食源假单胞菌群体感应信号分子的产生及其对食品腐败的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌细胞产生信号分子并释放到环境中去,当环境中信号分子的浓度达到某一阈值后,细菌细胞开启细胞密度依赖的特定基因的表达机制,这一现象被称为“群体感应(quorum sensing,简称QS)”。N-酰基-高丝氨酸内酯类(AHLs)化合物是革兰氏阴性菌群体感应系统中最典型的一类信号分子。细菌细胞通过产生AHL进行交流信息,协调群体行为,调控某些特定的生理性状的表达,这一研究领域日益受到人们的关注。
     假单胞菌(Pseudomonas)是导致高蛋白食品腐败的重要细菌。研究表明,嗜铁素的产生和蛋白酶活性是假单胞菌最重要的致腐因素,导致腐败食品特有的金属光泽和腐臭味。近年来对人类条件致病菌铜绿假单胞菌(Pseudomonas aeruginosa)以及植物致病菌的研究表明,嗜铁素产生及蛋白酶活性是由AHL调控的。但目前国内外对食源假单胞菌群体感应信号分子的产生及其与嗜铁素产生、蛋白酶活性之间的关系未见报道。
     本文对食源假单胞菌N-酰基-高丝氨酸内酯类群体感应信号分子的产生及其对食品腐败的影响进行了研究。为进一步确定群体感应机制在食品腐败中的作用,以期为构建基于干扰腐败细菌群体感应系统作为新靶点的食品防腐保鲜策略提供理论依据。主要结果如下:
     1利用细菌生物感应器Chromobacterium violaceum CVO26和Agrobacteriumtumefaciens A136(pCF218/pCF372)建立了琼脂扩散法(平行画线法、报告平板法)、细菌生物感应器与薄层层析相结合(TLC-Biosensor)以及β-半乳糖苷酶活法检测AHL的生物学检测方法,该法能够简单、快速检测AHL。
     2根据AHL信号分子的典型特征,建立HPLC/MS法检测、鉴定AHL信号分子的方法。结果表明,在没有标准品的条件下,HPLC/MS是一种有效鉴定AHL信号分子的方法,检测的灵敏度明显高于经典的细菌生物感应器检测AHLs的方法:
     3通过生理生化鉴定与16S rDNA序列分析相结合的方法,对源于食品的3株革兰氏阴性菌FML05-1、FML05-2、FML05-3进行鉴定,菌株FML05-1、FML05-2为荧光假单胞菌(Pseudomonas fluorescens),FML05-3为恶臭假单胞菌(Pseudomonas putida);
     4利用细菌生物感应器对3株菌AHL产生情况进行检测,结果表明3株菌均产生AHLs信号分子。为进一步确定3株菌所产生的AHL的种类,对3株菌的培养上清进行TLC-biosensor分析,发现FML05-1和FML05-2至少产生两种AHLs分子,主要信号分子是N-3-氧代-辛酰基-高丝氨酸内酯(N-3-oxo-C_8-HSL),而FML05-3没有检测到任何斑点;
     5利用HPLC/MS方法对3株菌产生的AHLs分子进一步鉴定,结果表明,FML05-1菌株产生N-3-oxo-C8-HSL和N-3-oxo-C10-HSL,FML05-2菌株产生N-3-oxo-C10-HSL、N-3-oxo-C8-HSL、C6-HSL和C4-HSL,而FML05-3菌株产生C6-HSL和C4-HSL。由此可见,利用TLC-biosensor方法没有得到鉴定的AHL分子,HPLC/MS方法得到鉴定;
     6对菌株在生长过程中所产生的AHLs的活性变化进行研究,发现随着菌体密度的增加,AHLs浓度也随之增加,在菌体生长至对数中末期或稳定期时达到最大,随之AHLs的浓度开始下降。同时其培养液中的pH值呈现上升的趋势。同时研究了pH值条件对AHL稳定性的影响,结果发现,在碱性条件下AHL的稳定性下降。当pH值为8.5,反应时间为8h时,AHLs活性降至约为原来的50%。因此,菌体生长后期AHL活性下降与环境中pH值的升高有关;
     7研究了不同温度及碳源对食源假单胞菌AHLs产生的影响。结果表明,在25℃条件下,菌株FML05-1和FML05-2,产生长链和短链两种AHL信号分子,而在4℃条件下,主要产生长链AHL分子。而且在不同碳源(葡萄糖,果糖,木糖,麦芽糖等)的AB培养基中生长,所产生的AHLs分子种类也不相同。表明在不同的环境条件(碳源及温度)下假单胞菌产生不同种类的AHLs;
     8对3株腐败菌的致腐因素进行检测,发现FML05-2具有很强的蛋白水解活性,并且在脱脂牛奶中生长还产生大量的嗜铁素,但在LB中生长时不产生嗜铁素;菌株FML05-1蛋白水解活性相对FML05-2较弱,在LB及脱脂牛奶中生长均不产生嗜铁素,而菌株FML05-3不表达上述2种致腐因素;
     9利用产aiiA蛋白酶的菌株对假单胞菌FML05-2所产生的AHL分子进行降解,发现FML05-2对脱脂牛奶的致腐作用明显减弱,嗜铁素的产量与蛋白酶活性明显下降。说明FML05-2嗜铁素的产生和蛋白酶活性与AHL的产生及浓度有关。为建立以干扰腐败细菌群体感应系统为靶点的食品防腐保鲜新策略提供理论依据。
Bacterial cells trigger particular gene expression in a cell-density-dependent manner by producing ,secreting molecules that accumulate in the enviroment in proportion to cell densiy when the density reaches a threshold level, a phenomenon termed 'quorum sensing(QS)'.In general, this communication system is mediated by the production of N-acyl-homoserine lactones signal molecules in Gram-negative bacteria. It become an interest topic that the bacterial cell communicated with each other to coordinate the population behavior and to regulate the expression of some physiological traits by producing the AHL.
