不同肢端畸形中基因突变鉴定及致病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     先天性肢端畸形是人类最常见的出生缺陷之一,不仅影响肢体的外观形态和功能运动,甚至使患者丧失劳动和生活能力。近年来,随着人类基因组计划的完成,人类单基因遗传病致病基因鉴定不断取得进展,各种四肢先天畸形的致病基因也逐渐被发现,人类先天性肢端畸形研究的数据不仅将补充以往动物和细胞实验的不足,还可以加深对胚胎发育过程的理解,而且可以为人类组织工程学研究和基因治疗药物的研制提供强有力的理论依据,因此对肢端畸形的致病基因突变鉴定及致病机制研究至关重要。
     引起先天性肢端畸形的原因有环境因素和遗传因素两大类。遗传因素主要指基因突变或染色体畸变,其导致的肢端畸形既可单独发生又可是某种综合征的一部分。多种基因突变和染色体畸变都会直接引起肢端形态发生(morphogenesis)的异常,表现不同类型的肢端畸形,如短指(趾)(brachydactyly,BD)、缺指(趾)(ectrodactyly,ED)、多指(趾)(polydactyly,PD)和并指(趾)(syndactyly,SD)畸形等。
     近端指(趾)间关节粘连(proximal symphalangism,SYM1,MIM 185800)以肢端骨骼融合和短指(趾)为主要表型,常被认为是BDC(Brachydactyly type C,MIM 113100)的一部分。SYM1为常染色体显性遗传,致病基因是GDF5(growth/differentiation factor 5,MIM 601146)或NOG(MIM 602991)。
     缺指(趾)/手足裂畸形(ectrodactyly/split-hand/split-foot malformation,SHFM)是四肢端骨(atttopod)中部指轴发育不全而剩余指(趾)呈不同模式融合导致严重影响患者精细活动的先天性肢端畸形,曲型表现为龙虾爪(中部指轴缺陷)或独指(桡侧指轴缺陷而无裂隙,第5指(趾)总不受累)。目前已定位的人类SHFM遗传位点包括:SHFM1(7q21,MIM 183600)、SHFM2(Xq26,MIM 313350)、SHFM3(10q24,MIM 600095)、SHFM4(3q27,MIM 605289)和SHFM5(2q31,MIM 606708)。SHFM3和SHFM4位点的致病突变已经明确,分别是染色体10q24区域内约0.5Mb的DNA串联重复和染色体3q27区域内TP63(MIM 603273)基因的点突变。
     手足生殖器综合征(Hand-foot-genital syndrome,HFGS,MIM 140000)是累及手足和泌尿生殖系统的畸形,肢端畸形包括短指(趾)、延迟骨化、融合及腕骨和跗骨短小等。泌尿系统的异常包括输尿管口异位、膀胱输尿管反流和肾盂输尿管接合处梗阻导致慢性肾盂肾炎、肾功能不全和肾移植。生殖系统畸形包括男性的尿道下裂和女性的苗勒(氏)管融合导致阴道纵隔和双子宫。HFGS为常染色体显性遗传,致病基因为染色体7p15的同源盒基因HOXA13(Homeobox A13,MIM142959)。
     本文以上述肢端畸形的三个中国人家系(SYM1、SHFM和HFGS)为研究对象,首先利用单体型分析进行了致病基因染色体定位,然后对候选基因DNA测序或定量PCR进行突变鉴定,进一步通过western blot、双萤光素酶报告基因检测系统和染色质免疫沉淀等技术对突变基因功能进行初步研究。
     材料与方法
     1、家系资料
     对家系中可能追溯到的家庭成员进行详细调查,绘制家系系谱图:签署“知情同意书”;对患者进行体格检查和手足骨骼X光检查;采集外周静脉血。
     2、单体型分析定位候选致病基因
     利用UCSC基因组生物信息学网站在5个SHFM位点选择20对微卫星多态标记,PCR扩增后经变性聚丙烯酰胺凝胶电泳和银染,读出每个个体标记的基因型。再根据个体基因型和系谱中的亲缘关系,按照孟德尔遗传定律推导出同一条染色体上不同标记构成的单体型。
     3、候选基因编码区DNA测序
     根据单体型分析确定候选基因后,PCR扩增患者候选基因外显子,PCR产物纯化后测序。
     4、定量PCR检测基因组拷贝数变异
     利用实时荧光定量PCR扩增患者候选基因,与正常个体比较其基因组拷贝数是否发生改变。
     5、长距离PCR结合DNA测序确定断裂点
     定量PCR将两侧断裂点范围缩小到2-4kb后,以患者基因组DNA为模板,利用端粒侧重复的正向引物R2-2F及中心粒侧重复的反向引物L10-5R(outfacingprimers)行PCR扩增,PCR产物纯化后测序。
     6、构建野生型和突变型真核表达载体
     PCR扩增目的基因GDF5和HOXA13编码序列,分别与真核表达载体pLXSN和p3xFLAG-CMV7连接后转化感受态细胞,阳性克隆测序验证;以野生型载体为模板,定点诱变产生突变型载体。
     7、Western blot检测GDF5~(L373R)二聚体形成和分泌
     G418筛选稳定整合野生型和突变型GDF5的COS7细胞系,收集细胞培养上清和细胞总蛋白,经非还原SDS-PAGE电泳后检测GDF5~(L373R)二聚体形成和分泌情况。
     8、双萤光素酶报告基因检测系统检测HOXA13~(V375F)对EphA7基因的转录激活能力
     将野生型和突变型HOXA13真核表达载体分别与报告基因pGL3-EphA7及内参基因pRL-CMV共转染C3H10 T1/2细胞,计算萤光素酶比活性。
     9、染色质免疫共沉淀检测HOXA13~(V375F)对下游靶基因启动子区的结合能力
     将野生型和突变型HOXA13真核表达载体分别转染C3H10 T1/2细胞,利用anti-Flag单克隆抗体进行染色质免疫沉淀,然后利用定量PCR检测免疫沉淀的DNA量是否有变化。
     实验结果
     1、家系资料
     根据患者的肢端畸形特征及临床表现和X光片等将收集的3个家系分别诊断为SYM1、SHFM和HFGS。
     2、单体型分析
     染色体20q11区域的微卫星标记D20S787、D20S601、D20S909和D20S914与SYM1家系畸形共分离;染色体10q24区域的微卫星标记LBXlT1、D10S1239、DactylinTAAT、Dactylin2和Dactylin3与SHFM家系畸形共分离。
     3、候选基因编码区DNA测序
     SYM1家系患者检测到GDF5基因杂合错义突变c.1118T>G(p.L373R);HFGS家系患者检测到HOXA13基因杂合错义突变c.1123G>T(p.V375F)。突变直接导致限制性片段长度多态性(restriction fragment length polymorphism,RFLP),经限制性内切酶酶切验证,家系的患者都携带突变,而家系的正常个体和50名正常无关对照个体都不携带此突变。
     4、定量PCR检测基因组拷贝数变异
     定量PCR结果表明SHFM家系患者在染色体10q24区域存在包括LBX1、BTRC、POLL、DPCD和FBXW4等五个基因在内的重复突变,DNA增加一个拷贝。
     5、长距离PCR结合DNA测序确定重排断裂点
     利用正向引物R2-2F和反向引物L10-5R行PCR扩增,SHFM家系患者的基因组都可以扩出约2000bp的特异性片段,而家系的正常个体扩增不出此片段,测序结果表明端粒侧和中心粒侧的断裂点分别在103453895bp处和102965035bp处,重复范围为488859bp,重复方式为串联重复。根据断裂点碱基信息,推测其重复机制可能为非同源末端连接(nonhomologous end joining,NHEJ)或复制叉停滞和模板转换(replication fork stalling and template switching,FoSTeS)。
