控性研究[J].自动化学报, 2004, 30(5): 707-715.
    [88] N. H. McClamroch, D. W. Wang. Feedback Stabilization and Tracking of Constrained Robots [J]. IEEE Trans. on Automatic Control, 1988, 33(5): 419-426.
    [89] M. T. Mason, Y. Wang. On the Inconsistency of Rigid-body Frictional Planar Mechanics [C]. IEEE Int. Conf. on Robotics & Automation, Philadelphia, PA, 1988: 524-528.
    [90] D. Stewart. Rigid-body Dynamics with Friction and Impact [J]. SIAM Review, 2000, 42(1): 3-29.
    [91] P. L?tstedt. Coulomb Friction in Two-Dimensional Rigid Body Systems [J]. ZAMM, 1981, 61: 605-615.
    [92] J. S. Pang, J. Trinkle. Complementarity Formulations and Existence of Solutions of Dynamic Multi-rigid-body Contact Problems with Coulomb Friction [J]. Mathematical Programming, 1996, 73: 199-226.
    [93] J. S. Pang, J. Trinkle, G. Lo. A Complementarity Approach to a Quasistatic Multi-Rigid-Body Contact Problem [J]. Computational Optimization & Applications, 1996, 5: 139-154.
    [94] J. Trinkle, J. S. Pang, S. Sudarsky, et al. On Dynamic Multi-Rigid-Body Contact Problems with Coulomb Friction [J]. ZAMM, 1997, 77: 267-280.
    [95] P. E. Dupont. Existence and Uniqueness of Rigid-Body Dynamics with Coulomb Friction [J]. Trans. of the Canadian Society of Mechanical Engineers, 1993, 17(4A): 513-525.
    [96] P. E. Dupont, S. P. Yamajako. Stability of Frictional Contact in Constrained Rigid-Body Dynamics [J]. IEEE Transactions on Robotics & Automation, 1997, 13(2): 230-236.
    [97] P. E. Dupont. Friction Modeling in Dynamic Robot Simulation [C]. IEEE Int. Conf. on Robotics & Automation, 1990: 1370-1376.
    [98] P. R. Kraus, V. Kumar, P. Dupont. Analysis of Frictional Contact Models for Dynamic Simulation [C]. IEEE Int. Conf. on Robotics & Automation, Leuven, Belgium, 1998: 976-981.
    [99] P. Song, P. Kraus, V. Kumar, et al. Analysis of Rigid-Body Dynamic Models for Simulation of Systems with Frictional Contacts [J]. Journal of Applied Mechanics, 2001, 68: 118-128.
    [100] P. Song. Modeling, Analysis and Simulation of Multibody Systems with Contact and Friction [D]. Philadelphia: University of Pennsylvania, 2002.
    [101] C. S. Liu, Z. Zhao, B. Chen. The Bouncing Motion Appearing in a Robotic System with Unilateral Constraint [J]. Springer Nonlinear Dynamics, 2007, 49:217-232.
    [102] Z. Zhao, B. Chen, C. S. Liu, et al. Impact Model Resolution on Painlevé’s Paradox [J]. Acta Mechanica Sinica, 2004, 20(6): 649-660.
    [103] Z. Zhao, C. S. Liu, B. Chen. The Numerical Method for Three-Dimensional Impact with Friction of Multi-Rigid-Body System [J]. Science in China: Series G Physics, Mechanics & Astronomy, 2006, 49(1): 102-118.
    [104] Z. Zhao, C. S. Liu, B. Chen. The PainlevéParadox Studied at a 3D Slender Rod [J]. Springer Multibody System Dynamics, 2008, 19: 323-343.
    [105] Z. Zhao, C. S. Liu, W. Ma, et al. Experimental Investigation of the PainlevéParadox in a Robotic System [J]. ASME Journal of Applied Mechanics, 2008, 75: 1-11.
    [106]姚文莉.含摩擦的多刚体系统动力学问题研究[D].北京:北京大学, 2005.
    [107] R. Cottle, J. Pang, R. Stone. The Linear Complementarity Problem [M]. Boston, MA: Academic Press, 1992.
    [108] W. P. M. H. Heemels, J. M. Schumacher, S. Weiland. Linear Complementarity Systems [J]. Journal on Applied Mathematics, 2000, 60(4): 1234-1269.
    [109] Y. T. Wang, V. Kumar. Simulation of Mechanical Systems with Multiple Frictional Contacts [J]. ASME Journal of Mechanical Design, 1994, 116: 571-580.
    [110] Ch. Glocker, F. Pfeiffer. Dynamical Systems with Unilateral Contacts [J]. Nonlinear Dynamics, 1992, 3: 245-259.
    [111] M. W?sle, F. Pfeiffer. Dynamics of Multibody Systems Containing Dependent Unilateral Constraints with Friction [J]. Journal of Vibration & Control, 1996, 2: 161-192.
    [112] F. Pfeiffer, Ch. Glocker. Multibody Dynamics with Unilateral Contacts [M]. New York: John Wiley & Sons. Inc. , 1996.
    [113] M. F?rg, F. Pfeiffer, H. Ulbrich. Simulation of Unilateral Constrained Systems with Many Bodies [J]. Springer. Multibody System Dynamics, 2005, 14: 137-154.
    [114]杨挺青,罗文波,徐平等.黏弹性理论与应用[M].北京:科学出版社, 2004.
    [115] H. K. Khail. Nonlinear Systems-3rd Edition [M]. New York: MacMillan, 2002.
    [116]刘飞.机床能量特性及功率监控技术的研究[D].重庆:重庆大学, 1987.
    [117]刘飞,徐宗俊.机床主传动系统能量传输数学模型[J].重庆大学学报, 1990, 13(2): 8-14.
    [118]刘飞,徐宗俊,梁锡昌等.机床功率监控系统的数学模型及其应用[J].机械工程学报, 1992, 28(4): 7-12.
    [119]徐磊.基于遗传算法的多目标优化问题的研究与应用[D].长沙:中南大学, 2007.
    [120]谢涛,陈火旺.多目标优化与决策问题的演化算法[J].中国工程科学, 2002, 4(2): 59-68.
    [121]杨林根.多目标优化演化算法[D].广州:华南理工大学, 2005.
    [122]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社, 2006.
    [123] J. Holland. Adaptation in Natural and Artificial Systems [M]. Ann Arbor, MI: University of Michigan Press, 1975: 21-24.
    [124]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社, 2004.
    [125]陈国良,王煦法等.遗传算法及其应用[M].北京:人民邮电出版社, 2001.
    [126]雷英杰,张善文,李续武等. Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700