带轮旋压成形新工艺的有限元模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋压成形可旋制整体无缝回转体零件,具有变形条件好、产品性能优、尺寸公差小、材料利用率高、产品类别广泛等优点,广泛应用于航空、船舶、军工、民用等金属精密加工技术领域。本文结合实际生产过程中遇到的问题,研究了空调离合器带轮的铲旋旋压成形和宽平皮带轮的旋压成形,基于有限元模拟技术,实现了产品工艺的改进和工艺参数的优化,有效地提高了产品质量。
     空调离合器带轮是带法兰盘的双筒形零件,是汽车空调离合器的重要零件。若采用传统的锻造毛坯经机械加工和焊接方法来生产,不但工序复杂,工时多,而且材料利用率低,成本高。一种新的旋压方法,直接从平板毛坯上旋制出双筒形的铲旋旋压技术获得成功应用。本文首先采用DEFORM软件建立了符合实际生产的铲旋旋压有限元模型,并对模拟结果进行了试验验证;再通过正交试验,以降低旋轮所受成形载荷为目标,对工艺参数进行优化;最后利用优化结果进行模拟,旋轮所受成形载荷明显下降,得到了满意的效果。研究表明,在保证工件成形质量和生产率的前提下,较大的旋轮转速和进给速度、合理的旋轮圆角半径和旋轮直径有利于降低成形载荷,保护旋轮。
     平带轮运转平稳,传动可靠,一般用于高速传动中。为了防止在启动和运转中皮带打滑脱出,常常需加工轮缘度。本文研究的宽平皮带轮,不需要加工轮缘度,只是用两端的坡度来卡住皮带,保证传动运行。在宽平皮带轮旋压成形过程中,采用劈开式预旋轮代替挤压式预旋轮的新工艺,减小成形载荷,有利于带轮成形并延长了旋轮使用寿命。为了验证新工艺的可行性,分别对宽平皮带轮旋压成形两种工艺进行有限元模拟,提取应力场、应变场、行程与载荷曲线等模拟结果进行对比,进一步证明了新工艺的优点。分析了工艺参数对宽平皮带轮旋压成形的影响,为生产调试提供参考。研究表明,采用宽平皮带轮成形新工艺,降低了成形载荷,提高了生产效率。
     空调离合器带轮铲旋旋压和宽平皮带轮特种旋压两种旋压工艺方法的研究结论对实际生产都有一定的指导作用。
Spinning easily manufactures the product of whole seamless hollow rotary body. It has many advantages, including good deformation conditions, excellent product performance, precise dimensional tolerances, high material utilization ratio, great product categories and so on. It has been widely application in aviation, shipping, military, civil and other metal precision forming technology departments. This paper combined with the actual production process problems. Air-conditioning clutch pulley and wide flat belt pulley's spinning are regarded as the main research contents. Based on the FEM simulation technology to modification product processes, optimize process parameters and effectively improve the product quality.
     Air-conditioning clutch pulley is a double-barrel-shaped part with a flange, is an important part of air-conditioning clutches. If using the traditional forging blank by machining and welding to produce, it'll not only cost complex process and more working hours, but also bring low material utilization and high cost. After repeated trials the researchers developed a new type of spinning method:shovel spinning, directly from the flat blank for a double-barrel-shaped. First of all, using DEFORM software established the shovel spinning FEM model and verified simulation results through testing. Then, the value of forming load as the target use orthogonal test to optimize the process parameters. Finally, simulating the results of optimization, the value of forming load decrease and get satisfactory results. Study shows that in ensuring the quality and productivity, larger speed and feed rate, reasonable fillet radius and roller diameter to reduce the value of forming load and to protect the roller.
     Flat pulley is generally used for high-speed transmission because of stable operation and reliable transmission. In order to prevent belt slippage in start-up and operation, usually need to process rim convexity. In this paper, a wide flat pulley, without processing rim convexity, but stuck with the belt at both ends of the slope to ensure the drive is running. In the process of the pulley's spinning forming, the use of split-type pre-spinning wheel instead of squeeze-type pre-spinning wheel, reducing the forming load and is conducive to forming pulley and extends service life of the spinning wheel. To verify the feasibility of new technology, respectively simulated two different spinning processes, achieved the stress field, the strain filed, the load curve with stroke and so on. These simulation results were compared, further to demonstrate the advantages of new technology. Analysis of the process parameters on the wide flat pulley spinning, provide a reference for the produce debugging. The study shows that using the new technology can reduce the forming load and improve production efficiency.
