感潮河道三维水流泥沙数值模型研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用非交错曲线网格二、三维水流泥沙数值模型研究感潮河道水流泥沙问题,主要内容有:
     (1)综述水流泥沙数值模型的发展概况,及其工程应用。
     (2)从挟沙水流两相流运动方程导出三维挟沙水流运动方程,论述各种紊流模型。
     (3)以Poission方程变换为基础,建立拟合曲线坐标系下非正交和正交曲线网格生成方法。
     (4)二维水流泥沙数值模型,采用非交错网格布置,所有计算变量采用同一控制体。由Rhie和Chow动量插值思路导出控制体交界面流速公式。选取曲线坐标系下逆变速度通量分量为独立变量,由水位校正法求解水位流速耦合问题。二维悬沙和底沙运移采用不平衡输沙模式,分析输沙方程的源项处理以及非均匀沙分组挟沙能力和床沙级配调整。
     (5)二维水流泥沙数值模型采用S型弯道水流运动计算验证,结果和实测资料基本吻合。西气东输过江工程,采用该模型模拟南京西坝~泗源沟河段不同流量水流运动,并计算一水文年过程该河段的河床冲淤变化,结果和实测资料也基本一致。
     (6)非交错曲线网格三维水流泥沙数值模型,采用拟合曲线坐标和垂向σ坐标变换。水流运动方程压力项分解为静水压力和动水压力,紊动粘性系数由K~ε紊流模型求解,非交错网格减化方程离散,降低插值运算。动量插值计算交界面流速,避免压力波动,由压力校正法求解压力—速度耦合问题。不平衡输沙方程离散后直接迭代求解。并建立底部切应力和泥沙床面交换计算方法。
     (7)三维水流泥沙数值模型也采用S型弯道三维水流运动、床面泥沙单纯冲刷上扬和单纯淤积水槽的试验实测资料进行验证,结果合理、有效。
     (8)天然三维水流泥沙简化数值模型,成功地模拟南京某河段水流运动和多分汊河道水沙计算,结果可靠并满足精度。
1. In this paper, a brief introduction of hydrodynamic, sediment transport model and its application in engineering projects are reported.
    2. The equations are derived using a tensor analysis of two-phase flow, and the background of basic equations and parameters in the numerical model are discussed.
    3. Based on Poission equation conversion, generated methods of curvilinear grids are presented.
    4. 2-D flow and sediment transport model with non-staggered curvilinear grids is presented. To prevent the pressure oscillation on non-staggered grids, an interpolation method called momentum interpolation is presented to evaluated the cell-face velocities. The contravariant velocity fluxes are used as the dependent variables in the paper. The discretization equations were sieved using the SIMPLE, SIMPLEC and SIMPLER algorithms. Suspended and bed load transport were simulated with a non-equilibrium method. The source treatments in sediment transport equations, suspended load carrying capacity of the non-uniform material and exchange of size-distribution of the bed material are presented.
    5. In order to verify and test the applicability of the model, "S" type open channel flow is simulated with this model, the agreement with measurements was generally good. The mathematical model was applied to serve the engineering projects. The different water levels and flow discharges in Nanjing river reach are calculated, bed scour and sedimentation in this engineering reach during one hydrologic year are verified . All results are in good agreement with
    
    
    
    field measurements. River hydrodynamic conditions and bed scour and sedimentation were predicted using the numerical model under engineering design conditions.
    6. A 3-D flow and sediment model in curvilinear collocated grid is developed from 2-D model. In the horizontal x-y-plane, a boundary-fitted curvilinear co-ordinate system is adopted, while in the vertical direction, a o-co-ordinate transformation is used to represent free surface and bed topography. The total pressure is subdivided into the hydrostatic and residual hydrodynamic components. K-e turbulent flows model, non-staggered curvilinear grids, momentum interpolation, SIMPLEC and SIMPLER algorithms are used to solve the basic equations. Non-equilibrium sediment transport is applied in the model. The treatments of bed shear stress and the equilibrium concentration are presented.
    7. 3-D flow in "S" type channel bend is simulated. The suspended load model was tested for open channel flow situation under erosion and deposition, separately. The results for the numerical model are tested against available data. Good agreement is obtained.