     6、构建野生型和突变型真核表达载体
     测序结果表明野生型和突变型GDF5真核表达载体(pLmycGDF5~(WT)SN和pLmycGDF5~(L373R)SN)和HOXA13真核表达载体(p3xFLAG-HOXA13及p3xFLAG-HOXA13~(V375F))构建成功,无突变,阅读框正确。
     7、Western blot检测GDF5~(L373R)二聚体形成和分泌
     Western blot检测结果表明GDF5~(L373R)突变体可以二聚化并分泌至细胞外。
     8、双萤光素酶报告基因检测系统检测HOXA13~(V375F)对EphA7基因的转录激活能力
     双萤光素酶报告基因检测结果表明突变型HOXA13~(V375F)转录激活EphA7基因的能力下降至野生型的66.72%。
     9、染色质免疫共沉淀检测HOXA13~(V375F)对下游靶基因启动子区的结合能力
     定量PCR检测染色质免疫沉淀下游靶基因DNA量,结果表明与HOXA13~(V375F)突变体结合的EphA7、EphA6和Bmp2启动子及Sostdcl 3'UTR的量分别降低至野生型的65.98%、72.95%、42.89%和68.03%;与HOXA13~(V375F)突变体结合的Bmp7和Sostdcl启动子的量与野生型比较无明显差异。
     结论
     (1)SYM1家系致病基因突变为GDF5基因杂合错义突变c.1118T>G(p.L373R)。GDF5~(L373R)突变体可以二聚化并分泌至细胞外。
     (2)SHFM家系致病基因突变为染色体10q24区域包括LBX1、BTRC、POLL、DPCD和FBXW4等五个基因在内的488859bp串联重复突变。
     (3)HFGS家系致病基因突变为HOXA13基因杂合错义突变c.1123G>T(p.V375F)。HOXA13~(V375F)突变体对EphA7转录激活能力下降,对EphA7、EphA6和Bmp2启动子区及Sostdcl 3'UTR结合能力下降。
Introduction
     Congenital limb malformation(LM) is one of the most common birth defects in general population,it may affect the appearance and functional movement,even makes the individuals loss of the ability to work and selfcare.For the past few years,along with the completion of the human genome project(HGP),The identification of causatibe gene mutation about the human single gene inheritance diseases is continuously developed, and various pathopoiesis genes of LM had been identified gradually,the study data of human congenital LM not only could replenish the deficiency of animal and cell experiments,but also help to understand the process of embryonic development, Moreover,it could provide solid therotical basis for the study of human tissue engineering and medicine of gene therapy.So it is important to study the mutation identification and pathogenic mechanism in limb malformations
     The etiology can be subdivided into two general categories including environmental and genetic factors.The genetic factors refer to gene mutations and chromosomal aberrations.These LMs may present as an isolated trait or as part of a genetic syndrome.Many gene mutations and chromosomal aberrations may lead to abnormal morphogenesis thereby causing various developmental defects,such as brachydactyly(BD),ectrodactyly(ED),polydactyly(PD) and syndactyly(SD).
     Proximal symphalangism(SYM1,MIM 185800),which is characterized by brachydactyly and fusions of autopod skeletal elements and sometimes regarded as part of BDC(Brachydactyly type C,MIM 113100).SYM1 would be transmitted in antosomal dominant pattern and be caused by mutation of GDF5(growth/ differentiation factor 5,MIM 601146) or NOG(MIM 602991 ).
     Ectrodactyly,also known as split-hand/split-foot malformation(SHFM),is a congenital autopod malformation characterized by cleft of the hand and/or foot due to the absence of the central rays.It showed variable limb phenotype ranging from typical lobster-claw malformations to monodactyly.Up to now,five loci of SHFM have been identified,including SHFM1(MIM 183600),SHFM2(MIM 313350),SHFM3(MIM 600095),SHFM4(MIM 605289) and SHFM5(MIM 606708),at human chromosome regions 7q21 Xq26,10q24,.3q27 and 2q31,respectively.An about 0.5Mb large-scale DNA duplication at the SHFM3 locus and point mutations in TP63(MIM 603273) at the SHFM4 locus have been identified.