     Shovel spinning of air-conditioning clutch pulley and flat belt pulley spinning, research findings of these two kinds of spinning technology have a certain amount of guidance on actual production.
引文
[1]周贤宾.塑性加工技术的发展——更精、更省、更净.中国机械工程,2003,14(1): 85-87
    [2]董湘怀,黄树槐,李志刚等.塑性加工技术的发展趋势.中国机械工程,2000,11(9):1074-1077
    [3]李德群.塑性加工技术发展状况及趋势.航空制造技术,2000(3):27-30
    [4]汪大年.金属塑性成形原理.第一版.高等教育出版社,1988:1-245
    [5]日本塑性加工学会.旋压成形技术.陈敬之译.北京:机械工业出版社,1988
    [6]Atsushi BAB A. Current status and view of high precision spinning. JSTP, 1988(29):13-20
    [7]徐恒秋,樊桂森等.旋压设备及工艺技术的应用与发展.新技术新工艺,2007(2):5-8
    [8]陈芳雷,张治民等.旋压技术在皮带轮中的应用.工艺与检测,2007
    [9]王忠清.钣制旋压皮带轮在汽车行业的发展及应用.汽车与配件,1998(25):18-19
    [10]陈适先,贾文铎等.强力旋压工艺与设备.国防工业出版社,1988
    [11]王成和,刘克璋等.旋压技术.机械工业出版社,1986
    [12]赵云豪,李彦利.旋压技术与应用.北京:机械工业出版社,2007
    [13]党民,叶喜山等.国内旋压技术的现状和发展.机械工人:热加工,2003,(4):44-45
    [14]D. Pollitt. Automatic spinning-a revolution in the making. Sheet Metal Ind, 1981(7):515-522
    [15]D. Pollitt. Automatic spinning-a production technique. Sheet Metal Ind, 1982(6):518-526
    [16]Matsunok. Recent research and development in metal forming in Japan. Journal of Materials Processing Technology,1997(6):1-3
    [17]夏琴香.三维非轴对称零件旋压成型工艺与设备.新技术新工艺,2003,(12): 33-35
    [18]张顺福,孙存福.国产旋压设备的发展和应用.金属成型工艺,2003,21(1):1-4
    [19]肖作义.筒形件强力旋压新技术——浮动芯模法.锻压技术,1999,(5):34-35
    [20]冯万林,夏琴香等.选压力的测试方法及试验研究.特种成形,2005,(4): 88-92
    [21]卫原平,王轶为.工艺参数对筒形件强力旋压过程的影响.模具技术,2000,(4):12-18
    [22]赵云豪,张顺福.国内旋压技术发展的回顾与展望.第七届全国旋压学术年会论文集,1999:419-425
    [23]M.Hayama, A Study on Spinnability of Aluminum and Its Alloys, Proceeding of 1st International Conference on Romp forming, London,1979:207-212
    [24]康达明,蒋德明.2091AL-Li合金的普旋实验研究.第五届冲压年会论文集,1994:83-88
    [25]赵云豪.有色金属旋压成形分析.金属成形工艺,1992(6):250-253
    [26]李继贞,李志强.国产旋压设备最新动态.机械工人:热加工,2002(8):61-62
    [27]姜俊侠,刘白等.离合器壳体消失模模具设计与制造.铸造,2009,58(10):1070-1072
    [28]朱春东,张满春等.基于有限元法优化离合器毂体壳模锻工艺.热加工工艺,2009(17):87-89,93
    [29]彭树杰,张焕莲等.汽车离合器盘毂燕尾槽的冲挤工艺研究.汽车工艺与材料,2009(2):19-21
    [30]Vermillion. Re, Simpson. Hm. Spinning a pulley with a vibrating cord-a marvel. American Journal of Physics.1989(6):540-542