     Pseudomonas was an important bacteria that caused spoilage of proteinaceous foods. It was demonstrated production siderophore, protase activity were most important factors that spoiled the food, and caused the food the characteristic metal brightness and offensive off odors. In resent years, it was reported that the production siderophore, protase activity in the human opportunitic pathogen Pseudomonas aeruginosa were regulated by AHL .But there was no study on the production of quorum sensing signal molecules and relationship between production siderophore, protase activity and signal molecules in Pseudomonas isolated from food.
     In this paper, it was studied on the production of quorum sensing signal molecules and the effect on the food spoilage in pseudomonas isolated from food.This study laid the foundation for the role of quorum sensing in the food spoilage and new strategies for food preservation based on interfering in quorum sensing of spoilage bacteria. The main results were as follows:
     1. It was established the biological methods of agar diffusion assay(streak assays in parallel, reporter agar assays), thin-layer chromatography combination with biosensor analysis andβ-galactosidase activity assay that detected AHL based on the biosensor Chromobacterium violaceum CVO26, Agrobacterium tumefaciens A136 (pCF218/pCF372) .It was simpler and faster manner to detect the AHL using the biosensor.
     2. The method of detection and identification AHL based on HPLC/MS was developed according to the typical structure characteristic of AHL molecules.The results showed that it was powerful method to determinate the AHL under no standards. The sensitivity of HPLC/MS detection was higher compared to the classical AHL analysis of biosensor.
     3. The three gram-negative bacteria FML05-1、FML05-2、FML05-3 were isolated from the food. The strains FML05-1、FML05-2 were identified as Pseudomonas fluorescens and FML05-3 identified as Pseudomonas putida by analysis of 16S ribosomal DNA gene sequence, physiological and biochemical characteristics.
     4. Three strains produced communication signals involved in quorum sensing by assays based on the biosensor A. tumefaciens A136 (pCF218/pCF372) ,C. violaceum CVO26. The strains FML05-1 and FML05-2 were found to produce two type of AHLs in the supernatant and the main signal molecules were N-3-oxo-C_8-AHL by the analysis of TLC-biosensor assays, but no spots were detected in FML05-3.
     5. The AHL signal molecules producued by three strains were further identified by the HPLC/MS.The results showed that the strain FML05-1 produced N-3-oxo-C8-HSL and N-3-oxo-C10-HSL; the strain FML05-2 produced the N-3-oxo-C10-HSL ,N-3-oxo-C8-HSL, C6-HSL; the FML05-3 produced the C6-HSL and C4-HSL. So the AHL molecules unidentified by the method of TLC-biosensor were identified by the method based on the HPLC/MS.
     6. The change of AHL activity in strains along the cell growth was detected. The result showed that the AHLs activity rose with the population cell density and reached maximal value when the cells growth entered the exponential end phase or stationary phase, then decreased with growth. At the same time, the pH in the culture of three strains increased throughout the growth. So the stability of AHLs was studied in different pH conditions. It was presented that the AHLs signal molecules became unstable in alkaline conditions. Nearly 50% degradation occured at pH=8.5 when reaction time was 8h. The increase in pH might be responsible for reduction of AHL levels in the cultures.
     7. The influence of carbon source, temperature on the AHLs profile produced by food-derived Pseudomonas were tested. The results showed that the strains FML05-1 and FML05-2 produced the long chain AHLs and short chain AHLs at 25℃. However, the long chain AHLs were produced mainly when the strains were grown at 4℃. The strains produced the different types of AHLs when grown in the AB medium of different carbon source(such as, glucose, fructose, xylose, maltose). Overall, it was demonstrated the effect of environmental parameters (temperature and carbon source) on AHL profile production by food-derived Pseudomonas.
     8. The factors (Protase ,siderophore(s)) involved in food spoilage were assayed. The results showed that the FML05-2 was capable of the proteolytic activity and production siderophore(s) in skim milk, FML05-1 showed the vague proteolytic activity, was unable to produce the siderophore in skim milk and LB. But FML05-3 did not express the traits above.
     9. The AHLs produced by FML05-2 were degraded by the strain of the expression aiiA enzyme .The results demonstrated that the spoilage of the skim milk that caused by the FML05-2 was suppressed and decrease in the production of siderophore and proteinase by FML05-2 was observed. This indicated that there were relationship between production of siderophore, proteinase activity and production, concentration of AHL.This study lays the foundation for new strategies of food preservation based on interfering in quorum sensing of spoilage bacteria.
引文
[1] Fuqua W C, Winans S C. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulator. Journal of Bacteriology, 1994, 176: 269-275.
    [2] Whitehead N A, Barnard A M, Slater H. Quorum-sensing in Gram-negative bacteria. FEMS Microbiology, 2001, 25: 364-404.
    [3] Nealson K H, Platt T, Hastings J W. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 1970, 104: 313-322.
    [4] 綦国红,董明盛.细菌胞间的分子通讯与食品保藏新策略.广西农业生物科学,2005,24(3):259-261.
    [5] 綦国红,董明盛.细菌胞间的LuxS群体感应系统及其新型抗菌策略.中国抗生素杂志,2006,3:11-14.
    [6] Sitnikov D M, Schineller J B, Baldwin T O. Transcriptional regulation of bioluminescence genes from Vibrio ficheri. Molecular Microbiology, 1995, 17: 801-802.
