脑核磁共振图像与虚拟人脑图像分割技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核磁共振成像(Magnetic Resonance Imaging,MRI)以其非介入性、非损伤性、很少受目标物体运动的影响等特点,已被广泛运用于医学图像拍摄,并在临床医学上起着越来越重要的作用。MR图像分割在生物医学研究和临床应用中具有重要的意义。而虚拟人计划得到的图像最真实、直观地反映了人体组织信息,该图像可以构建一个人体信息库,为医学诊断、人体结构学习等提供一个平台。图像分割可用于研究解剖结构、组织定量化测定、病灶确定、病疾诊断等。精确的分割是后继分析的关键和重要基础。
     根据特定的医学图像分析任务的要求,分割的目的是将原始图像划分为一系列有意义的区域或提取图像中感兴趣的区域(Region of Interesting,ROI)。脑图像分割主要分为如下几个步骤:1)图像预处理,即图像恢复。由于设备等因素的影响,导致图像中含有噪声。将噪声去除而不损失组织的信息有利于后继图像处理;2)去壳。就是去掉脑图像中非脑组织,如脑壳、脂肪等其它组织。由于非脑组织与背景部分在脑图像中含有较大比重。因此,将非脑组织与背景部分都剔除掉可以提高后继的处理精度;3)去偏移场。由于成像机制的影响,使得图像中会含有偏移场,导致图像灰度不均匀,而使得分割的结果不准确。精确的偏移场恢复模型可以很大程度地提高后继图像处理精度;4)分割出感兴趣区域。使用活动轮廓模型等方法将感兴趣区域分割出来,以对图像进行分析。本文试图将各个问题都综合到一个统一的图像分割框架下,使它具有较高的智能化程度。本文所做的主要工作和研究成果如下:
     (1)提出一种基于非线性扩散方程的图像去噪方法。在讨论了图像去噪的三个基本要求的基础上,总结了调和项模型和彩色总变差去噪模型中的不足,利用图像的局部信息构造函数使得模型在接近图像边缘处各向异性平滑,保持边界;在平坦区域各向同性平滑,防止阶梯效应的产生;并利用角点信息保持了角点形状。实验结果表明,本文所提出的模型能够很好地保持图像中目标的几何结构,同时具有良好的去噪能力。
     (2)提出一种基于高斯混合模型的几何活动轮廓模型。几何活动轮廓模型分割图像时,必须设置适当的停止项以使演化曲线运动到目标的边界时停止。该模型依赖于初始曲线的选取,而且当图像还有弱边界时曲线容易从弱边界处泄漏。本文利用高斯混合模型以及图像全局信息构造新的速度函数,使曲线在目标内部膨胀,非目标区域收缩,最终较好地达到去壳的目的。
     (3)提出一种基于信息熵的去偏移场模型。传统的基于信息熵的模型在求解时往往使用梯度下降法,易陷入局部最优。本文引入遗传算法、粒子群算法对其进行改进。理论上遗传算法可以得到全局最优解,但是由于种群中的个体受最优值影响较大,在一定的计算步骤内很难得到最优解。粒子群算法中,使用了全局信息,该方法收敛速度快,但该算法受种群最优值的影响,整个群体易陷入局部最优。本文使用初始信息与突变对粒子群算法进行改进,使其更易于找到全局最优点。实验证明:该方法具有一定的通用性和较好的性能。
     (4)提出了三种针对脑MR图像的分割方法:
     ◆提出一种基于粒子群算法的高斯混合模型,并利用高斯混合模型可以较好地描述整幅图像性质的特点来改进活动轮廓模型,使改进的模型更适合脑MR图像的分割。高斯混合模型的关键是其参数估计,通常使用Expection-Maximization(EM)算法进行高斯混合模型的参数估计,但该算法是局部优化算法,且对初值依赖性强。为此,将粒子群算法引入到高斯混合模型的参数估计中,利用粒子群算法良好的全局优化特性来提高参数估计精度,并将高斯混合模型与传统的活动轮廓模型相结合,利用粒子群算法估计高斯混合模型的参数以获得图像的统计描述,并以此构造新的活动轮廓约束项,改善了活动轮廓模型的图像分割性能。利用图像多种信息构造新的多元信息场,使得由新的信息场构造的高斯混合模型与活动轮廓模型结合后更具抗干扰的特性。
     ◆提出一种基于Gibbs理论的高斯混合模型。传统的高斯混合模型仅考虑了图像灰度信息,因此对噪声较为敏感。为了克服高斯混合模型的局限性,本文利用Gibbs理论和图像结构信息构造各向异性Gibbs随机场,并将其引入到高斯混合模型框架中,完善高斯混合模型分类效果,使其克服噪声影响的同时还能够保持细长拓扑结构区域信息以及角点区域信息。实验证明本文提出的算法可以得到较好的分。类结果。
     ◆提出了一种变分耦合模型,将配准知识与曲线演化理论融合到一起。通过求解两个耦合的非线性偏微分方程使得模型的总能量达到最小值,实现两者信息的融合,同时达到配准与分割的目的。传统的基于配准模型的分割方法往往仅能对单一模态成像机制得到的图进行配准,而且针对不同人的脑中的脑室、海马体等组织结构差异较大的情况,很难得到较好的分割结果。将基于信息熵的非线性配准与基于图像全局信息与局部信息的曲线演化模型相结合,提出耦合模型,使用变分方法进行求解,实验结果表明本文提出的算法可以得到较好的分类结果。
     (5)提出了三种虚拟人脑图像的分割方法:
     ◆提出一种基于HSV颜色空间的虚拟人脑图像分割方法。在HSV颜色空间对其进行分析,提出一种改进的各向异性扩散方程,并构造混合信息场,以降低噪声、过渡区域等因素的影响。使用ostu算法与一种新颖的快速符号表算法对饱和度信息场与色度信息场进行分类,从而得到灰质分割结果,并利用解剖学知识、区域信息以及数学形态学知识对亮度场信息进行分析,以修正分割结果,最终将脑组织分离出来,实验结果表明本文算法能较精确地得到分割结果。
     ◆提出一种多项位水平集模型。传统的C-V模型仅能够分割单一目标,本文将传统的C-V模型扩展到多水平集,使其同时可以分割多个目标;使用PCA理论将颜色空间投影到新的空间中,以扩大灰质与下层数据之间的颜色距离,减低下层数据的影响。同时使用局部信息校正颜色强度不均匀。将距离约束项引入到模型中,使模型能够无需重新初始化,提高了演化速度。实验结果表明改进的算法能较精确地得到分割结果。
     ◆提出一种各向异性Mean Shift算法。FCM方法、高斯混合模型等统计方法在分割图像时需要知道图像中含有多少类别,而Mean Shift算法进行分割,该算法不需要先验知识就能够将图像分割好。本文分析了Mean Shift算法本质,发现该模型是一个各向同性模型。使用结构信息构造各向异性高斯核,使Mean Shift算法具有各向异性,从而克服细长目标的影响,并使用矩阵分解方法将高斯核分解,加快了模型计算速度;将颜色空间投影到新的坐标系下,使得相近颜色可以有较大的距离,以增大虚拟人脑图像中灰质与下层数据之间的区别,并从理论上证明了Mean Shift算法本质类似于EM算法,本文算法收敛到精确解。虚拟人脑图像分割结果说明本文算法可以得到较好的分割结果。
The application of magnetic resonance imaging, with the characteristics of no intervention、not harmful、seldom effected by the motions of objection, has been used in taking pictures of medical images. Medical image segmentation plays an important role in biomedical research and clinical applications such as study of anatomical structure, quantification of tissue volumes, localization of pathology, diagnosis, treatment planning, and computer aided surgery, etc. As a result, accurate segmentation method is crucial to the follow-up analysis.
     According to different image analysis task, medical image segmentation aims at partition the original image into several meaningful regions or isolating the region of interesting (ROI). Variational method could naturally convert complex segmentation into a variational functional optimization problem. In this thesis, variarional method-based medical image segmentation for specific tasks is extensively explored, and efficient numerical algorithms are discussed.
     The application of magnetic resonance imaging, with the characteristics of no intervention、not harmful、seldom effected by the motions of objection, has been used in taking pictures of medical images. Chinese Visible Human images can give the true information about human tissues. These images segmentation plays an important role in biomedical research and clinical applications such as study of anatomical structure, quantification of tissue volumes, localization of pathology, diagnosis, treatment planning, and computer aided surgery, etc. As a result, accurate segmentation method is crucial to the follow-up analysis.