    8. A simplified 3-D natural river flow and sediment transport model is developed based on hydrostatic pressure distribution. The model has been applied to investigate the 3-D flow and suspended-load transport in Nanjing river reach with two branches. Computed results show that the 3D distribution of flow velocities and suspended concentrations in two branches are in good agreement with field measurements. It shows that the simplified model is applicable and reliable.
引文
1.汪德灌,计算水力学理论与应用,河海大学出版社,1989年。
    2.谢鉴衡、魏良琰,河流泥沙数学模型回顾与展望,泥沙研究,1987年,第3期。
    3.许协庆、朱鹏程,河床变形问题的特征线解,水利学报,第5期,1963。
    4.研究报告汇编(河港分册),1963,南京水利科学研究院。
    5.周志德、丁联臻,泥沙数学模型概述,国际泥沙研究培训中心,1990年。
    6.李义天、谢鉴衡、吴伟明,二维及三维泥沙数学模型的研究进展,全国泥沙基本理论研究学术讨论会论文集(第二卷),1992年。
    7.陈国祥、陈界仁、沙劳巴里,三维数学模型的研究进展,水利水电科技进展,1998.18<1>。
    8.全国泥沙数学模型研讨会论文集,1987年。
    9.长江三峡工程泥沙与船运关键技术研究专题研究报告集,武汉工业大学出版社,1993年。
    10. Chenin Modojorich M I. Numerical Problems in Coupling Two-and Three-Dimensional Models and Turbulence Measurements. The 2nd Symposium on retied flow modeling and turbulence Measurement. 1988, 302~305.
    11. F. Moukalled and S. Acharya A Local Adaptive Grid Procedure for Incompressible Flows With Multi-Gridding and Equidistribution Concepts. International Journal for Numerical Methods in Fluids, 13:1085-1111(1991).
    12.谢鉴衡主编,河流模拟,水利电力出版社,1990年。
    13.韩国其、汪德灌,风生环流的准三维数值模拟,河海大学报,1989.3。
    14.杨国录,河流数学模型,海洋出版社,1993年。
    15.王尚毅,顾元琰,郭传镇,河口工程泥沙数学模型,海洋出版社,1990年。
    16.泥沙手册,中国环境科学出版社,1982年。
    17. Howard. H. Chang, FLUVIAL-12 Mathematical Model for Eridible Channels San Diego, California 1998。
    18. Cunge,J.A. and Perdreau,N., Mobile Bed Fluvial Mathematical Models. La Houille. Blanche, NO. 7 1973, PP561-580
    19.林秉南,钱塘江河口潮流输沙数学模型,泥沙研究,1981年。
    20.金子安雄,堀江毅,村上和南,ADI法潮流污染扩散数值计算,港湾技术研究所报告,VOL14,No,1,1975。
    21. Ponce, V. M. and Yabusaki, S. B. Modelling Circulation in Depth-Averaged Flow, J. of Hydr. Div., ASCE. VOL 107. PP1501-1518. 1981.
    22.赵士清,长江口潮流的一种数值模拟,海洋与湖沼,VOL 16,No 1.PP18-26,1985.
    23. Gendey R.T and Lick, W., Wind-Driven Current in Lake Erie., J. Geophys. Res. VOL 17, PP2714-2723. 1972.
    24.李义天,河道平面二维泥沙数学模型研究,水利学报,1989.18<2>。
    25.窦国仁、赵士清、黄亦芬,河道二维全沙数学模型研究,水利水运科学研究,1997.<1>。
    26.周建军等,平面二维泥沙数学模型研究及其应用,水利学报,1993年No.11。
    27. Lin p. N. and H. W. Shen, Two-D Flow with Sediment by the Characteristic Method. ASCE, J. of Hydraulic Engineering vol. 111. 1984.
    28.于清来 二维高含沙及水质数学模型研究,南科院博士论文,1994。
    29. De Vriend, H. J. and Geldof, H.J. Main Flow Velocity in Short River Bends. J. of Hydraulic Engineering, ASCE, Vol. 116, No. WW4 1990.