    [7] Swift S, Stewart G S A B, Williams P. The inner workings of a quorum sensing signal generator. Trends Microbiology, 1996, 4: 463-465.
    [8] McClean K H, Winson M K, Fish L, Taylor A. Quorum sensing and Chromobacterium violacium: exploitation of violaceum production and inhibition for the detection of N-acyl-homoserine lactones. Microbiology, 1997, 143: 3703-3711.
    [9] Winson M K, Camara M, Latifi A, Foglino M. Multiple N-acyle-L-honosefne lactone signal molecules regulate production of virulence determinants and second metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 1995, 92: 9427-9431.
    [10] Kaplan H B, Greenberg E P. Diffusion ofa utoinducer is involved in regulation of the Vibro ficheri luminescence system. Journal of Bacteriology, 1985, 163: 1210-1214.
    [11] James P P, Delden C V, Higlewski I B. Active efflux and diffusion are involved in transport of pseudomonas aeruginosa cell to cell signals. Bacteriology, 1999,181 (4): 1203-1210.
    [12] More M I, Finger L D, Stryker J L, et al. A Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science, 1996, 272:1655-1658.
    [13] Hanzelka B L, Parsek M R, Val D L, et al. Acylhomoserine lactone synthase activity of the vibrio fischeri AinS protein. Journal of Bacteriology, 1999, 181:5766-5770 .
    [14] Laue B E, Jiang Y, Chbabra S Jacob S, et al .The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology, 2000,146:2469-2480
    [15] Helen W, Swift S, Williams P. Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Current Opinion Microbioogy, 2001, 4:186-193.
    [16] Engebrecht J, Nealson K, silverman M . Bacterial bioluminescence: isolation and genetic analysis of functions from Vbrio fischeri. Cell, 1983, 32:773-781.
    [17] Fuqua W C, Winans S C. A LuxR-Luxl type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metobolite. Journal of Biotechnology, 1994,176:2796-2806.
    [18] Wood D W, Gong F, Daykin M M, Williams P, Pierson III L S. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofasciens 30-84 in the wheat rhizosphere. Journal of Biotechnology, 1997, 179:7663-7670.
    [19] Cha C, Gao P, Chen Y C, Shaw P D, Farrand S K. Production of Acyl-Homoserine Lactone Quorum-sensing Signals by Gram-Negative Plant-Associated Bacteria. MPM1,1998,11(11):1119-1129.
    [20] Winson M K, Swift S, Fish L, Throup J P. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiology Letters,1998,163:185-192.
    [21] Graciela Brelles-Marino Eulogio J B. Detection, purification and characterisation of quorum-sensing signal molecules in plant-associated bacteria. Journal of Biotechnology, 2001, 91:197-209.
    [22] Pearson J P, Gray K M, Passador L, Tucker K D. The structureof the autoinducer molecule required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA, 1994,91, 197-201.
    [23] Chalfie M, et al. Green fluorescent protein as a marker for gene expression. Science, 1994, 263: 802.
    [24] Andersen J B, et al. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Applied and Environmental Microbiology, 2001, 67: 575-579.
    [25] Wu H, et al. Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa .Microbiology, 2000,146: 2481
    [26] Shaw P D,Gao P, Daly S L, et al. Detecting and characterizing N-acylhomoserine lactone signal molecules by thin layer chromatography . Proc Natl Acad Sci U S A,1997,94:6036-6041.
    [27] Kievit T R, et al. Bacterial Quorum Sensing in Pathogenic Relationships. Infection and Immunity, 2000, 68(9): 4839-4849
    
    [28] Miller M B, Bassler B L. Quorum sensing in bacteria. Annual Review Microbiology, 2001 ,55 :165-199.
    [29] Michiel K , Luis E Q. Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram positive bacteria: a case of multicellular behavior. Peptides, 2001, 22:1579-1596.
    [30] Bassler B L, How bacteria talk to each other: regulation of gene expression by quorum sensing. Current Opinion in Microbiology, 1999, 2: 582 -5871.
    [31] Paik S H, Chakicherla A, Hansen J N. Identification and characterization of the structural and transporter genes for a novel lantibiotic produced by Bacillus subtilis . Journal Biology Chemistry ,1998, 273:23134-42.
    [32] Ansaldi M , Marolt D , Stebe T, Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants . Molecular Microbiology, 2002, 44(6): 561-1573.
    [33] Motta O V, Ribeirob P D, Silva W D, RNAIII Inhibiting Peptide (RIP) inhibits agr-regulated toxin production. Peptides, 2001,22:1621-1627.
    [34] Morrison D A, Lee M S . Regulation of competence for genetic transformation in Streptococcus pneumoniae: a link between quorum sensing and DNA processing genes, Research on Microbiology, 2000,151:445-451.
    [35] Wil N Konings, Jan Kok, Kuipers O P, Poolman B, Lactic acid bacteria: the bugs of the new millennium. Current Opinion in Microbiology, 2000, 3:276-282.
    [36] Fernandez L, Beerthuyzen M M, Brown J, Siezen R J . Cloning, characterization, controlled overexpression, and inactivation of the major tributyrin esterase gene of Lactococcus lactis. Applied and Environmental Microbiology, 2000,66:1360-1368.
    [37] Bassler B L,Wright M, Showalter R E, et al .Intercellular signaling in vibrio harveyi: sequence and function of genes regulating expression of luminescence . Molecular Microbiology, 1993,9:773-786.
    [38] Bassler B L, Greenberg E P, Stevens A M .Cross-species induction of luminescence in the quorum-sensing bacterium vibrio harveyi. Journal of Bacteriology, 1997,179:4043-4045.
    
    [39] Chen X, Schauder S, Potier N, et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature ,2002,415:545-549.