     According to different image analysis task, medical image segmentation aims at partition the original image into several meaningful regions or isolating the region of interesting (ROI). Variational method could naturally convert complex segmentation into a variational functional optimization problem. In this thesis, variarional method-based medical image segmentation for specific tasks is extensively explored, and efficient numerical algorithms are discussed.
     The segmentation of the brain images can be separated into a few steps: 1) image denoising. Because of the effect of ficilities, the images have noise in images. Denoise the image can make the segmentation more exactly; 2) Skull stripping. In the brain images the skull and other tissues take a large part, so a exact skull stripping method can make the segmentation more exact; 3) de-bias. The bias field in images can make images inhomogeneous and hard to segment; 4) segment the images. Use methods such as active counter models to find region of interesting. This paper wants to form a union image segmentation framework, which has a high intelligent ability in order to solve some complex image segmentation problems. The primary work and remarks of this paper are as follows:
     (1) A new anisotropic diffusion based image denoising method is proposed by analyzing the traditional important denoising models: harmonical model, CTV model. At first, three requirements of image denoising are proposed. Using the structure information, the new model can anisotropic diffuse the image in the edge region and isotropic diffuse the flat region. In order to contain the corn region, the corn information is added to the new model. Experimental results show that the new denoising method is capable of sufficiently preserving geometric information such as edges and corners in addition to its effectiveness for image denoising
     (2) Traditional Level Set method can not get prefer results for it only depend on the gradient information. In this paper a new speed function is presented which is based on anisotropic diffusion function, Gaussian mixture model and global information. With the new speed function the adapted level set model can get better results. The experiments to skull stripping the brain MR images show that the method of this paper can get better results in an accuracy way.
     (3) We propose a new de-bias model based on entropy method. The best bias will make the image has the smallest entropy, but it need to find a lot of parameter to compute the bias. The traditional method uses the gradient descending method to find the parameters. The method plunges in local best easily. In order to deal with this problem, genetics algorithm (GA) method, Particle swarm optimization (PSO) method are analyzed and an adapt method is present to get the global best result. The experiments show that the new method can get accurate result robustly.
     (4) This paper presents three brain MR images segmentation models:
     ◆Gaussian mixture model can approach the probability of the image's histogram. Active contour models can be improved with the Gaussian mixture model to be more fit with the segmentation of medical images. But the estimation of the parameters of the model is hard and usually based on the Expection-Maximization (EM) method. Btu the method is local best and sensitivity to its initial parameters. In order to get better results, we use PSO model to compute the parameters. With this parameter, we construct a new constrain force and with this new force the model can get better results. After some experiments, we found that the Gaussian mixture model only uses the information of the histogram and not uses the information of the location of the pixel. So it is sensitive to the noise. In this paper, we give a method to make a new information field, which combines the information of the region, texture and region simulation. With the new information field the Gaussian mixture model can reduce the effect of the noise. In this paper the Gaussian mixture model be introduced to the Level set model and reduce the effect of the noise and prevent the curve over the weak edges. After get the inner edge of the left ventricle, this paper uses the region and shape information to segment the out edge. Experiments on the segmentation of brain magnetic resonance images show this model has better effect in image segmentation.