     Hand-foot-genital syndrome(HFGS,MIM 140000) is a malformation that affected the distal limbs and genitourinary.In the limbs,the abnormality is brachydactyly,delayed ossification,fusion,and shortening of the carpals and tarsals. Urinary abnormalities include ectopic ureteric orifices,vesicoureteric reflux and pelviureteric junction obstruction and can lead to chronic pyelonephritis,renal insufficiency,and renal transplant.Genital abnormalities include hypospadias in males and Mullerian duct fusion defects in females,the latter defects range from isolated longitudinal vaginal septum to double uterus with double cervix.HFGS would be transmitted in antosomal dominant pattern and be caused by mutation of Hox gene HOXA13(Homeobox A13,MIM 142959) at chromosome 7p15.
     In the present study,we recruited three Chinese families with different LMs (SYM1,SHFM and HFGS) for research.First of all,Haplotyping was performed to locate the chromosome position of pathopoiesis genes,then,we undertook DNA sequencing or quantitative PCR to identify the mutations,further,western blot, dual-luciferase reporter assay and chromatin immunoprecipitation assay were undertaken to analyze the preliminary functional characterization of the mutant genes
     Materials and methods
     1、Subject
     Family investigations were performed in the three LM Chinese families, including family medical history and pedigree,then medical examinations or X-ray examinations were performed and peripheral venous blood samples from all available family members were collected after informed consent.
     2、Haplotype analysis was performed to locate the causative genes
     Using the UCSC Genome Browser,20 perfect microsatellite markers covering five SHFM loci were selected for haplotype analysis.The PCR products of the microsatellite markers were separated by electrophoresis on denaturing polyacrylamide gel and allele fragments were detected with routine silver staining,then on the basis of individual's genotype and kinship,the haplotypes were deduced according to the Mendel's law of inheritance.
     3、DNA sequencing of the candidate gene coding sequence
     After determining the candidate gene by haplotyping,PCR was performed to amplify the exons of the gene,and then the amplicons were sequenced.
     4、Quantitative PCR was performed to detect genomic copy number variation
     Real time fluorescence quantitative PCR was performed to compare the affected individual's genomic copy number to that of control.
     5、Long range PCR coupled with DNA sequencing was performed to determine the break point of the duplication
     After minimizing the extent of the breakpoint to about 2-4kb by quantitative PCR, the proximal and distal breakpoint positions were alnplified by long range PCR by telomeric forward primer R2-2F and centromeric reverse primer L10-5R,then the amplicons were sequenced.
     6、Clone of the wild and mutant type eukaryotic expression vector
     The wild-type GDF5 or HOXA13 coding sequences were amplified by PCR and then were ligated with pLXSN vector or p3xFLAG-CMV vector,respectively,and transformed the competent cell.then the positive clones were verified by sequencing. The mutant expression vectors were cloned by site-directed mutagenesis using the wild-type vectors as templates.
     7、Western blot was performed to detect the dimerization and secretion of GDF5~(1.373R)
     COS7 cells that stable expression wild type and mutant GDF5 were obtained by G418 selection,nonreducing SDS-PAGE and immunodetection was applied to detect dimerization and secretion of GDF5(1.373R) in the transgene cell lysate and medium supernate.
     8、Using dual luciferase reporter assay to investigate the consequences of the HOXA13~(V375F) in transactivating the promoter of EphA7
     We transfected the wild-type and mutant expression vector,luciferase reporter driven by EphA7 promoter and renilla luciferase reporter into mouse C3H10T1/2 cell, relative luciferase activity was tested by luminometer.
     9、ChIp was undertook to test the binding ability of HOXA13~(V375F) to downstream target gene promoter
     Chromatin immunoprecipitation(ChIP) assay was performed using anti-Flag monoclonal antibody after transfection of the expression vectors of wild type or mutant HOXA13 into nlouse C3H10 T1/2 cell.Then quantitative PCR were perfomed to test the enrichment of downstream target gene promoter region containing HOXA13 binding site.
     Results
     1、Subject
     We performed clinical classification for the limb malformations families that had been recruited,and regarded them as SYM1.SHFM and HFGS,respectively.
     2、Haplotype analysis
     Microsatellite markers,D20S787,D20S601,D20S909 and D20S914 at chromosome 20q11 were cosegregation with malformations of SYM1 individuals;The potential haplotype shared by all affected individuals of SHFM was detected in the microsatellite markers of LBX1T1,D10S1239,DactylinTAAT,Dactylin2 and Dactylin3 at chromosome 10q24.
     3、DNA sequence of the candidate gene coding sequence
     One heterozygosis missence mutation c.1118T>G(p.L373R) in GDF5 in SYM1 family,and another heterozygosis missence mutation c.1123G>T(p.V375F) in HOXA13 in HFGS family were identified,both mutations caused restriction fragment length polymorphism(RFLP),and were confirmed by restriction analysis to cosegregate with the LM phenotypes in all affected individuals,but not detected in all unaffected individuals of the families or 50 unrelated control individuals.
     4、Quantitative PCR was performed to detect genomic copy number variation
     Results of quantitative PCR suggested that all affected individuals had an extra copy in the rearrangement region including LBX1,BTRC,POLL,DPCD and FBXW4 at chromosome 10q24 locus.
     5、Long range PCR coupled with DNA sequence was performed to determine the break point of the duplication
     The proximal and distal breakpoint positions were refined by quantitative PCR and were amplified by long range PCR using forward primer R2-2F and reverse primer L10-5R with a 2000bp production in 3 affected individuals,but no production in the normal family members.Sequence and blat analysis of the chimeric sequence localized the telomeric and the centromeric breakpoint to position 103453895bp and 102965035bp,respectively.The duplication were tandem head-to-tail in orientation region,spanning 488,859bp in length,and encompassed the entire LBXI,BTRC,POLL, DPCD and FBXW4 genes,We concluded that the rearrangement may be NHEJ (nonhomologous end joining) or a simplified FoSTeS event(replication fork stalling and template switching,FoSTeS).