    
    [40] Freeman J A, Bassler B L. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. Molecular Microbiology, 1999,31:665-677.
    [41] Federle M J, Bassler B L. Interspecies communication in bacteria. The Journal of Clinical Investigation, 2003,112(9): 1291-1334.
    [42] Zhao G, Wei Wan, Mansouri S, Alfaro J F, Bassler B L. Chemical Synthesis of S-Ribosyl-L-homocysteine and Activity Assay as a LuxS Substrate . Bioorganic and Medicinal ChemistryLetters ,2003,13:3897-3900.
    [43] Beeston A L, Surette M G . pfs-Dependent Regulation of Autoinducer 2 Production in Salmonella enterica Serovar Typhimurium Journal of Bacteriology, 2002:3450-3456.
    [44] Winzer K, Hardie K R, Burgess N, Doherty N . LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone, Microbiology ,2002,148: 909-922.
    [45] Xavier K B, Bassler B L. LuxS quorum sensing: more than just a numbers game. Current Opinion in Microbiology, 2003, 6:191-197.
    [46] Blehert D S , Palmer R J, Xavier J B, Almeida J S. Autoinducer 2 Production by Streptococcus gordonii DL1 and the Biofilm Phenotype of a luxS Mutant Are Influenced by Nutritional Conditions . Journal of Bacteriology, 2003,185(16):4851-4860.
    [47] Ruzheinikov S N, Das S K, Sedelnikova S E, Hartley A. The 1.2 A Structure of a Novel Quorum-sensing Protein, Bacillus subtilis LuxS. Journal ofMolecule Biology, 2001,313:111-122.
    [48] Surette M G, Miller M B , Bassler B L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA, 1999,96: 1639-1644.
    [49] Beeston A L, Surette M G . Pfs-dependent regulation of autoinducer 2 production in Salmonella enterica serovar typhimurium. Journal of Bacteriology, 2002, 184:3450-3456.
    
    [50] Taga M E , Bassler B L. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Molecular Microbiology, 2003,50(4):1411-27.
    
    [51] Stevenson B, Babb K . LuxS-mediated quorum sensing in Borrelia burgdorferi, the lyme disease spirochete. Infection and Immunity ,2002, 70:4099-4105.
    [52] Elvers K T, Park S F .Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signalling molecule. Microbiology,2002, 148:1475-1481
    [53] DeLisa M P, Wu C F, Wang L, Valdes J J, Bentley W E .DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. Journal of Bacteriology, 2001, 183:5239-5247.
    [54] Sperandio V, Li C C, Kaper J B . Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infection and Immunity,2002,70:3085-3093.
    [55] Winzer K, Sun Y H, Green A,et al. Role of Neisseria meningitidis luxS in cell-to-cell signaling and bacteremic infection. Infection and Immunity ,2002, 70:2245-2248.
    [56] Derzelle S, Duchaud E, Kunst F, et al. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Applied and Environmental Microbiology, 2002, 68:3780-3789.
    [57] Fong K P, Chung W O, Lamont R J, et al .Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infection and Immunity ,2001, 69:7625-7634.
    [58] Prouty A M, Schwesinger W H, Gunn J S ,et al. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infection and Immunity, 2002,70:2640-2649.
    [59] Taga M E, Semmelhack J L, Bassler B L . The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Molecular Microbiology, 2001, 42:777-793.
    [60] Day W A, Maurelli A T. Shigella flexneri LuxS quorum-sensing system modulates virB expression but is not essential for virulence. Infection and Immunity,2001, 69:15-23.
    [61] Zhu J, Miller M B, Vance R E, et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci-USA ,2002, 99:3129-3134.
    [62] Lilley B N, Bassler B L. Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Molecular Microbiology, 2000, 36: 940-954.
    
    [63] Kim S Y, Bassler B L. Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system. Molecular Microbiology, 2003,48:1647-1664.
    [64] Merritt J, Qi F, Goodman S D, et al .Mutation of luxS affects biofilm formation in Streptococcus mutans. Infection and Immunity, 2003,71:1972-1979.
    [65] Stroeher U H, Paton A W, Ogunniyi A D, et al. Mutation of luxS of Streptococcus pneumoniae affects virulence in a mouse model. Infection and Immunity,2003,71:3206-3212.
    [66] Lyon W R, Madden J C , Levin J C , et al. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Molecular Microbiology, 2001,42:145-157.
    [67] Ohtani K, Hayashi H, Shimizu T. The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens. Molecular Microbiology, 2002, 44:171-179.
    [68] McNab R, Ford S K, El-Sabaeny A, et al. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. Journal Bacteriology 2003,185, 274-284.
    [69] Dong, Y H, Xu J L, Li X C , Zhang L H ,et al. AiiA, a novel enzyme inactivates acyl homoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A . 2000,97:3526-3531.
    [70] Dong Y H , Wang L H , Xu J L, Zhang H B. Quenching quorum-sensingdependent bacterial infection by an N-acyl homoserine lactonase. Nature, 2001,411:813-817.
    [71] Lee S J, Park S Y, Lee J J, Yum D Y, Koo B T, Genes Encoding the N-Acyl Homoserine Lactone-Degrading Enzyme Are Widespread in Many Subspecies of Bacillus thuringiensis. Applied and Environmental Microbiology, 2002,68(8):3919-3924.
    [72] 朱晨光,孙明,喻子牛. 带cry3 Aa启动子的aiiA基因在苏云金牙孢杆菌中的表达. 生物工程学报,2003,19: 238-400.
    [73] Leadbetter J R, Greenber G E P. Metabolism of Acyl-Homoserine Lactone Quorum-Sensing Signals by Variovorax paradoxus Journal of Bacteriology, 2000,182(24): 6921-6926.