     ◆In order to overcome the limitation of Gauss mixture model, this article uses the Gibbs theory and the image structure information to construct anisotropic Gibbs random field and to incorporate it into the Gauss mixture model. The new Gauss mixture model can reduce the effect of the noise and contain the information of beam structure regions and corner regions. Experiments on the segmentation of brain magnetic resonance images show this model can attain better effect in image segmentation.
     ◆We introduce a new coupled variational model, which can registration and segmentation simultaneous. In the model a couple function is constructed to fuse the non-rigid registration information and the active contour model, which based on the region information. Using this information an energy function is constructed. Through finding the extremum of the energy function the model can realize registration and segmentation simultaneously. The model can be applied to analyze the images which from different modals. The results of experiments show that the model can get better results robustly.
     (5) This paper presents three Chinese Visible Humane brain images segmentation models:
     ◆We analyze the images in HSV color space, which can distinguish different areas in brain clearly. In this paper a new fuzzy anisotropic diffusion functions is presented, which can diffuse the images meanwhile preserve the curves. During eliminating other apparatus from brain, the saturation information, hue information, value information, anatomy information, and region information are fused to confirm the results correctly. The experiments to segment the digital human brain images show that the method of this paper can get well results in an accuracy way.
     ◆C-V model is one of the best segment method, but the classical C-V model only segment the image into object and background; only use the intensity information when segment color images; must re-initial the distance function during evolve the curves. In the CVH images, there are many fake grey matters and with the effect of these fake matters the C-V model can hardly separate grey matters with fake grey matters. To deal with the problem the C-V model is adapted to be able to segment more objects; PCA model is presented to large the difference of grey matters and fake grey matters. With the effect of tissues themselves, there are many in-homogenous phenomenons in the CVH images; the local information is added to model to reduce these effects. Use the distance resistance energy, the model can evolve curves without re-initialization. The Chinese visual human brain images segmentation experimental results show that the method of this paper can get right results in an accuracy way.
     ◆In order to overcome the limitation of the Mean Shift method, this paper presents a new anisotropic Gauss kernel, which based on structure information, and with the new Gauss kernel the new model can reduce the effect of gracile topological structure. This paper projects the color space to a new space, based on PCA model, to expand the distance of similar color and make more difference between grey matters and grey matters belonging to next picture. The results of the segmentation of the digital brain image show that adapt Mean Shift method can get better results.
引文
[1] Huseyin T, Kimia B. Volumetric segmentation of medical images by three dimensional bubbles. Computer vision and Image Understanding, 1997, 65(2):246~258
    [2] Chakraborty A, Staib H, Duncan S. Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions on Medical Image, 1996,15(6):859~870
    [3] Johnston B, Atkins M, Mackiewich B. Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Transactions on Medical Image. 1996,15(2): 154-169
    [4] Wells W, Grimson W, Kikins R. Adaptive segmentation of MRI data. IEEE Transactions on Medical Image. 1996,15(4):429~442
    [5] Mackiewich B. Intracranial boundary diction and radio frequency correction in magnetic resonance images. M.S.thesis, Simon Fraster Univ, Burnaby, B.C, Canada,Aug,1995
    [6] Rogowska J. Overview and fundamentals of medical image segmentation. Handbook of Medical Imaging Processing and Analysis, Academic Press,2000,69~86
    [7] Ginneken B, Alejandro F Frangi, Joes J. Active shape model.segmentation with optimal features.IEEE Transactions on Medical Imaging,2002,21(8);924-933.
    [8] Pham L, Chenyang Xu, Prince L A. survey of current methods in medcial image segmentation.Annual Review of Biomedical Engineering,2000,02;315-317.
    [9] Ourselin S. Overview on computer-assisted medical image segmentation, World Congress on Medical Physics and Biomedical Engineering, Sydney, Australia, August24-29 2003, Invited speaker.
    [10]Bezdek J C, Hall L O, Clarke L P. Review of MR image segmentation techniques using pattern recognition.Med.Phys. 1993,20; 1033-1048
    
    [11] Wang Y, Audli T, Kung. Quantification and segmentation of brain tissues from MR images. IEEE Transactions on Image Processing, 1998,7(8): 1165—1181
    [12] Wang Y, Audli T, Xuan. Magnetic resonance image analysis by information theoretic criteria and stochastic site models. IEEE Transactions on Image Processing, 2001,5(2):150~158
    [13]Yongye Zhang, Brady M, Smith S. Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm.IEEE Transactions on Image Processing,2000,20(1):45-57
    [14]Melnemey T,Terzopoulos D.Deformable models in medical image analysis.Proceedings of the workshop on mathematical methods in biomedical image analysis,San Francisco,CAUSA,21-22 June 1996,171-180
    [15]Behrens T,Rohr K,Stiehl H S.Robust segmentation of tubular structures in 3-D medical images by parametric object detection and tracking.IRRR Transactions on Systems,Man and Cybernetics,2003,33B(4):554-561
    [16]Kass M,witkin A,Terzopoulous D.Snake:active contour models.Proceedings of the 1~(st)International Conference on Computer Vision.London:IEEE Computer Society Press.1987,257-268.
    [17]Osher S,Sethian J A.Fronts propagating with curvature dependent speed:algorithms based on the Harnilton-Jaeobi formulation.Journal of Computational Physics.1988,79(1):12-49
    [18]E.Backer and A.Jain,A clustering performance measure based on fuzzy set decomposition.IEEE Trans.Pattern Anal.Mach.Intell.,1981.3(1):66-75.
    [19]A.Baraldi and P.Blonda,A survey of fuzzy clustering algorithms for pattern recognition-Part Ⅰ and Ⅱ.IEEE Trans.Syst.,Man,Cybem.B,Cybern,1999.29(6):778-801.