     6、Clone of the wild-type and mutant eukaryotic expression vector
     The wild-type and the mutant GDF5 or HOXA13 coding sequences were cloned into the pLXSN vector or p3xFLAG-CMV vector to drive expression of the fusion proteins tagged with myc or flag,respectively.The sequence and reading frame of clone vectors were verified by sequencing.
     7、Western blot was performed to detect the dimerization and secretion of GDF5~(L373R)
     Specific band was detectable in the cell lysate and medium supernate of cells transfected with the mutant GDF5 as well as the wild-type GDF5 by western blot, indicating that the mutant proteins could be dimerizated and secreted out of cytoplasm as the wild-type one.
     8、Using dual luciferase reporter assay to investigate the consequences of the HOXA13~(V3755F) in transactivating the promoter of EphA7
     The dual luciferase reporter assay results showed that the mutant HOXA13~(V375F) impaired HOXA13's capacity to transactivate EphA 7 promoter,remaining 66.72%of the reporter activity compared to the wild-type counterpart.
     9、ChIP was undertook to test the binding ability of HOXA13~(V375F) to downstream target gene promoter
     Chromatin immunoprecipitation(ChIP) assay results indicated that mutant HOXA13~(V375F) impaired the DNA binding ability of HOXA13 at EphA7,EphA6 and Bmp2 promoters or Sostdc13'UTR,remaining 65.98%.72.95%,42.89%and 68.03%of the binding ability compared to the wild-type counterpart,respectively.No significant change was observed in theBmp 7 and Sostdcl promoters.
     Conclusion
     (1) The pathogenic mutation for SYM1 patients was a novel missence mutation in GDF5,c.1118T>G(p.L373R).The mutant protein GDF5~(L373R) could be dimerizated and secreted out of cytoplasm as the wild-type one.
     (2) The pathogenic mutation for SHFM patients was a tandem duplication spanning 488859 bp in length,and encompassed the entire LBX1,BTRC,POLL,DPCD and FBXW4 genes.
     (3) The pathogenic mutation for HFGS patients was a novel missence mutation in HOXA13,c.1123G>T(p.V375F).The mutant protein HOXA13~(V375F) impaired HOXA13's capacity to transactivate EphA7 promoter,and damaged the DNA binding ability of HOXA13 at EphA 7,EphA6 and Bmp2 promoters or Sostdc13'UTR.
引文
1 Bell J.On brachydactyly and symphalangism.In:Penrose LS.The Treasury of human inheritance.Cambridge University Press.1951;5:1-31.
    2 Temtamy SA,McKusick VA.The genetics of hand malformations.Birth Defects Orig Artic Ser.1978;14(3):301-322.
    3 Fitch N.Classification and identification of inherited brachydactylies.J Med Genet.1979;16(1):36-44.
    4 Johnson D,Kan SH,Oldridge M,et al.Missense mutations in the homeodomain of HOXD13 are associated with brachydactyly types D and E.Am J Hum Genet.2003;72(4):984-997.
    5 Gao B,Guo J,She C,et al.Mutations in IHH,encoding Indian hedgehog,cause brachydactyly type A-1.Nat Genet.2001;28(4):386-388.
    6 Lehmann K,Seemann P,Stricker S,et al.Mutations in bone morphogenetic protein receptor IB cause brachydactyly type A2.Proc Natl Acad Sci USA.2003;100(21):12277-12282.
    7 Oldridge M,Fortuna AM,Maringa M,et al.Dominant mutations in ROR2,encoding an orphan receptor tyrosine kinase,cause brachydactyly type B.Nat Genet.2000;24(3):275-278.
    8 Everman DB,Bartels CF,Yang Y,et al.The mutational spectrum of brachydactyly type C.Am J Med Genet.2002;112(3):291-296.
    9 Wang X,Xiao F,Yang Q,et al.A novel mutation in GDF5 causes autosomal dominant symphalangism in two Chinese families.Am J Med Genet A.2006;140A (17):1846-1853.
    10 Yang W,Cao L,Liu W,et al.Novel point mutations in GDF5 associated with two distinct limb malformations in Chinese:brachydactyly type C and proximal symphalangism.J Hum Genet.2008;53(4):368-374.
    11 Kosaki K,Sato S,Hasegawa T,et al.Premature ovarian failure in a female with proximal symphalangism and Noggin mutation.Fertil Steril.2004;81(4):1137-1139.
    12 Tsuji A,Sakurai K,Kiyokage E,et al.Secretory proprotein convertases PACE4 and PC6A are heparin-binding proteins which are localized in the extracellular matrix.Potential role of PACE4 in the activation of proproteins in the extracellular matrix.Biochim Biophys Acta.2003;1645(1):95-104.
    13 Upton PD,Long L,Trembath RC,et al.Functional characterization of bone morphogenetic protein binding sites and Smad1/5 activation in human vascular cells.Mol Pharmacol.2008;73(2):539-552.
    14 Chen X,Zankl A,Niroomand F,Liu Z,et al.Upregulation of ID protein by growth and differentiation factor 5 (GDF5) through a smad-dependent and MAPK-independent pathway in HUVSMC.J Mol Cell Cardiol.2006;41(1):26-33.
    15 Schreuder H,Liesum A,Pohl J,et al.Crystal structure of recombinant human growth and differentiation factor 5:evidence for interaction of the type Ⅰ and type Ⅱ receptor-binding sites.Biochem Biophys Res Commun.2005;329(3):1076-1086.
    16 Nakamura K,Shirai T,Morishita S,et al.p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells.Exp Cell Res.1999;250(2):351-363.
    17 Lehmann K,Seemann P,Boergermann J,et.al.A novel R486Q mutation in BMPRIB resulting in either a brachydactyly type C/symphalangism-like phenotype or brachydactyly type A2.Eur J Hum Genet.2006;14(12):1248-1254.
    18 Douzgou S,Lehmann K,Mingarelli R,et al.Compound heterozygosity for GDF5 in Du Pan type chondrodysplasia.Am J Med Genet A.2008;146A (16):2116-2121.