    [74] Lin Y H, Xu J L. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum quenching enzymes. Molecular Microbiology. 2003 ,47(3): 849-860.
    [75] Chun C K., Ozer E A., Welsh M J, Zabner J, Greenberg E. PInactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci U S A, 2004, 101( 10): 3587-3590.
    [76] Xu F, Byun T, Dussen H J, Duke K R. Degradation of N-acylhomoserine lactones, the bacterial quorum-sensing molecules, by acylase Journal of Biotechnology ,2003,101:89-96.
    
    [77] TagaM E . Chemical communication among bacteria.Proc. Natl.Acad.Sci.USA, 2003,100:14549-14554.
    [78] Nys R, Wright A D, Konig G M, Sticher O. New halogenated furanones from the marine alga Delisea pulchra (cf. fimbriata).Tetrahedron,1993,49: 11213-11220.
    [79] Givskov M, Nys R, Manefield M, Gram L. Eukaryotic Interference with Homoserine Lactone-Mediated Prokaryotic Signalling. Journal of Bacteriology, 1996, 178(22):6618-6622.
    [80] Manefield M, Welch M, Givskov M .Halogenated furanones from the red alga, Delisea pulchra, inhibitcarbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiology Letters, 2001,205 (1):131-138.
    [81] Reverchon S, Chantegrel B, Deshayes C,et al. New Synthetic Analogues of N-Acyl Homoserine Lactones asAgonists or Antagonists of Transcriptional Regulators Involved in Bacterial Quorum Sensing. Bioorganic & Medicinal Chemistry Letters ,2002 ,12:1153-1157.
    [82] Hentzer M ,Wu H, Andersen J B . Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. The EMBO Journal ,2003,22(15):3803-3815.
    [83] Wu H, Song Z, Hentzer M et al. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice . J Antimicrob Chemother, 2004, 53 (6): 1054-1061.
    [84] Manefield M , Rasmussen T B, Henzter M,et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover . Microbiology ,2002 ,148:1119-1127.
    [85] Gao M, Teplitski M, Robinson J B, Bauer W D. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact, 2003,16(9):827-34.
    [86] Teplitski M, Robinson J B, Bauer W D . Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria, Molecular Plant Microbe Interactions, 2000,13(6):637-48.
    [87] Teplitski M, Chen H C, Rajamani S , Gao M S .Chlamydomonas reinhardtii Secretes Compounds That Mimic Bacterial Signals and Interfere with Quorum Sensing Regulation in Bacterial. Plant Physiology, 2004, 134: 137-146.
    [88] Mathesius U, Mulders S, Gao M M, Teplitski M , Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Nalt Acad Sci USA, 2003,100(3):1444-1449.
    [89] Mae A, Montesano M, Koiv V, Palva E T Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Molecular Plant Microbe Interactions, 2001, 14(9): 1035-42.
    [90] Degrassi G, Aguilar C, Bosco M, Zahariev S, Plant Growth-Promoting Pseudomonas putida WCS358 Produces and Secretes Four Cyclic Dipeptides: Cross-Talk with Quorum Sensing Bacterial Sensors. Current Microbiology, 2002, 45:250-254.
    [91] Bauer W D, Robinson J B. Disruption of bacterial quorum sensing by other organisms. Current Opinion Biotechnology,2002, 13:234-237.
    
    [92] Smith R S., Fedyk E R., Springer T. A., Mukaida N. IL-8 Production in Human Lung Fibroblasts and Epithelial Cells Activated by the Pseudomonas Autoinducer N-3-Oxododecanoyl Homoserine Lactone Is Transcriptionally Regulated by NF-kB and Activator Protein-21. The Journal of Immunology,2001,167,366-374.
    
    [93] Telford G, Wheeler D, Williams P, Tomkins P T .The Pseudomonas aeruginosa Quorum-Sensing Signal Molecule N-(3-Oxododecanoyl)-L-Homoserine Lactone Has Immunomodulatory Activity.Infection and Immunity, 1998,66(1):36-42.
    [94] Rumbaugh K P, Hamood AN, Griswold J A,Cytokine Induction by the P. aeruginosa Quorum Sensing System During Thermal Injury. Journal of Surgical Research, 2004,116:137-144.
    
    [95] Smith R S, Harris S G, Phipps R, Iglewski B. The Pseudomonas aeruginosa Quorum-Sensing Molecule N-(3-Oxododecanoyl)Homoserine Lactone Contributes to Virulence and Induces Inflammation In Vivo. Journal of Bacteriology, 2002,184(4):1132-1139.
    [96] Alfaro J F, Zhang T, Wynn D P, et al .Synthesis of LuxS inhibitors targeting bacterial cell-cell communication. Organic letters, 2004, 6(18):3043-3046.
    
    [97] Ren D ,Sins J J, Wood T K .Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-buty-2(5H)-furanone. Letters in Applied Microbiology, 2001, 34:293-299.
    [98] Klars W,Kim R H .LuxS:its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone.Microbiology, 2002,148:909-922.
    [99] Lu L, Hume M E, Pillai S D. Autoinducer-2-like activity associated with foods and its interaction with food additives. Journal of Food Protection, 2004, 67:1457-1462.
    
    [ 100] Novak J S , Fratamico P M .Evaluation of Ascorbic Acid as a Quorum-sensing Analogue to Control Growth, Sporulation, and Enterotoxin Production in Clostridium perfringens. Journal of Food Science, 2004, 69(3):73-78.
    [101] Klars W, Kim R H. LuxS:its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology, 2002,148:909-922.
    [102] Smith R S, Iglewski B H . Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. The Journal of Clinical Investigation, 2003, 112 (10): 1460-1465.