    [20]A.Jain,R.Duin,and J.Mao,Statistical pattern recognition:A review.IEEE Trans.Pattern Anal.Mach.Intell.,2000.22(1):4-37
    [21]R.Xu and D.Wunsch,Survey of clustering algorithm.IEEE Transactions on Neural Networks,2005.16(3):645-678.
    [22]E.Forgy,Cluster analysis of multivariate data:efficiency vs.interpretability of classifications.Biometrics,1965.21(3):768-780.
    [23]G.McLachlan and T.Krishnan,The EM algorithm and extensions.1997,New York:Wiley
    [24]X.Zhuang,et al.,Gaussian mixture density modeling,decomposition,and applications.IEEE Trans.Image Process.,1996.5(9):1293-1302.
    [25]R.Sharan and R.Shamir.CLICK:A clustering algorithm with applications to gene expression analysis,in 8th lnt.Conf Intelligent Systems for Molecular Biology.2000.
    [26]L.Hall,I.Ozyurt,and J.Bezdek,Clustering with a genetically optimized approach.IEEE Trans.Evol.Comput.,1999.3(2):103-112.
    [27] F. HOppner, F. Klawonn, and R. Kruse, Fuzzy cluster analysis: methods for classification, data analysis, and image recognition. 1999: New York: Wiley.
    [28] T. Kohonen. The self-organizing map. in Proceedings of the Institute of Electrical and Electronics Engineers. 1990.
    [29] A. Ben-Hur, et al. A support vector clustering method. in 15th International Conference on Pattern Recognition. 2000.
    [30] G A. Giraldi, L. M. Gonc,alves, and A. F. Oliveira. Dual topologically adaptable snakes. In Proceedings of the Fifth Joint Conference on Information Sciences (JCIS'2000, Vol. 2) - Third International Conference on Computer Vision, Pattern Recognition, and Image Processing, 2000:103-106
    [31] Cohen L D, Cohen I. Finite element methods for active contour models and balloons for 2-D and 3-D Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(11): 1131-1147
    [32]Xu G, Segawa E, Tsuji S. Robust active contours with insensitive parameters. Pattern Recoginetion. 1994,27(7): 879-884.
    [33]Amini A A, Weymouth T E, Jain T C. Using dynamic programming for solving variational problems in vision. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,12 (9): 855-867
    [34]Caselles V, Kimmel R, Sapiro G Geodesic active contours. International Journal of Computer Vision, 1997,22(1):61~79.
    [35]Malladi R, Sethian J A. Shape modeling with front propagating: a level set approach. IEEE Trasaction on Pattern Analysis and Machine Intelligence, 1995, 17(2):158-175.
    [36]Adalsteinsson D, Sethian J A. A Fast Level Set Method for Propagation Interfaces. Journal of Computational Physics, 1995,118(2): 269- 277
    [37] Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods. J. Comput. Phys. 1999,148:2-22.
    [38]Osher S and Sethian J.A, Fronts ropagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation. J. Comput. Phys, 1988, 79: 12-49.
    [39] Sethian J A. An analysis of flame propagation, Ph.D Thesis, Dept. of Mathematics, University of California, Berkeley, CA, 1982
    [40]Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989,42(5):577~685.
    [41]Mumford D, Shah J. Boundary detection by minimizing functional, Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA, 1985
    [42]Ambrosio L, Tortorelli V. On the approximation of functionals depending on jumps by elliptic functionals via γ-convergence. Communication on Pure and Applied Mathematics, 1990,43(8):999~1036.
    [43]Ambrosio L, Tortorelli V. On the approximation of free discontinuity problems. Boll.Un.Mat.Ital., 1992,7(6-B):105~123.
    [44] Chan T, Vese L. Active contours without edges. IEEE Transactions on Image Processing. 2001,10(2):266~277.
    [45] Chan T, Vese L. An efficient variational multiphase motion for the Mumford-Shah model. In: Proceedings of the 34'th Asilomar Conference on Signals, Systems and Computers, 2000, 1:490-494.
    [46]T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. in Proc. Fifth European Conf. Computer Vision. 1998.
    [47]T.F. Cootes, et al., Active shape models-their training and applicatioa Computer Vision and Image Understanding, 1995. 61(1):38-59.
    [48]T.F. Cootes, GJ. Edwards, and C.J. Taylor, Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001. 23(6):681-685.
    [49]B.P.F. Lelieveldt, et al. Multi-view active appearance models for consistent -segmentation of multiple standard views: application to long- and short-axis cardiac MR images, in Proceedings of the 17th International Congress and Exhibition. 2003. London, United Kingdom.
    [50]I. Elfadel and R. Picard, Gibbs random fields, co-occurrences and texture modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994. 16(1):24-37.
    [51] P. Chen and T. Pavlidis, Segmentation by texture using correlation IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983. 5(1):64-69.
    [52] G. Cross and A. Jain, Markov random field texture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983. 5(1):25-39.
    [53] M. Unser, Local linear transforms for texture measurements. Signal Processing, 1986. 11(1):61-79.
    
    [54] D. Dunn and W.E. Higgins, Optimal Gabor filters for texture segmentation. IEEE transactions on image processing, 1995. 4(7):947-964.
    [55]EE Raghu and B.Yegnanarayana,Segmentation of Gabor-filtered textures using deterministic relaxation.IEEE Transactions on Image Processing,1996.5(12):1625-1636.
    [56]S.Arivazhagan and L.Ganesan,Texture segmentation using wavelet transform.Pattern Recognition Letters,2003.24(16):3197-3203.
    [57]A.Laine and J.Fan,Texture classification by wavelet packet signatures.IEEE Transactions on Pattem Analysis and Machine Intelligence,1993.15(11):1186-1191.