    30. Van Rijn. L. C, Sediment Transport, part Ⅱ: Suspended Load Transport, J. of hydraulic Engineering,
    
    ASCE 110(11),1984.
    31.何明民、韩其为,挟沙能力级配及有效床沙级配的确定,水利学报,1990年第3期。
    32.何明民、韩其为,挟沙能力级配及有效床沙级配的概念,水利学报,1989年第3期。
    33.陆永军,航道工程泥沙数学模型的研究与应用,河海大学博士论文,1998年。
    34.乐培九,关于非均匀沙悬移质不平衡沙问题,水道港口,1996年12月第4期。
    35.张庆华、乐培九、杨细根,二维泥沙数学模型的改进—模型的建立,水道港口,1996年第4期
    36.李义天,冲淤平衡状态下床沙质级配初探泥沙研究,1987年第1期。
    37. Wylie E. B., Unsteady Free Surface Flow Computation., J. of Hydr. Div, ASCE., VOL 96. NO 1,PP223-252. 1970.
    38. Heinrich. J. C Huyakom, P. S. Zienkiewicz. O. C. and Mitchell. A.R., An Upwind Finite Element Scheme For Two-Dimensional Convective Transport Equation., Int. J. Numer. Meth. Fluids., VOL 2. PP151-171. 1977.
    39.陈虹,泥质河口与海岸潮流泥沙数学模型的理论及应用,天津大学博士论文,1997。
    40.白玉川,潮流和波浪联合输沙的理论研究及其数学模型,天津大学博士论文,1994。
    41.赵士清,一种简单的二维潮流计算,水利水运科学研究,1983年。
    42.夏云峰、郭颖、黄建维,榕江河段潮流数值计算,第七届全国海岸工程学术讨论会论文集(上),1993年。
    43.张庆华,河道及河口海岸水流泥沙数学模型研究与应用,河海大学博士论文,1998年。
    44.夏云峰等,西气东输管道工程三江口过江方案二维数学模型计算及河床冲淤分析,南科院,2001年5月。
    45.周雪漪,计算水力清华大学出版社,1996年。
    46. Van Rijn. L. C. van Rossum. H and Termes. P. Field Verification of 2-D and 3-D Suspended-Sediment Models. J. of hydraulic Engineering, ASCE, vol.116, No.10, 1990。
    47. Olsen N. R. B. Skoglund. M., 3D Numerical Modeling of Water and Sediment Flow in a Sand Trap. J. of hydraulic research 1994,32(6): 833-844.
    48.赵士清,长江口三维潮流数值计算,水利水运科学研究,1985(1)。
    49. Menis P. Holz K. P. 3D Model Verification for Goyne and Harbor Experiment, Hydraulic, Engrg 94, 1994.218-221.
    50. Liu, S. K., and J. J. Leendertse., Multidimensional Numerical Modelling of Estuaries and Coastal Areas. In Advances in Hydroscience, Academic. New york, PP95-164. 1978.
    51. Koutitas, C., Tree-Dimensional Models of Coastal Circulation: An Engineering Viewpoint., N. S. Heaps eds., Tree-Dimensional Coastal Ocean Models., AGU, Washington, D,C PP107-123.
    52. Tee, K. t., Simple Models to Simulate Three-Dimensional Tidal and Residual Currents., N, S. Heaps eds., Tree-Dimensional Coastal Ocean Models., AGU, Washington, D,C PP125-147.
    53.Yang S.S.Y etl河流淤积过程的三维模型第三次河流泥沙国际学术讨论会译文选第八册:P93-100,1986。
    54. Binliang Lin and Falconer R. A. Numerical Modeling of Thee-Dimensional Suspended Sediment for Estuarine and Coastal waters. J. of hydraulic research. Vol.34. No.4.1996.
    55. Onyx. W. H. Wai. Qimiao Lu and Y. S. Li. Multi-layer Modeling of Three-Dimensional Hydrodynamic Transport Processes. J. of Hydraulic Research. vol 34. No 5.1996.