    
    [103] Reimmann C, Ginet N, Michel L et al. Genetically p rogrammed autoinducer destruction reduces virulence gene exp ression and swarmingmotility in Pseudomonas aeruginosa PAO1. Microbiology, 2002, 148 (4): 923-932.
    [104] Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. The Journal of Clinical Investigation, 2003, 112 (9): 1300-1307.
    
    [105] Hoang T T, Schweizer H P. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. Journal of Bacteriology, 1999,181:5489-5497.
    [106] Pearson J P, Delden C Van, Iglewski B H . Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. Journal of Bacteriology, 1999,181:1203-1210.
    [107] Smith R S, Iglewski B H . Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. The Journal of Clinical Investigation, 2003, 112(10): 1460-1465.
    [108] Wu H, Song Z, Givskov M et al. Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology, 2001, 147(5): 1105-1113.
    [109] Langaee T Y, Dargis M, Huletsky A. An ampD gene in pseudomonas aeruginosa encodes a negative regulator of AmpC beta-lac-tamase exp ression. Antimicrob Agents Chemother, 1998, 42(12): 3296-3300.
    [110] Kassem A, Hothersall J , Thomas C M . Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology, 2001,147: 2127-2139.
    [111] Smadja B, Latour X, Faure D, Chevalier S, Dessaux Y, Orange N. Involvement of N-acylhomoserine lactones throughout plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum). Molecular Plant Microbe Interactions, 2004, 17(11):1269-78.
    [112] Koiv V, Mae A. Quorum sensing controls the synthesis of virulence factors by modulating rsmA gene expression in Erwinia carotovora subsp. carotovora. Molecular genetics and genomics, 2001,265(2):287-92.
    [113] Gram L, Christensen A B, Ravn L, Molin S, Givskov M, et al. Production of acylated homoserine lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods. Applied and Environmental Microbiology, 1999 ,65:3458-3463.
    [114] Gram L, Ravn L, Rasch M. Food spoilage-interactions between food spoilage bacteria. International Journal of Food Microbiology, 2002, 78: 79-97.
    [115] Ravn, L, Christensen A B, Molin S, et al. Influence of food preservation parameters and associated microbiota on production rate, profile and stability of acylated homoserine lactones from food-derived Enterobacteriaceae. International Journal of Food Microbiology, 2003, 84: 145-156.
    [1] Fuqua W C, Winans S C, Greenberg E P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 1994, 176: 269-275.
    [2] Whitehead N A, Barnard A M, Slater H. Quorum-sensing in Gram-negative bacteria. FEMS Microbiology, 2001, 25: 364-404.
    [3] Fuqua C, Burbea M, Stephen C W. Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. Journal of bacteriology, 1995, 10: 1367-1373
    [4] McClean K H, Winson M K, Fish L, Taylor A, Chhabra S R. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 1997, 143: 3703-3711.
    [5] Winson, M K, Swift S, Fish L, Throup J P. Construction and analysis of luxCDABEbased plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiology Letters, 1998,163: 185-192.
    [6] Mclean R J C, Pierson L S P, Fuqua C, et al. A simple screening protocol for the identification of quorum signal antagonists. Journal of Microbiological Methods, 2004, 58: 351-360.
    [7] Ravn L, Christensen A B, Molin S. Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. Journal of Microbiological Methods, 2001, 44: 239-251.
    [8] Paggi R A, Martone C B, Fuqua C. Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS Microbiology Letters, 2003, 221: 49-52
    [9] Gram L, Grossart H P, Schlingloff A, Possible Quorum Sensing in Marine Snow Bacteria: Production of Acylated Homoserine Lactones by Roseobacter Strains Isolated from Marine Snow. Applied and Enviromental Microbiology, 2002, 68(8): 4111-4116.
    [10] Shaw P D, Ping G, Daly S. Detecting and characterizing acyl-homoserine lactone signal molecules by thin layer chromatography. Proc Natl Acad Sci USA, 1997, 94: 6036-6041.
    [11] Miller J. Experiments in Molecular Genetics. New York: Cold Spring Harbor Laboratory Press, 1972
    [12] J.萨姆布鲁克,E.F.弗里奇.分子克隆实验指南(第2版)[M],金冬雁,梨孟枫等译.北京:科学出版社,1997:856.
    [13] Venturi V, Venuti C, Devescovi G. The plant pathogen Erwinia amylovora produces acyl-homoserine lactone signal molecules in vitro and in planta. FEMS Microbiology Letters, 2004, 241: 179-183.
    [14] Frommberger M, Kopplin P S,, Ping, G, Frisch H. A simple and robust set-up for on-column sample preconcentration-nano-liquid chromatography-electrospray ionization mass spectrometry for the analysis of N-acylhomoserine lactones.. Analytical and Bioanalytical Chemistry, 2004, 378: 1014-1020
    [15] Fuqua C, Stephen C W. Conserved cis-Acting Promoter Elements Are Required for Density-Dependent Transcription of Agrobacterium tumefaciens Conjugal Transfer Genes. Jouranl of Bacteriology, 1996, 178(2): 435-440.
    [16] McLean J C, Whiteley M, Stickle D J. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiology Letters, 1997, 154: 259-263
    [17] Ravn L, Christensen A B, Molin S, et al. Influence of food preservation parameters and associated microbiota on production rate, profile and stability of acylated homoserine lactones from food-derived Enterobacteriaceae. International Journal of Food Microbiology, 2003, 84: 145-156.
    [18] Pierson E A, Wood D W, Cannon J A, Blachere F M. Interpopulation signaling via N-homoserine lactones among bacteria in the wheat rhizosphere. Molecular Plant-Microbe Interactions, 1998, 11: 1078-1084.