    [58]J.Big(u|¨)n,G.H.Granlund,and J.Wiklund,Multidimensional orientation estimation with applications to texture analysis and optical flow.IEEE Transactions on Pattem Analysis and Machine Intelligence,1991.13(8):775-790.
    [59]N.Paragios and R.Deriche,Geodesic active regions:A new paradigm to deal with frame partition problems in computer vision.Journal of Visual Communication and Image Representation,2002.13(1/2):249-268.
    [60]S.Zhu,Y.Wu,and D.Mumford,Filters,random field and maximum entropy:towards a unified theory for texture modeling,.Intemational Journal of Computer Vision,1998.27(2):1-20.
    [61]T.Brox and J.Weickert.A TV flow based local scale measure for texture discrimination,in Proc.8th European Conference on Computer Vision.2004.Berlin Heidelberg.
    [62]J.Weichert,B.M.ter Haar Romeny,and M.A.Viergever,Efficient and reliable schemes for nonlinear diffusion filtering.IEEE Transactions on Image Processing,1998.7(3):398-410
    [63]X.Y.Yang and J.Liu,Unsupervised texture segmentation with one-step mean shift and boundary Markov random fields.Pattern Recognition Letters,2001.22(10):1073-1081.
    [64]T.Pavlidis and S.L.Tanimoto.Texture identification by a directed split and merge procedure,in Proc.Conf.Comput.Graph.,Pattern Recogn.Data Structure.1975.
    [65]B.Fischer and J.M.Buhmann,Path-based clustering for grouping of smooth curves and texture segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003.25(4):513-518.
    [66]C.W.Therrien,An estimation-theoretic approach to terrain image segmentation Comput.Vision,Graph.,Image Processing,1983.22(3):313-326.
    [67]Paragios.,N.and R.Deriche,Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision, 2002. 46(3):223-247.
    [68] J. Wills, S. Agarwal, and S. Belongie. What went where. in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2003.
    [69] P. Anandan. A unified perspective on computational techniques for the measurement of visual motion, in International Conference on Computer Vision. 1987. London.
    [70]B. Horn and B. Schunck, Determining optical flow. Artificial Intelligence, 1981. 17:185-203.
    [71]B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision, in Proc. Seventh International Joint Conference on Artificial Intelligence. 1981. Vancouver, Canada.
    [72]M.J. Black and P. Anandan, The robust estimation of multiple motions: parametric and piecewise smooth flow fields. Computer Vision and Image Understanding, 1996. 63(1):75-104.
    [73]H.H. Nagel. Extending the 'oriented smoothness constraint' into the temporal domain and the estimation of derivatives of optical flow. in ECC-V. 1990. Berlin.
    [74] T. Brox, et al. High accuracy optical flow estimation based on a theory for warping. in Proc. 8th European Conf. Computer Vision. 2004.
    [75]J.Y.A. Wang and E.H. Adelson, Representing moving images with layers. IEEE Trans. Image Processing, 1994.3(5):625-638.
    [76] A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs, NJ, 1989.
    
    [77] M. A. Sid-Ahmed. Image Processing. McGraw-Hill, New York, 1995.
    [78] Milan Sonka, Vaclav Hlavac, Roger Botle. Image Processing, Analysis, and Machine Vision. International Thomson Publishing, 1998.
    [79] S. Mallat. A wavelet tour of signal processing. Academic Press, 1997.
    [80] K. R. Castleman. Digital Image Processing. Prentice-Hall, Englewood Cliffs, NJ, 1996.
    [81] A. Wrangsjo, M. Borga, H. Knutsson. A Bayesian Approach to Image Restoration. IEEE International Symposium on Biomedical Imaging, 2004.
    [82]Leipo Yan, Lipo Wang, Kim-Hui Yap. A Noisy Chaotic Neural Net work Approach to Image Denoising. International Conference on Image Processing. 2004.
    [83] J. J. Koenderink The structures of images. Biol. Cybernet, 1984, 50: 363-370.
    [84] P. Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion. Proc. IEEE Comp.Soc.Workshop on Computer Vision,1987:16-22.
    [85]P.Perona,J.Malik.Scale-space and edge detection using anisotropic diffusion.IEEE transactions on pattern recognition and machine intelligence,1990,12(7):629-639.
    [86]F.Catte,T.Coll,P.Lions,J.M.Morel.Image Selective smoothing and edge detection by nonlinear diffusion.SIAM J.Numer.ANal..1992,29:182-193.
    [87]M.J.Black,G.Sapiro,D.H.Marimont,et al.Robust anisotropic diffusion.IEEE Transactions on Image Processing,1998,7(3):421-432.
    [88]G.Gilboa,Y.Y.Zeevi,N.Sochen.Complex Diffusion Processes for Image Filtering.Proceedings of the Third International Conference on Scale-Space and Morphology in Computer Vision,2001,299-307.
    [89]J.Weickert.A Review of Nonlinear Diffusion Filtering.Proceedings of the First International Conference on Scale-Space Theory in Computer Vision,1997,1252:3-28.
    [90]G.W.Wei.Generalized Perona-Malik Equation for Image Restoration.IEEE Signal Processing Letters,1999,6(7):165-167.
    [91]S.Esedoglu.Stability Properties of Perona-Malik Scheme.SIAM Journal on Numerical Analysis,2006,44(3):1297-1313.
    [92]J.Weickert.Multiscale Texture Enhancement.Proceedings of the 6th International Conference on Computer Analysis of Images and Patterns.1995,970:230-237.
    [93]J.Weiekert,C.Schnorr.A theoretical framework for convex regularizers in PDE-based computationof image motion:International Journal of Computer Vision;2001,45(3):245-264.
    [94]J.Weickert.Theoretical Foundations of Anisotropic Diffusion in Image Processing.Proceedings of the 7th TFC-V on Theoretical Foundations of Computer Vision,1994,221-236.