    56. Y. P. Sheng Evolution of Three-Dimensional. Curvilinear-grid Hydrodynamic Model for Estuaries, Lake。
    57.武本行正,阿部芳彦,自由表面3次元铅通喷流数值解析法,农土论文集,vol.1106。
    58. Shimizu. Y. Yamagachi H. 3D Computatios of Flow and Bed Deformation,J. of Hydraulic Engineering, ASCE 1994, 116(9)。
    
    
    59. Rodi. W(1993), Turbulence Models and Their Application in Hydraulics 3rd.ed. IAHR Monograph,Balkema, Rottordam, The Netherlandas.
    60. S.V Patanker and D.B.Spalding A Calculation Procedure For Heat,Mass and Momentum Transfer In Three-Dimensional Parabolic Flows .Int. J. Heat and Mass Transfer.VOL 15. PP1788-1982
    61. S. Majumdar.(1988) Role of underelaxation in Momentum Interpolation For Calculation of Flow With Nonstaggered Grids. Numerical Heat Transfer. VOL 13,PP125-132
    62. Iabo Park and Subhash C. Jain., Numerical simulation of Degradation of Alluvial Channel Beds. J. of Hydraulic Engineering. VOL113, NO.7 1987 ASCE.
    63. Casulli V. and Stelling .G S (1996)., Simulation of Three-Dimensional Non-hydrostatic Free-surface Flows For Estuaries and Coastal Seas. Proc. 4th. Int. Conf. on Estuarine and Coast. Modeling. M.L. Spaulding and R. T. Cheng. Eds ASCE, Reston Va., 1-12.
    64. De Goede. E(1991)., A Time Splitting Method For Three Dimensional Shallow Water Equation Int. J. Numer. Methods in Fluids. 13(4) PP519-534.
    65. Vincenzo Casulli and Guus S.Stelling., Numerical Simulation of 3D Quasi-Hydraostatic Free-Surface Flows J. of Hydr. Engrg. VOL 124 ,NO. 7 July 1998.
    66. Daniel Gessler, Brad Hall Miodrag Spasojevic, Forrest Holly ,Hasan Pourtaheri, and Nolan Raphelt., Application of 3D Mobole Bed Hydrodynamics Model J. of Hydr. Engrg. Vol125 NO7. 1999 ASCE.
    67. A, M, Mllir Wood C,A, Fleming Coastal Hydraulics
    68. Engel, J J, Hotchrill R,H and Hall B, R(1995)., Three Dimensional Sediment Transport Modeling Using CH3D Computer Model. Proc, 1st Int. Water Res. Engrg. Conf, W. H. Espey Jr. and P.G. Combs, Eds. ASCE., Reston Va., 628-632.
    69. Preissmann A., Use of Mathematical Method , Proceedings of the International Symposium on Unsteady Flow in Open Channels E3-23-28 1978.
    70. Maa J. P. Y., An Efficient Horizontal Two-Dimensional Hydrodynamic Model, Coasted Eng., 14, 1990 PP1-18.
    71. Sheng Y. P., Mathematical Modeling of Three Dimensional Coastal Currents and Sediment Dispersion: Model Development and Application. Aeranautical Research Association of Princeton Lnc., Tech. Report, Cerc-83-2,U.S.A., 1983.
    72. Leendertes J. J., Alexander R. C. and Liu S. K., A Three Dimensional Model For Estuares and Coastal Seas, Vol.Ⅰ, Principles of Computation, R-1417-OWRR, Rand Corp., Santa Monica, California, 1973.
    73. S Acharya and F. H. Moukalled., Improvements to Incompressible Flow Calculation on A Non-staggered Curvilinear Grids. Numer. Heat Transfer 15 PP63-75(1989).
    74.周思平,三维含自由水面紊流流动的数值模拟—HH-SIMPLE方法,河海大学博士论文,1998年。
    75. Weiming, Wu,W. Rodi, and Thomas Wenka 3D Numerical Modeling of Flow and Sediment Transport in Open Channels ASCE J. of Hydraulic Engineering vol. 126 NO. 1 2000.
    76. Einstein. H. A. The Bed-load Function for Sediment Transportation in Open Channel Flows United States Department of Agriculture Soai Conservation Server Washington D.C. 1950.
    77. England, F, and Fredsφe, J, (1976) "A sediment transport model, for straight, alluvial channels" Nordic Hydr. 7(5)293-306.