    [19] Cui X., Hading R, Mutch P, Darling D. Identification of N-3-hydroxyoctanoyl-homoserine lactone production in Pseudomonas fluorescens 5064, pathogenic to broccoli, and controlling biosurfactantproduction by quorum sensing. European Journal of Plant Pathology, 2005,111:297-308.
    [20] Michels J J, Allaina E J, Borchardta S A, Hub P. Degradation pathway of homoserine lactone bacterial signal molecules by halogen antimicrobials identified by liquid chromatography with photodiode array and mass spectrometric detection Journal of Chromatography A, 2000,898:153-165.
    [1] Gram L, Ravn L, Rasch M. Food spoilage-interactions between food spoilage bacteria. International Journal of Food Microbiology, 2002, 78: 79-97.
    [2] Lambropoulou K A, Drosinos E. H., Nychas G. J. E. The effect of glucose supplementation on the spoilage microflora and chemical composition of minced beef stored aerobically or under a modified atmosphere at 4℃. International Journal of Food Microbiology, 1996,30:281-291.
    [3] Houdt R V, Aertsen A, Jansen A. Biofilm formation and cell-to-cell signaling in Gram-negative bacteria isolated from a food processing environment. Journal of Applied Microbiology, 2004, 96: 177-184.
    [4] Gambello M J, Iglewski B H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. Journal of Bacteriology, 1991, 173: 3000-3009.
    [5] Eberl L, Winson M K, Sternberg C, et al. Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology, 1996: 20: 127-136.
    [6] Throup J P, Camara M, Briggs G. Characterisation of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two quorum sensing signal molecules. Molecular Microbiology, 1995, 17: 345-356.
    [7] Venturi V, Venuti C, Devescovi G. The plant pathogen Erwinia amylovora produces acyl-homoserine lactone signal molecules in vitro and in planta. FEMS Microbiology Letters, 2004, 241: 179-183.
    [8] Swift S, Karlyshev A V, Fish L, Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: Identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules, Journal of Bacteriology. 1997, 179: 5271-5281
    [9] Gram L, Christensen A B, Ravn L. Production of acylated homoserine lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods. Applied and Environmental Microbiology. 1999. 65: 3458-3463.
    [10] Giraffa G, Rossetti L, Neviani E. An evaluation of chelex-based DNA purification protocols for the typing of lactic acid bacteria. Journal of Microbiological Methods, 2000, 42: 175-184.
    [11] 魏海雷,王烨,张力群.生防菌株2P24与CPF-10的鉴定及其生防相关性状的初步分析.植物病理学报,2004,34(1):80-85.
    [12] Kassem A, Hothersall J, Thomas CM. Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology, 2001, 147: 2127-2139.
    [13] Laue B E, Jiang Y, Chhabra S. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acyl-homoserine lactone synthase. Microbiology, 2000, 146: 2469-2480.
    [14] Mclean R J C, Pierson L S P, Fuqua C, et al. A simple screening protocol for the identification of quorum signal antagonists. Journal of Microbiological Methods, 2004, 58: 351-360.
    [15] Shaw P D, Ping G, Daly S. Detecting and characterizing acyl-homoserine lactone signal molecules by thin layer chromatography. Proc Natl Acad Sci USA, 1997, 94: 6036-6041.
    [16] Tron E.A.M., Wilke H.L, Petermann S R. Pseudomonas aeruginosa from canine otitis externa exhibit a quorum sensing deficiency. Veterinary Microbiology, 2004, 99: 121-129.
    [17] Bainton N J, Stead P, Chhabra S R. N-(3-Oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. The Biochemical journal, 1992, 288: 997-1004.
    [18] Eberl L, Winson M K, Sternberg C, Stewart G S A B. Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology, 1996, 20: 127-136.
    [19] Swift S M K, Winson P F, Chan N J, Bainton M, Birdsall P J .A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR: LuxI superfamily in enteric bacteria. Molecular Microbiology, 1993, 10: 511-520.
    [1] Fuqua C, Parsek M R, Greenberg E P. Regulation of gene expression by cell to cell communication: acyl homoserine lactone quorum sensing. Annual Review of Genetics. 2001, 35: 439-468.
    [2] Miller J. Experiments in Molecular Genetics. New York: Cold Spring Harbor Laboratory Press, 1972
    [3] J.萨姆布鲁克,E.F.弗里奇.分子克隆实验指南(第2版)[M],金冬雁,梨孟枫等译.北京:科学出版社,1997:856.
    [4] Ravn L, Christensen A B, Molin S. Influence of food preservation parameters and associated microbiota on production rate, profile and stability of acylated homoserine lactones from food-derived Enterobacteriaceae. International Journal of Food Microbiology, 2003, 84: 145-156.
    [5] Yates E A, Philipp B, Buckley C. N-acylhomoserine lactones undergo lactonolysis in a pH-temperature, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infection and Immunity, 2002, 70: 5635-5646.
    [6] Bassler B L, Wright M, Showalter R E, Silverman M R. Intracellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Molecular Microbiology, 1993, 9: 773-786.
    [7] Holden M T G, McGowan S J, Bycroft B W, Stewart G S A B. Cryptic carbapenem anti-biotic production genes are widespread in Erwinia carotovora: facile trans activation by the carR transcriptional regulator. Microbiology, 1998, 144: 1495-1508.
    [8] Throup J P, Camara M, Briggs G S, Winson M K, Chhabra S R. Characterisation of the yenI/yenR locus from Yersinia enetrocolitica mediating the synthesis of two N-acylhomoserine lactone signal molecules. Molecular Microbiology, 1995, 17: 345-356.