    19 Faiyaz-U1-Haque M,Faqeih EA,Al-Zaidan Ⅱ,et al.Grebe-type chondrodysplasia:a novel missense mutation in a conserved cysteine of the growth differentiation factor 5.J Bone Miner Metab.2008;26(6):648-652.
    20 Ploger F,Seemann P,Schmidt-von Kegler M,et al.Brachydactyly type A2 associated with a defect in proGDF5 processing.Hum Mol Genet.2008;17(9):1222-1233.
    21 Seemann P,Schwappacher R,Kjaer KW,et al.Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2.J Clin Invest.2005;115(9):2373-2381.
    22 Southam L,Rodriguez-Lopez J,Wilkins JM,et al.An SNP in the 5'-UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage.Hum Mol Genet.2007;16(18):2226-2232.
    23 Miyamoto Y,Mabuchi A,Shi D,et al.A functional polymorphism in the 5'UTR of GDF5 is associated with susceptibility to osteoarthritis.Nat Genet.2007;39(4):529-533.
    24 Zimmerman LB,De Jesus-Escobar JM,Harland RM.The Spermann organizer signal noggin binds and inactivates bone morphogenetic protein 4.Cell.1996;86(4):599-606.
    25 Groppe,J,Greenwald J,Wiater E,et al.Structural basis of BMP signalling inhibition by the cystine knot protein Noggin.Nature.2002;420(6916):636-642.
    26 Warren SM,Brunet LJ,Harland RM,et al.The BMP antagonist noggin regulates cranial suture fusion.Nature.2003;422(6932):625-629.
    27 Kavanagh E,Church VL,Osborne AC,et al.Differential Regulation of GDF-5 and FGF-2/4 by Immobilisation In Ovo Exposes Distinct Roles in Joint Formation.Dev Dyn.2006;235(3):826-834.
    28 Storm EE,Kingsley DM.GDF5 coordinates bone and joint formation during digit development.Dev Biol.1999;209(1):11-27.
    29 Tsumaki N,Tanaka K,Arikawa-Hirasawa E,et al.Role of CDMP-1 in skeletal morphogenesis:promotion of mesenchymal cell recruitment and chondrocyte differentiation.J Cell Biol.1999;144(1):161-173.
    30 Garcia-Ortiz JE,Banda-Espinoza F,Zenteno JC,et al.Split hand malformation,hypospadias,microphthalmia,distinctive face and short stature in two brothers suggest a new syndrome.Am J Med Genet A.2005;135(1):21-27.
    31 Fukushima K,Nagai K,Tsukada H,et al.Deletion mapping of split hand/split foot malformation with hearing impairment:a case report.Int J Pediatr Otorhinolaryngol.2003;67(10):1127-1132.
    32 Elliott AM,Evans JA.The association of split hand foot malformation (SHFM) and congenital heart defects.Birth Defects Res A Clin Mol Teratol.2008;82(6):425-434.
    33 van Bokhoven H,Hamel BC,Bamshad M,et al.p63 Gene mutations in eec syndrome,limb-mammary syndrome,and isolated split hand-split foot malformation suggest a genotype-phenotype correlation.Am J Hum Genet.2001;69(3):481-492.
    34 Gill D,Oktenli C.Evidence for autoaomal recessive inheritance of split hand/split foot malformation:a report of nine cases.Clin Dysymorphol.2002;11(3):183-186.
    35 Zlotogora J.On the inheritance of the split hand/split foot malformation.Am J Med Genet.1994;53(1):29-32.
    36 Scherer SW,Poorkaj P.Allen T,et al.Fine mapping of the autosomal dominant split hand/split foot locus on chromosome 7,band q21.3-q22.1.Am J Hum Genet.1994;55(1):12-20.
    37 Crackower MA,Scherer SW,Rommens JM,et al.Characterization of the split hand/split foot malformation locus SHFM1 at 7q21.3-q22.1 and analysis of a candidate gene for its expression during limb development.Hum Mol Genet.1996;5(5):571-579.
    38 Robledo RF,Rajan L,Li X,et al.The D1x5 and D1x6 homeobox genes are essential for craniofacial,axial,and appendicular skeletal development.Genes Dev.2002;16(9):1089-1101.
    39 Merlo GR,Paleari L,Mantero S,et al.Mouse model of split hand/foot malformation type Ⅰ.Genesis.2002;33(2):97-101.
    40 Faiyaz-U1-Haque M,Zaidi SH,King LM,et al.Fine mapping of the X-linked split-hand/split-foot malformation (SHFM2) locus to a 5.1-Mb region on Xq26.3 and analysis of candidate genes.Clin Genet.2005;67(1):93-97.
    41 de Mollerat XJ,Gurrieri F,Morgan CT,et al.A genomic rearrangement resulting in a tandem duplication is associated with split hand-split foot malformation 3 (SHFM3) at 10q24.Hum Mol Genet.2003;12(16):1959-1971.
    42 Ozen RS,Baysal BE,Devlin B,et al.Fine mapping of the split-hand/split-foot locus (SHFM3) at 10q24:Evidence for anticipation and segregation distortion.Am J Hum Genet.1999;64(6):1646-1654.
    43 Roscioli T,Taylor PJ,Bohlken A,et al.The 10q24-linked split hand/split foot syndrome (SI1FM3):narrowing of the critical region and confirmation of the clinical phenotype.Am J Med Genet A.2004;124A(2):136-141.
    44 Kano H,Kurosawa K,Horii E,et al.Genomic rearrangement at 10q24 in non-syndromic split-hand/split-foot malformation.Hum Genet.2005;118(3-4):477-483.
    45 Del Campo M,Jones MC,Veraksa AN,et al.Monodactylous limbs and abnormal genitalia are associated with hemizygosity for the human 2q31 region that includes the HOXD cluster..Am J Hum Genet.1999;65(1):104-110.