    [95]David Tschumperle,R.Deriche.PDE's Based Regularization of Multivalued Images and Applications.IEEE Trans.Pattern Ana.Mach.Intell.2005,27(4):506-517.
    [96]石澄贤.几何图像模型及其在医学图像处理中的应用研究.南京理工大学博士论文,2005.
    [97]肖亮.基于变分PDE和多重分形的图像建模理论、算法与应用.南京理工大学博士论文,2003.
    [98]M.G Crandall,H.Ishii,P.L.Lions.User's guide to viscosity solutions of second order partial differential equations.Bull Amer.Math.Sot.,1992,33:1-67.
    [99]T.F.Chan and J.Shen.On the role of the BV image model in image restoration. Amer.Math.Soc.Contemp.Math.,2003,vol.330,pp.25-41.
    [100]L.Rudin,S.Osher,E.Fatemi.Nonlinear Total Variation based noise removal algorithms.Physica D.1992(60):259-268.
    [101]A.Chambolle,P.-L.Lions.Image Recovery via total variation minimization and related problems.Numer.Math.,1997,76(2):167-188.
    [102]T.Chan,A.Marquina,P.Mulet.High-order total variation-based image restoration.SIAM Journal on Scientific Computing,2000,Vol.22,no.2,pp.503-516.
    [103]Giorgi De,Carriero M,Leac A..Existence theorem for a minimum problem with free discontinuity set.Archive for Rational Mechanics and Analysis.1989,108(3):195-218.
    [104]Yunmei Chert,B.C.Vemuri,L.Wang.Image Denoising and segmentation via nonlinear diffusion.Computers and Mathematics with applications,2000,39:131-149.
    [105]A.Tsai,J.Yezzi,A.Willsky.Curve evolution implementation of the Mumford-Shah functional for image segmentation,denoising,interpolation and magnification,IEEE Transactions on image processing,2001,10(8):1169-1186.
    [106]W.J.Niessen,K.L.Vincken,J.Weickert,and M.A.Viergever,Nonlinear multiscale representations for image segmentation,Comput.Vis.Image Understand.,1997,66:233-245
    [107]R.Malladi,J.A.Sethian.Image Processing:Flows under Min/Max Curvatureand Mean Curvature.Graphical models and image processing,1996,58(2):127-141.
    [108]Nir Sochen,Ron Kimmel,Ravikanth Malladi.A general framework for low level vision.IEEE Transactions on Image Processing,1998,7(3):310-318.
    [109]Suk-Ho Lee,Jin Keun Seo.Noise Removal with Gauss Curvature-Driven Diffusion.IEEE Transactions on Image Processing.2005,14(7):904-909.
    [110]E Shih,O.R.Mitchell.Threshold Decomposition of Gray Scale Morphology into Binary Morphology.IEEE Transactions on PAMI,1989,11(1):31-42.
    [111]G.Sapiro.Geometric Partial Differential Equations and Image Analysis.Cambridge University Press.2001.
    [112]Manfredo Do Carmo.Differential Geometry of Curves and Surfaces.Prentice Hall.1976.
    [113]Anthony Yezzi.Modified Curvature Motion for Image Smoothing and Enhancement.IEEE Transactions on Image Processing.1998,7(3):345-352.
    [114]M.Banham and A.Katsaggelos,Digital image restoration,IEEE Signal Process. Mag.,1997,14(2),pp.24-41
    [115]Blomgren P and Chan T.E Color TV:Total variation methods for restoration of vector-valued images.IEEE Trans.Imag.Proc.,1998.7(3):304.309.
    [116]Kothe Ullrich,Bermd Michaelis,Gerald Krell.Edge and junction detection with an Improved structure tensor.Pattern Recognition,Proc.of 25th DAGM Symposium,Magdeburg 2003,Lecture Notes in Computer Science 2781,25-32
    [117]Marino BELLONI,Bernd KAWOHL.A direct uniqueness proof for equations involving the p-Laplace operator.Manuscripta math,2002,109(2):229-231
    [118]B.Crespo-Facorro,J.J.Kim,N.C.Andreasen,D.S.O'leary,etc.Human frontal cortex:An MRI-based parcellation method.NeuroImage 1999(10):500-519
    [119]R.stolddng,K.L.Vincken,M.A.Viergever Automatic morphology-based brain segmentation from MRI-T1 data.NeuroImage 2000(12):726-738
    [120]R.Kinkins,M.E.Shenton,G.Gerig,J.Martin,etc,Routine quantitative analysis of brain and cerebrospinal fluid volumes with MR imaging,Part 1 methods,reliability and validation,Radiology 1992(178):115-122
    [121]G.Gerig,J.Martin,R.Kikinis,etc,Unsupervised tissue type segmentation of 3D dual-echo MR head data.Image Vision Compute.1992(10):349-360.
    [122]M.S.Atkins,B.T.Mackiewich,Fully automatic segmentation of the brain in MRI.IEEE Trans.Med.Imaging 1998(17):98-107.
    [123]A.M Dale,B.Fischl,M.I.Sereno,Cortical surface-based analysis.I.Segmentation and surface reconstruction.Neurolmage 1999(9):179-194
    [124]R.Stokking,K.L Vincken,M.A.Viergever,Automatic morphology-based brain segmentation(MBRASE)from MRI-T1 data.Neurolmage 2000(12):726-738.
    [125]V.A.Cardenas,F.Ezekiel,etc,Reliability of tissue volumes and their spatial distribution for segmented magnetic resonance images.Psychiatry Res.2001(106):193-205.
    [126]Redner J.A,Walker AK.Mixture density,maximum likelihood and the EM algorithm.SIAM Review,1984,26(2):195-239.
    [127]向日华,王润生.一种基于高斯混合模型的距离图像分割算法[J].软件学报,2003,14(7):1250-1257.