    78. Zyserman. J. A. and Fredsφe, J, Data Analysis of Bed Concentration of Suspended Sediment, J. of Hydraulic Engineering No.9.1994.ASCE.P. 1021~1041
    79.曹志先,泥沙数学模型近底边界条件Ⅱ非平衡输沙,水利学报,1997年第二期。
    80.程年生、朱立俊,床面附近泥沙交换率在悬移质输沙计算中的应用,水科学进展,第4卷第4期,1993年12月。
    81.程年生,推移质非平衡输运方程的探讨,泥沙研究,NO 1,1994.
    
    
    82. John Nichalson., Cohesive Sediment Transport Model, J. of Hydraulic Engineering, ASCE 1988 PP 621-640.
    83. Aekers, P and White W.R., Sediment Transport in Water. Proc. Royal. Sollordon Ser. A VOL 332., PP473-504, 1973.
    84.孙志林,泥沙交换的随机模式,泥沙研究,NO.1,1991.
    85.Pai SI(1977),Two-Phase Flows(中译本:两相流动,国防工业出版社,1985年)。
    86.王光谦,固体两相流与颗粒的运动理论及实验,清华大学博士学位论文,1989年。
    87. Weiming Wu and Sam S. Y. Wang Mathematical Models for Liquid-solid T.vo-phase Flow International Journal of Sediment Research Vol15. No. 3.2000. sept.
    88.匡翠萍,长江口拦门沙冲淤及悬沙沉降规律研究和水流盐度泥沙数学模型,学位论文,南京水利科学研究院,1993年。
    89. Munk W. H and Andorson E. R. Notes on a Thermodine J. Marine Research Vol 7. 1948.
    90. Rodi. W. Turbulence models and Their Application in Hydraulics, IAHR. 1980。
    91.金忠青,N-S方程数值解和紊流模型,南京,河海大学出版社,1998年。
    92. Thompson, J. F., Z. U.A. Warsi and C. W. Mastin Numerical Grid Generation: Foundations and Applications, Noth-Holland Publishing Company, Amsterdam 1985.
    93. Curelier, C. Differential Equation of Viscous Fluid in General Coordinates Department of Mathematics, Delft University of Technology, Lecture Notes. 1987.
    94.汤立群,河流及流域泥沙数学模型的研究与应用,河海大学博士论文,1999年。
    95. Jian Ye and J.A. Mc Corquodal. Depth-averaged Hydrodynamic Model in Curvilinear Collocated Grid, J. of Hydraulic Engineering ,Vol. 123,No.5, May, 1997. ASCE.
    96. H.XU and C.CHANG Study of the Effect of the Non-orthogonality for Non-staggered Grids the Theory, International Journal for Numerical Methods in Fluids, 28:1265-1280(1998).
    97. C. M. Rhie and W. L. Chow. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation. AIAA Journal, Vol.21, No. 11, Nov. 1983.
    98. J. F. Thompson, Numerical Solution of Flow Problems Using Body-fitted Coordinate Systems, Computational Fluid Dynamics, Hemisphere, New York, 1980.
    99.将如琴,范家骅 含盐浑水的淤积及其二维数值计算,第二次河流泥沙国际学术讨论会论文集 水利电力出版社 1983年。
    100.程年生,朱立俊 泥沙扬动临界条件研究 水科学进展 1993年第4卷第3期。
    101.南科院 研究报告汇编1958~1962(河港研究分册)
    102. Van Rijn, L. C. Mathematics modeling of suspended Sediment in non-uniform flows, J. of Hydraulic Engineering ASCE 112 p435-455, 1986。
    103. Celik. I and Rodi. W Modeling Suspended Sediment transport in non-equilibrium Situations, J. of Hydraulic Engineering, vol. 114.(10)1998.ASSCE
    104.韩其为、何明昆,论非均匀悬移质二维不平衡输沙方程及其边界条件,水利学报,1997年第一期。
    105.张红武、江恩惠 黄河下游泥沙数学模型的研究 黄河水利科学研究院,1995年11月.