    46 Goodman FR,Majewski F,Coll ins AL,et al.A 117-kb microdeletion removing HOXD9-HOXD 13 and FVX2 causes synpolydactyly.Am J Hum Genet.2002;70(2):547-555.
    47 Elliott AM,Reed MH,Evans JA.Triphalangeal thumb in association with split hand/foot:a phenotypic marker for S11FM3? Birth Defects Res A Clin Mol Teratol.2007;79(1):58-61.
    48 Elliott AM,Evans JA.Genotype-phenotype correlations in mapped split hand foot malformation (SHFM) Patients.Am J Med Genet A.2006;140(13):1419-1427.
    49 Elliott AM,Reed MH,Roscioli T,et al.Discrepancies in upper and lower limb patterning in split hand foot malformation.Clin Genet.2005;68(5):408-423.
    50 International League Against Epilepsy,proposal for revised classification of epilepsies and epileptic syndromes.Commission on Classification and Terminology of the International League Against Epilepsy.Epilepsia.1989;30(4):389-399.
    51 Berdon-Zapata V,Granillo-Alvarez M,Valdes-Flores M,et al.p63 gene analysis in Mexican patients with syndromic and non-syndromic ectrodactyly.J Orthop Res.2004;22(1):1-5.
    52 Lyle R,Radhakrishna U,Blouin JL,et al.Split-hand/split-foot malformation 3 (SHFM3) at 10q24,development of rapid diagnostic methods and gene expression from the region.Am J Med Genet A.2006;140(13):1384-1395.
    53 Feuk L,Carson AR,Scherer SW.Structural variation in the human genome.Nat Rev Genet.2006;7(2):85-97.
    54 Feuk L,Marshall CR,Wintle RF,et al.Structural variants:changing the landscape of chromosomes and design of disease studies.Hum Mol Genet.2006;15:R57-66.
    55 Sebat J,Lakshmi B,Troge J,et al.Large-scale copy number polymorphism in the human genome.Science.2004;305(5683):525-528.
    56 Lieber MR,Ma Y,Pannicke U,et al.Mechanism and regulation of human non-homologous DNA end-joining.Nat Rev Mol Cell Biol.2003;4(9):712-720.
    57 Woodward KJ,Cundall M,Sperle K,et al.Heterogeneous duplications in patients with Pelizaeus-Merzbacher disease suggest a mechanism of coupled homologous and nonhomologous recombination.Am J hum Genet 2005;77(6):966-987.
    58 Lee JA,Inoue K,Cheung SW,et al.Role of genomic architecture in PLPl duplication causing Pelizaeus-Merzbacher disease.Hum Mol Genet 2006;15(14):2250-2265.
    59 Lee JA,Carvalho CM,Lupski JR.A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders.Cell.2007;131(7):1235-1247.
    60 Sidow A,Bulotsky MS,Kerrebrock AW,et al.A novel member of the F-box/WD40 gene family,encoding dactyl in,is disrupted in the mouse dactylaplasia mutant.Nat Genet.1999;23(1):104-107.
    61 Johnson KR,Lane PW,Ward-Bailey P,et al.Mapping the mouse dactylaplasia mutation,Dac,and a gene that controls its expression,mdac.Genomics.1995;29(2):457-464.
    62 Basel D,DePaepe A,Kilpatrick MW,et al.Split hand foot malformation is associated with a reduced level of Dactyl in gene expression.Clin Genet.2003;64(4):350-354.
    63 Kano H,Kurahashi H,Toda T,Genetically regulated epigenetic transcriptional activation of retrotransposon insertion confers mouse dactylaplasia phenotype.Proc Natl Acad Sci USA.2007;104(48):19034-19039.
    64 Friedli M,Nikolaev S,Lyle R,et al.Characterization of mouse Dactylaplasia mutations:a model for human ectrodactyly S11FM3.Mamm Genome.2008;19(4):272-278.
    65 Sidow A,Bulotsky MS,Kerrebrock AW,et al.A novel member of the F-box/WD40 gene family,encoding dactylin,is disrupted in the mouse dactylaplasia mutant.Nat Genet.1999;23(1):104-107.
    66 Bushdid PB,Brantley DM,Yull FE,et al.Inhibition of NF-kappaB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis.Nature.1998;392(6676):615-618.
    67 Read MA,Brownell JE,Gladysheva TB,et al.Nedd8 modi fication of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha.Mol Cell Biol.2000;20(7):2326-2333.
    68 Yang Y.Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis.Birth Defects Res Part C Embryo Today.2003;69(4):305-317.
    69 Campos VE,Du M,Li Y.Increased seizure susceptibi 1 i ty and cortical malformation in beta-catenin mutant mice.Biochem Biophys Res Commun 2004;320:606-614.
    70 Madsen TM,Newton SS,Eaton ME,Russell DS,Duman RS.Chronic electroconvulsive seizure up-regulates beta-catenin expression in rat hippocampus:role in adult neurogenesis.Biol Psychiatry 2003;54:1006-1014.
    71 Mortlock DP,lnnis JW.Mutation of HOXA13 in hand-foot-genital syndrome.Nat Genet.1997:15(2):179-180.
    72 Krumlauf R.ltox genes in vertebrate development.Cell.1994:78(2):191-201.
    73 Yokouchi Y,Nakazato S,Yamamoto M,et al.Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds.Genes Dev.1995:9(20):2509-2522.
    74 Morgan BA,Izpisua-Belmonte JC,Duboule D,et al.Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations.Nature.1992;358(6383):236-239.
    75 Golf DJ,Tabin CJ.Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth.Development.1997:124(3):627-636.
    76 Goodman FR.Limb malformations and the human HOX genes.Am J Med Genet.2002:112(3):256-265.
    77 Debeer P,Bacchelli C,Scambler PJ,et al.Severe digital abnormalities in a patient heterozygous for both a novel missense mutation in HOXD13 and a polyalanine tract expansion in HOXA13.J Ned Genet.2002:39(11):852-856.