    [128]王惠刚,李志舜.高斯噪声中的参数盲估计.电子学报,2003,31(7):974-976.
    [129]N.Ostu,A threshold selection method from gray-level histograms.IEEE Trans.Syst.Man.Cybem.1979(9):62-66.
    [130]Jungke M.,Seelen W.von,Bielke G,et al.,A system for the diagnostic use of tissue characterizing parameters in NMR-tomography, in Proc. of Information Processing in Medical Imaging, IPMI'87,1987, vol. 39, pp. 471-481.
    [131]Collewet G., Davenel A., Toussaint C, et al, Correction of intensity nonuniformity in spin-echo T1-weighted images, Magn. Reson. Imag., 2002,20(4), 365~373
    [132]Tincher M., Meyer C. R., Gupta R., et al, Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI, IEEE Trans. Med. Imag., 1993, 12(2), 361-365
    [133]Brinkmann B. H., Manduca A., Robb R. A., Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction, IEEE Trans. Med. Imag., 1998,17(2), 161-171
    [134]Cohen S. M., DuBois R. M., Zeineh M. M., Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging, Hum. Brain Mapp., 2000,10(4), 204-211
    [135]Han C., Hatsukami T. S., Yuan C., A multi-scale method for automatic correction of intensity nonuniformity in MR images, J. Magn. Reson. Imag., 2001,13(3), 98195-7115
    [136]Vokurka E. A., Thacker N. A., Jackson A., A fast model independent method for automatic correction of intensity nonuniformity in MRI data, Journal of Magnetic Resonance Imaging., 1999,10(4), 550-562
    
    [137]Leemput K. Van, Maes F., Vandermeulen,D., Automated model-based bias field -correction of MR images of the brain, IEEE Trans. Med. Imag., 1999,18(10), 885-896.
    [138]Styner M., Brechbuhler C., Szckely G., Parametric estimate of intensity inhomogeneities applied to MRI, IEEE Trans. Med. Imag., 2000 19(3),153~165
    [139]Ashburner J. and Friston K. J., Voxel-based morphometry: the methods, Neuroimage, 2000,11, (6), 805
    [140]Marroquin J. L., Vemuri B. C., Botello S., An accurate and efficient Bayesian method for automaticsegmentation of brain MRI, IEEE Trans. Med. Imag., 2002,21,(8), 934-945.
    [141]Liew A. W. C. Yan H., An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation, IEEE Trans. Med. Imag., 2003. 22(9), 1063-1075.
    [142]Mangin J. F., Entropy minimization for automatic correction of intensity nonuniformity, in Proc. IEEE Workshop Mathematical Methods in Biomedical Image Analysis, Hilton Head Island, SC, 2000,162-169.
    [143]Salvado O.,Hillenbrand C.,Zhang S.,MR signal inhomogeneity correction for visual and computerized atherosclerosis lesion assessment,Proceeding of 2004IEEE International Symposium on Biomedical Imaging 2004.1143-1146
    [144]Wells W.M.I.,Grimson W.E.L.,Kikinis R.,Adaptive segmentation of MRI data,IEEE Trans.Med.Imag.,1996.15(4),429-442.
    [145]Guillemaud R.and Brady M.,Estimating the bias field of MR images,IEEE Trans.Med.Imag.,1997.16(3),238-251.
    [146]Rajapakse J.C.and Kruggel F.,Segmentation of MR images with intensity irthomogeneities,Image Vis.Computing,1998.16(3),165-180
    [147]H.Derin and H.Elliott,Modeling and segmentation of noisy and textured images using Gibbs random field,IEEE Trans.Pattern Anal.Math.Intel.,vol.PAMI-9,1987:39-55
    [148]Pham D.L.Prince J.L.,Adaptive fuzzy segmentation of magnetic resonance images,IEEE Trans.Med.Imag.,1999.18(9),737-752.
    [149]Sled J.G.,Zijdenbos A.P.,Evans A.C.,A nonparametric method for automatic correction of intensity nonuniformity in MRI data,IEEE Trans.Med.Imag.,1998.17(1),87-97.
    [150]Lemieux L.,Hagemann G.,Krakow,K.Fast,accurate and reproducible automatic segmentation of the brain in T1-weighted volume MRI data,Magnetic resonance in Medicine,1999,42(1),127-135.
    [151]Shattuck D.W.,Sandor-LeahyS.R.,Schaper K.A.,Magnetic resonance image tissue classification using a partial volume model,Neurolmage,2001,13,856-876
    [152]Smith M.S.,Fast Robust Automated Brain Extraction,Human Brain Mapping,2002,17,143-155
    [153]周明,孙树栋.遗传算原理及应用.北京:国防工业出版社,1999:5-35.
    [154]Kennedy J.and Eberhart R.,Particle swarm optimization,in Proc.IEEE Int.Conf.Neural Netw.,1995,4(10),1942-1948.
    [155]Eberhart R.C.and Shi Y.,Particle swarm optimization:Developments,applications and resources,in Proc.2001 Congr.Evolutionary Computation,Seoul,South Korea,2001,81-86.
    [156]Blihan Le,What to expert from MRI in the investigation of the central nervous system C.R.Acad.Sci ser.Ⅲ2000,323:341-350
    [157]Goualher Le,Argenti A.M.,etc.Statistical sulcal shape comparisons:Application to the detection of genetic encoding of the central sulcus shape.Neuro-image 2000(11):564-574
    [158]Logothetis N.K.,Pauls J.,Augath M.,Trinath T.,Oeltermann A.Neurophsiological investigation of the basis of the fMRI signal,Nature 2001(412):150-157
    [159]Held K,Kops ER,Krause BJ,et al.Markov random field segmentation of brain MR images.IEEE Trans Medical Imaging,1997,16(6):878-886.