    106.武汉水利学院,河流泥沙工程学教研室编著:河流泥沙工程学(上册),水利出版社,1982年。
    107.李昌华,明渠水流挟沙能力初步研究,水利水运科学研究,1983年。
    108.窦国仁,河口海岸全沙模型相似理论,水利水运工程学报,2001.1。
    109. Van Rijn L. C. Sediment transport, Ⅰ: Bed load transport J. of hydraulic Engineering ASCE.col106 No HY 11 1980。
    110.胡春宏、惠遇甲,明渠挟沙水流运动的力学和统计规律,科学出版社,1995年。
    111. Rahuel. J. Lhouy. F. M. Choclef. J. P. Beueudy. J. P and Yang. G Modeling of River bed Evolution
    
    for Bedload Sediment Mixture. J. of Hydraulic Engineering ASCE. 115(11): 1989.
    112.李义天、吴卫明,三峡工程变动回水区泥沙数学模型及初步应用报告,武汉水利电力学院,1990。
    113.陶文荃,数值传热学,西安交通大学出版社,1988年12月。
    114.夏云峰、张金善,天然河道整治建筑物流场数值模拟第三届全国计算水力学会论文集,成都科技大学出版社,1996年。
    115.夏云峰等,非交错曲线网格二维水流泥沙数学模型研究,水利水运学报2001年,增刊。
    116.陈景仁,湍流模型及有限分析法,上海交通大学出版社。
    117. K. C. Karki and H. C. Mongia Evaluation of a Coupled Solution Approach for Fluid Calculations in Body-fitted Co-ordinates. International J. for Numerical Methods in Fluids. vol. 11, 1-20 1990.
    118. Miller. T. F, Schmidt. F. W Use of a Pressure-weighted Interpolation Method for the Solution of the Incompressible Navier-Stoks Equations on a Nonstaggered Grid System. Numerical Heat Transfer, Vol 14,1988
    119. Jian. Ye. J. A. Me Corquodale. A Three-Dimensional. HydrodynAmic model. In Curviliner Co-ordinates with Collocaled Grid., International Journal for Numerical Methods in Fluids. 28. 1109-1134(1998)
    120. Chang. Y. C. "Latral Mixing in Meandering Channels" ph.D. thesis, Unv. of Iowa, Iowa City. Iowa.
    121.夏云峰等 京沪高速铁路南京长江大桥方案通航模型试验研究 南京水利科学研究院 1999年7月。
    122.内河航道与港口水流泥沙模拟技术规程,JTJ/T232-13,1998。
    123. Wang. S. Y, On the Three-dimensional Free Surface Flow and Sediment Transport Modeling and Model Verifications, 1992.
    124. Gross. E. S. koseffo. J. R, and Mouisnzith S.G. Three-Dimensional Salinity Simulations of South San Francica Bay, ASCE. Vol. 125, No 11, 1999.
    125. Fang. HongWei and Wang GuangQian, Three-Dimensional Mathematical Model of Suspended-Sediment Transport, J. of Hydraulic Engineering. ASCE, vol. 126.No. 8, 2000.
    126. Sylvain, O, and B noit, 1et, Modeling Non-cohesive Suspended Sediment Transport in 2-D Vertical Free Surface Flows, J of Hydraulic Research, Delft the Netherlands 34(2)219~236.
    127.白玉川、李世森、董文军,不平衡输沙计算中泥沙起悬量与沉降量的确定—以沉沙池为例,海洋通报,1996年第15卷第6期。
    128. Talmon. A. M. Bed Topography of River Bends with Suspended Sediment Transport report, No 92-5, Delft University of Technology Faculty of Civil Engineering
    129. Dunsbergen. D. W, Particle Models for Transport in Three-Dimensional Shallow Water Flow. Delft University of Technology, Report No94-8. 1994
    130. Wang. Z. B. and Ribberink. J. S. The Validity of a Depth-Integrated Models, J of Hydraulic Engineering, ASCE, Vol 116, No. 10 PP1270-1288.
    131.夏云峰,京沪高速铁路南京长江大桥桥址河段河床稳定性数学模型分析研究报告 南京水利科学研究院,1997年3月。
    132. http://WWW. aos.princeton.edu/POM/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700