    78 Innis JW,Goodman FR,Bacchelli C,et al.A HOXA13 allele with a missense mutation in the homeobox and a dinucleotide deletion in the promoter underlies Guttmacher syndrome,Hum Murat.2002:19(5):573-574
    79 Fris(?)n L,Lagerstedt K,Tapper-Persson M,et al.A novel duplication in the HOXA13gene in a family with atypical hand-foot-genital syndrome.J Med Genet.2003;40(4):e49.
    80 Wolpert L.Vertebrate limb development and malformations.Pediatr Res.1999;46(3):247-254.
    81 Zdkdny j,Duboule D.Hox genes in digit development and evolution.Cell Tissue Res.1999;296(1):19-25.
    82 Zhao X,Sun M,Zhao J,et al.Mutations in HOXD13 underlie syndactyly type Ⅴ and a novel brachydactyly-syndactyly syndrome.Am J Hum Genet.2007;80(2):361-371.
    83 Goodman FR,Bacchelli C,Brady AF,et al.Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome.Am J Hum Genet.2000;67(1):197-202.
    84 Innis JW,Mortlock D,Chen Z,et al.Polyalanine expansion in HOXA13:three new affected families and the molecular consequences in a mouse model.Hum Mol Genet.2004;13(22):2841-2851.
    85 Utsch B,McCabe CD,Galbraith K,et al.Molecular characterization of HOXA13 polyalanine expansion proteins in hand-foot-genital syndrome.Am J Med Genet A.2007;143A(24):3161-3168.
    86 Billeter M.Homeodomain-type DNA recognition.Prog Biophys Mol Biol.1996:66(3):211-225.
    87 Gehring WJ,Qian YQ,BilleterM,et al.Homeodomain-DNA recognition.Cell.1994;78(2):211-223.
    88 Fraenkel E,Pabo CO.Comparison of X-ray and NMR structures for the Antennapedia homeodomain-DNA complex.Nat Struct Biol.1998;5(8):692-697.
    89 Hanes SD,Brent R.DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9.Cell.1989;57(7):1275-1283.
    90 Treisman J,Gonczy P,Vashishtha M,et al.A single amino acid can determine the DNA binding specificity of homeodomain proteins.Cell.1989:59(3):553-562.
    91 Schier AF,Gehring WJ.Direct homeodomain-DNA interaction in the autoregulation of the fushi tarazu gene.Nature.1992;356 (6372):804-807.
    92 Knosp WM,Scott V,B(a|¨)chinger HP,et al.HOXA13 regulates the expression of bone morphogenetic proteins 2 and 7 to control distal limb morphogenesis.Development.2004;131(18):4581-4592.
    93 Compagni A,Logan M,Klein R,et al.Control of skeletal patterning by ephrinB1-EphB interactions.Dev Cell.2003;5(2):217-230.
    94 Dolle P,Dierich A,LeMeur M,et al.Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs.Cell.1993;75(3):431-441.
    95 Davis AP,Capecchi MR.A mutational analysis of the 5' HoxD genes:dissection of genetic interactions during limb development in the mouse.Development.1996;122(4):1175-1185.
    96 Fromental-Ramain C,Warot X,Messadecq N,et al.lloxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod.Development.1996;122(10):2997-3011.
    97 Salsi V,Zappavigna V.Hoxd13 and Hoxa13 directly control the expression of the EphA7 Ephrin tyrosine kinase receptor in developing limbs.J Biol Chem.2006;281(4):1992-1999.
    98 Johnson KR,Sweet 110,Donahue LR,et al.A new spontaneous mouse mutation of Hoxd13 with a polyalanine expansion and phenotype similar to human synpolydactyly.Hum Mol Genet.1998;7(6):1033-1038.
    99 Muragaki Y,Mundlos S,Upton J,et al.Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13.Science.1996;272 (5261):548-551.
    100 Goodman F,Giovannucci-Uziell i ML,Hall C,et al.Deletions in 110XD13 segregate with an identical,novel foot malformation in two unrelated families.Am J Hum Genet.1998;63(4):992-1000.
    101 Wada N,Tanaka H,Ide H,et al.Ephrin~A2 regulates position-specific cell affinity and is involved in cartilage morphogenesis in the chick limb bud.Dev Biol,2003;264(2):550-563.
    102 Stadler HS,Higgins KM,Capecchi MR.Loss of Eph-receptor expression correlates with loss of cell adhesion and chondrogenic capacity in Hoxa13 mutant limbs.Development.2001;128(21):4177-4188.
    103 Shaut CA,Saneyoshi C,Morgan EA,et al.I10XA13 Directly Regulates EphA6 and EphA7 Expression in the Genital Tubercle Vascular Endothelia.Dev Dyn.2007;236(4):951-960.
    104 Knosp WM,Saneyoshi C,Shou S,et al.Elucidation,quantitative refinement,and in vivo utilization of the HOXA13 DNA binding site.J Biol Chem.2007;282(9):6843-6853.
    1 Kavanagh E,Church VL,Osborne AC,et al.Differential Regulation of GDF-5 and FGF-2/4 by Immobilisation In Ovo Exposes Distinct Roles in Joint Formation.Dev Dyn.2006;235(3):826-834.
    2 Thomas JT,Prakash D,Weih K,et al.CDMP1/GDF5 has specific processing requirements that restrict its action to joint surfaces.J Biol Chem.2006;281(36):26725-26733.
    3 Storm EE,Kingsley DM.GDF5 coordinates bone and joint formation during digit development.Dev Biol.1999:209(1):11-27.
    Tsumaki N,Tanaka if,Arikawa-Hirasawa E,et al.Role of CDMP-1 in skeletal morphogenesis:promotion of mesenchymal cell recruitment and chondrocyte differentiation.J Cell Biol.1999:144(1):161-173.
    5 Francis-West PH,Abdelfattah A,Chen P,et al.Mechanisms of GDF-5 action during skeletal development.Development.1999:126(6):1305-1315.