    [31]王忠清,杨东法.钣制旋压皮带轮在汽车行业的发展及其应用.数控机床市场,2000(2):130-132
    [32]刘今年.汽车发动机V型皮带轮的旋压工艺.交通科技与经济,2006(4):56-58
    [33]肖海波.6V87Q-1308025C皮带轮旋压工艺的研究.金属成形工艺,2003(4):56-57
    [34]欧阳瑞丽.钣制旋压V带轮成形原理与工艺分析.广西机械,2001(3):28-30
    [35]余秋华,王显安等.两级同轴多楔式高精度旋压皮带轮的制造工艺.汽车与配件,2009(28):21-23
    [36]陈晓红,罗宁等.旋压皮带轮芯模退料装置的改进.湖北汽车工业学院学报,2006,20(2):20-22
    [37]雷娜,陈瑞珍.折叠式旋压皮带轮工艺分析.汽车科技,1999(4):26-28
    [38]周照耀,吕炎等.筒形件反旋工艺塑性流动刚塑性有限元分析[J].材料科学与工艺,1994(2):79-84
    [39]马飞,杨合等.工艺参数对平板毛坯普旋成形的影响规律.机械科学与技术,2007(3):309-313
    [40]许沂,单德彬.筒形件强力旋压接触区轮廓的数值计算方法.金属成形工艺,1997,17(2):10-11
    [41]程秀全,夏琴香等.无芯模缩径旋压力的有限元数值模拟及试验研究.塑性工程学报,2007,14(5):38-42,47
    [42]陈嘉,万敏等.多道次普通旋压渐开线轨迹设计及其在数值模拟中的应用.塑性工程学报,2008,15(6):53-57
    [43]张涛,刘智冲等.旋压成形带内筋筒形件的工艺研究及数值模拟.机械工程学报,2007,43(4):109-112,118
    [44]徐春,张弛,阳辉.金属塑性成形理论.北京:冶金工业出版社,2009
    [45]江雄心,万平荣等.金属体积成形过程三维刚塑性有限元模拟系统.南昌大学学报:工科版,2002,24(2):5-8
    [46]谢水生,李雷.金属塑性成形的有限元模拟技术及应用.北京:科学出版社,2008
    [47]谢玲玲.连续挤压扩展成形金属流动分析与模具设计.大连交通大学硕士学位论文,2005
    [48]戚春晓.实心钢制三角皮带轮棍轧成形工艺有限元模拟研究.广东工业大学硕士学位论文,2007
    [49]刘建生,陈惠琴等.金属塑性加工有限元模拟技术与应用.北京:冶金工业出版社,2003
    [50]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟.北京:冶金工业出版社,1997
    [51]林新波.DEFORM-2D和DEFORM-3D CAE软件在模拟金属塑性变形过程中的应用[J].模具技术.2000,No.3:75-80
    [52]张涛,阎洪涛等.CAE技术在旋压成形中的应用.锻造与冲压,2005(10):76-77
    [53]张丽辉.大模数搞台圆柱直齿轮温精密成形技术研究.合肥工业大学硕士学位论文,2005
    [54]Scientific Forming Technologies Corporation. DEFORM Design Environment for forming, DEFORM-3D Version 3.0 Users Manual.1999(1):1-150
    [55]姜京伟,程阔.有限元网格划分剖析.山西交通科技,2007(5):71-73
    [56]唐凯.多道次拉旋及皮带轮旋压成形工艺的有限元模拟研究.合肥工业大学硕士学位论文,2009
    [57]王群,贺毅强等.筒形变薄旋压成形的研究.锻压技术,2005:43-47
    [58]丁志勇.中厚板轧机轧辊轴向力及主传动扭振分析.轧钢,2009(4):32-35
    [59]赵选民.试验设计方法.北京:科学出版社,2006
    [60]刘振学,黄仁和,田爱民.试验设计与数据处理.北京:化学工业出版 社,2005
    [61]栾军.试验设计的技术与方法.上海:上海交通大学出版社,1987,10
    [62]李云雁,胡传荣.试验设计与数据处理.北京:化学工业出版社,2008
    [63]邢伟荣.带轮旋压成形原理及工艺分析.山西机械,2002(3):35-36,39
    [64]马伏波.平皮带轮的中部为什么要起.机械,2003
    [65]代夫玉.FA503型细纱机主传动的改进.棉纺织技术,2003,31(4):29-30
    [66]黄建华.平皮带轮的车削加工.矿山机械,2001,9
    [67]军工民品科技信息.新技术新工艺,2008(5):111-111
    [68]张涛,贾英辉.旋压技术的推广及应用.锻造与冲压,2007(11):77-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700