    [160]Koen Van Leemput,Frederik Maes,Dirk Vandermeulen,et al.Automated Model Based Tissue Classification of MR Images of the Brain.IEEE Trans Medical Imaging,1999,18(10):897-906.
    [161]Pomphan Dulyakam,Yuttapong Rangsaseri.Fuuy C-Meens clustering using spatial information with application to remote sensing,22nd Asian Conference on Remote Sensing.Singapore,2001.11.
    [162]Bansal R.,Staib L.,Chen Z,et al,Entropy-based,multiple-portal-to-3dct registration for prostate radiotherapy using iteratively estimated segmentation.In:Medical Image Computing and Computer-Assisted Intervention(MICCAI),London,1999,567-578
    [163]Wyatt P,Noble J:Mrf-map joint segmentation and registration.In:Medical Image Computing and Computer-Assisted Intervention(MICCAI),Tokyo,2002,580-587
    [164]Paragios N,Rousson M,Ramesh V:Knowledge-based registration & segmentation of the left ventricle:A level set approach.In:Workshop on Applications of Computer Vision,Orlando,2002,37-42
    [165]Yezzi A.,Zollei L.,Kapur T.:A variational framework for joint segmentation and registration.In:IEEE Conference on Computer Vision and Pattern Recognition-Mathematical Methods in Biomedical Image Analysis,Kauai,2001,388-400
    [166]Fischl B,Salat D,Buena E,et al.,M.A.:Whole brain segmentation:Automated labeling of the neuro anatomical structures in the human brain.In:Neuron.Volume 2002,4(33)341-355
    [167]Soatto S,Yezzi A.J:Deformotion:Deforming motion,shape average and the joint registration and segmentation of images.In:European Conference on Computer Vision,Graz,2002,32-57
    [168]Vemuri B.C.,Chen Y.,Wang Z.:Registration assisted image smoothing and segmentation.In:European Conference on Computer Vision,Graz,2002,546-559
    [169]R.Kikinis,M.Shenton,F.A.Jolesz,et,al,Quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging,J.Magn.Res.Imag.,1992:619-629.
    [170]Van Leemput K.,Maes F.,Vandermeulen D.,and Suetens P.,Automated model-based tissue classification of MR images of the brain,IEEE Trans.Med.Imag.,1999.18(10),897-90g.
    [171]陈允杰 张建伟 朱玉辉 一种新的活动轮廓模型-S-L模型,中国图象图形学报,2005,10(8):1012-1017
    [172]Miki'c I,Krucinski S,Thomas J.D.Segmentation and tracking in echocardiographic sequences:Active contours guided by optical flow estimates.IEEE Transactions on Medical Imaging,1998,17(2):274-283
    [173]Smith J R,Chang S F.Tools and techniques for color image retrieval,SP IE,1996,26(7):426-437.
    [174]Li C.,Xu C.,Gui C.,and Fox M.D..Level set evolution without re-initialization:A new variational formulation.In IEEE Conference on Computer Vision and Pattern Recognotion(C-VPR),2005,1:430-436,
    [175]Cheng YZ.Mean Shift,mode seeking,and clustering.IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
    [176]Zhi Qiangwei,Cai Zixing.Mean Shift Algorithm And its application in tracking of objects,Proceedings of the Fifth International Conference on Machine Learning and Cybernetics,Dalian,2006,13-16
    [177]Jeong MunHo,You Bum-Jae,Oh Yonghwan,et al.Adaptive Mean-Shift Tracking with Novel Color Model,Proceedings of the IEEE Intemational Conference on Mechatronics & Automation Niagara Falls,Canada,2005,1329-1333
    [178]Yang Changjiang,Duraiswami Ramani,Davis Larry,Efficient Mean-Skift Tracking via a New Similarity Measure,Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(C-VPR'05),California,2005,176-183
    [179]Luo Qiming,Taghi M.Khoshgoftaar,Efficient Image Segmentation by Mean Shift Clustering and MDL-Guided Region Merging,Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2004),Florida,2004,337-343
    [180]Chen Pan,Zheng Congxun,Wang Haojun,Robust color image segmentation based on.mean shift and marker-controlled watershed algorithm,Proceedings of the Second International Conference on Machine Learning and Cybemetics,Xi'an,2003,2752-2756
    [181]Cheng Yizong,Mean Shift,Mode Seeking,and Clustering,IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790-799
    [182]Subbarao Raghav,Meer Peter,Nonlinear Mean Shift for Clustering over Analytic Manifolds[el,Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(C-VPR'06),New York,2006:1168-1175
    [183]Li Yingqi,He Mingyi,Texture-based Segmentation of High Resolution SAR Images Using Contourlet Transform and Mean Shift,Proceedings of the 2006 IEEE International Conference on Information Acquisition,2006,Weihai,Shandong,China,201-206
    [184]张松海,陈韬,胡事民,从视频到Flash矢量动画的自动转换,计算机辅助设计与图形学学报,2007,19(5):667-671
    [185]Comaniciu D,Meer E Mean Shift:A robust approach toward feature space analysis.IEEE Transactions.on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
    [186]Peng NS,Yang J,Liu Z,Zhang FC.Automatic selection of kernel-bandwidth for mean shift objects tracking.Journal of Software,2005,16(9):1542-1550
    [187]Comaniciu D,Ramesh V,Meet E The variable bandwidth mean shift and data-driven scale selection.In:Proc.of the IEEE Int'l Conf.on Computer Vision (ICe-v).2001.438-445.
    [188]Comaniciu D.An algorithm for data-driven bandwidth selection.IEEE Trans.on Pattern Analysis and Machine Intelligence,2003,25(2):281-288.
    [189]冯衍秋,陈武凡,梁斌,etal,基于Gibbs随机场与模糊C均值聚类的图像分割新算法,电子学报,2004,32(4),645-647

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700