    6 Yoshimoto T,Yamamoto M,Kadomatsu H,et al.Recombinant human growth /differentiation factor-5(rhGDF-5) induced bone formation in murine calvariae.J Periodont Res.2006;41(2):140-147.
    7 Fandel TM,Bella AJ,Tantiwongse if,et al.The eftcot of intracavernosal growth differentiation factor-5 therapy in a rat model of cavernosal nerve injury.BJU Int.2006;98(3):632-636.
    8 Mülller A,Tal R,Donohue JF,et al.The effect of hyperbaric oxygen therapy on erectile function recovery in a rat cavernous nerve injury model.J Sex Med.2008;5(3):562-570.
    9 Everman DB,Bartels CF,Yang Y,et al.The mutational spectrum of brachydactyly type C.Am J Med Genet.2002;112(3):291-296.
    10 Faiyaz-Ul-Haque M,Ahmad W,et al.Mutation in the cartilagederived morphogenetic protein-1 (CDMP1) gene in a kindred affected with fibular hypoplasia and complex brachydactyly (DuPan syndrome).Clin Genet.2002;61(6):454-458.
    11 Schwabe GC,Turkmen S,Leschik G,et al.Brachydactyly Type C Caused by a Homozygous Missense Mutation in the Prodomain of CDMPl.Am J Med Genet.2004;124A(4):356-363.
    12 Yang W,Cao L,Liu W,et al.Novel point mutations in GDF5 associated with two distinct limb malformations in Chinese:brachydactyly type C and proximal symphalangism.J Hum Genet.2008;53(4):368-374.
    13 Seemann P,Schwappacher R,Kjaer KW,et al.Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2.J Clin Invest.2005;115(9):2373-2381.
    14 Wang X,Xiao F,Yang Q,et al.A novel mutation in GDF5 causes autosomal dominant symphalangism in two Chinese families.Am J Med Genet A.2006;140A (17):1846-1853.
    15 Plett SK,Berdon WE,Cowles RA,et al.Cushing proximal symphalangism and the NOG and GDF5 genes.Pediatric radiology.2008;38(2):209-215.
    16 Kjaer KW,Eiberg H,Hansen L,et al.A mutation in the receptor binding site of GDF5 causes Mohr-Wriedt brachydactyly type A2.J Med Genet.2006;43(3):225-231.
    17 Ploger F,Seemann P,Schmidt-von Kegler M,et al.Brachydactyly Type A2 Associated with a Defect in proGDF5 Processing.Hum Mol Genet.2008;17(9):1222-1233.
    18 Faiyaz-Ul-Haque M,Faqeih EA,Al-Zaidan H,et al.Grebe-type chondrodysplasia:a novel missense mutation in a conserved cysteine of the growth differentiation factor 5.J Bone Miner Metab.2008;26(6):648-652.
    19 Dawson K,Seeman P,Sebald E,et al.GDF5 is a second locus for multiple-synostosis syndrome.Am J Hum Genet.2006;78(4):708-712.
    20 Southam L,Rodriguez-Lopez J,Wilkins JM,et al.An SNP in the 5'-UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage.Hum Mol Genet.2007;16(18):2226-2232.
    21 Miyamoto Y,Mabuchi A,Shi D,et al.A functional polymorphism in the 5' UTR of GDF5 is associated with susceptibility to osteoarthritis.Nat Genet.2007;39(4):529-533.
    22 Schreuder H,Liesum A,Pohl J,et al.Crystal structure of recombinant human growth and differentiation factor 5:Evidence for interaction of the type Ⅰ and type Ⅱ receptor-binding sites.Biochem Biophys Res Commun.2005;329(3):1076-1086.
    23 Nickel J,Kotzsch A,Sebald W,et al.Residue of GDF-5 Defines Binding Specificity to BMP Receptor IB.J Mol Biol.2005;349(5):933-947.
    24 Xu D,Gechtman Z,Hughes A,et al.Potential involvement of BMP receptor type IB activation in a synergistic effect of chondrogenic promotion between rhTGFb3 and rhGDF5 or rhBMP7 in human mesenchymal stem cells.Growth Factors.2006;24(4):268-278.
    25 Upton PD,Long L,Trembath RC,et al.Functional characterization of bone morphogenetic protein binding sites and Smad1/5 activation in human vascular cells.Mol Pharmacol.2008;73(2):539-552.
    26 Nishitoh H,Ichijo H,Kimura M,et al.Identification of Type Ⅰ and Type Ⅱ Serine/Threonine Kinase Receptors for Growth/Differentiation Factor-5.J Biol Chem.1996;271(35):21345-21352.
    27 Baur ST,Mai JJ,Dymecki SM.Combinatorial signaling through BMP receptor IB and GDF5:shaping of the distal mouse limb and the genetics of distal limb diversity.Development.2000;127(3):605-619.
    28 Lehmann K,Seemann P,Boergermann J,et al.A novel R486Q mutation in BMPRIB resulting in either a brachydactyly type C/symphalangism-like phenotype or brachydactyly type A2.Eur j Hum Genet.2006;14(12):1248-1254.
    29 Sammar M,Stricker S,Schwabe GC,et al.Modulation of GDF5/BRI-b signalling through interaction with the tyrosine kinase receptor Ror2.Genes Cells.2004;9(12):1227-1238.
    30 Shen FH,Zeng Q,Lv Q,et al.Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix.Spine J.2006;6(6):615-623.
    31 Dines JS,Weber L,Razzano P,et al.The effect of growth differentiation factor-5-coated sutures on tendon repai r i n a rat model.J Shoulder Elbow Surg.2007;16(5 Suppl):S215-221.
    32 Jenner JM,van Eijk F,Saris DB,et al.Effect of transforming growth factor-beta and growth differentiation factor-5 on proliferation and matrix production by human bone marrow stromal cells cultured on braided poly lactic-co-glycolic acid scaffolds for ligament tissue engineering.Tissue Eng.2007;13(7):1573-1582.
    33 Basile P,Dadali T,Jacobson J,et al.Freeze-dried tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery.Mol Ther.2008;16(3):466-473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700