    [9] Ravn L, Christensen A B, Molin S, Givskov M, Gram L. Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. Journal of Microbiological Methods, 2001, 44: 239-251.
    [10] Martinez M S, Uyttendaele M, Demolder V, Debevere J. Effect of temperature and glucose concentration on the N-butanoyl-L-homoserine lactone production by Aeromonas hydrophila. Food Microbiology, 2005, 12: 145-149
    [11] Swift S, Karlyshev A V, Fish L, Durant E L. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and their cognate N-acylhomoserine lactone signal molecules. Journal of Bacteriology, 1997, 179: 5271-5281.
    [12] Atkinson S, Throup J P, Gordon S A B. A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Molecular Microbiology, 1999, 33(6): 1267-1277.
    [13] Schaefer A L, Val D L, Hanzelka B L, Cronan J E. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA, 1996, 93: 9505-9509.
    [14] Lynch M J, Swift S, Kirke D F, Keevil C W, Dodd C E R. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environmental Microbiology, 2002, 4: 18-28
    [15] Schaeffer A L, Greenberg E P, Parsek M R. Acylated homoserine lactone detection in Pseudomonas aeruginosa biofilms by radiolabel assay. Methods in Enzymology, 2001, 336: 41-47.
    [16] Jay, J M, Vilai J P, Hughes M E. Profile and activity of the bacterial biota of ground beef held from freshness to spoilage at 5-7℃. International Journal of Food Microbiology, 2003, 81: 105-111.
    [17] Byers J T, Lucas C, Salmond G P C. Nonezymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule . Journal of Bacteriology, 2002, 184: 1163-1171.
    [18] Lithgow J K, Danino V E, Jones J. Analysis of N-acyl homoserine-lactone quorum-sensing molecules made by different strains and biovars of Rhizobium leguminosarum containing different symbiotic plasmids. Plant and Soil, 2001, 232: 3-12
    [19] Schauder S, Shokat K, Surette M G, Bassler B. The LuxS family of autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Molecular. Microbiology, 2001,41:463-476.
    [20] Eberhard A, Burlingame A L, Eberhard C, Kenyon G L. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry, 1981, 20:2444-2449.
    [21] Welch M, Todd D E, Whitehead N A, McGowan S J, Bycroft B W. N-Acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO Journal, 2000,19: 631-641.
    [22] Geisenberger O, Givskov M, Riedel K, Hoiby N. Production of N-acyl-L-homoserine lactones byP. aeruginosa isolates from chronic lung infections associated with cystic fibrosis. FEMS Microbiology Letters, 2000,184:273-278.
    [23] Middleton R B, Gray K M. Multiple N-Acyl Homoserine Lactone Signals of Rhizobium leguminosarum Are Synthesized in a Distinct Temporal Pattern .Journal of Bacteriology, 2001,183(23): 6771-6777.
    [24] Fuqua C, Greenberg E P. Self perception in bacteria: quorum sensing with acylated homoserine lactones .Current Opinion in Microbiology ,1998,1(2): 183-9.
    [25] Zhang H B, Wang C, Zhang L H . The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone. Molecular Microbiology.2004, 52(5):1389-401.
    [26] Venturi V. Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different? Molecular Microbiology .2003,49(1): 1-9.
    [27] Buchholtz C, Nielsen K F, Milton D L, Larsen J L, Gram L. Profiling of acylated homoserine lactones of Vibrio anguillarum in vitro and in vivo: Influence of growth conditions and serotype. Systematic and Applied Microbiology .2006,11:15-20.
    [1] Gram L, Dalgaard P. Fish spoilage bacteria-problems and solutions. Current Opinion in Biotechnology, 2002, 13: 262-266.
    [2] Dalgaard P. Qualitative and quantitative characterization of spoilage bacteria from packed fish. International Journal of Food Microbiology, 1995, 26: 319-333.
    [3] Bainton N J, Stead P, Chhabra S R, Bycroft B W. N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. The Biochemical Journal., 1992, 288: 997-1004.
    [4] Christensen A B, Riedel K, Eberl L, Flodgaard L R, Molin S L. Quorum-sensing-directed protein expression in Serratia proteamaculans B5a. Microbiology, 2003, 149: 471-483.
    [5] Riedel K, Ohnesorg T, Krogfelt K A, Hansen T S, Omori K. N-Acyl-L-homoserine lactone-mediated regulation of the lip secretion system in Serratia liquefaciens MG1. Journal of Bacteriology, 2001, 183: 1805-1809.
    [6] Pirhonen M, Flego D, Heikinheimo R. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO Journal, 1993, 12: 2467-2476.
    [7] Eberl L. N-Acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Systematic and Applied Microbiology, 1999, 22: 493-506.
    [8] Jay J M, Vilai J P, Hughes M E. Profile and activity of the bacterial biota of ground beef held from freshness to spoilage at 5-7℃. International Journal of Food Microbiology, 2002, 81: 105-111.
    [9] Hentzer M, Riedel K, Rasmussen T B, Heydorn A, et al. Interference with Pseudomonas aeruginosa quorum sensing by a halogenated furanone compound. Microbiology, 2002, 148: 3237-3244.
    [10] Dong Y H, Xu J L, Li X C, et al. AiiA, a novel enzyme inactivates acyl homoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A, 2000, 97: 3526-3531.
    [11] 朱晨光,孙明,喻子牛.带cry3 Aa启动子的aiiA基因在苏云金芽孢杆菌中的表达.生物工程学报,2003,19(4):238-400.
    [12] Molina L, Constantinescu F, Michel L. Degradation of pathogen quorum-sensing molecules by soil bacteria:a preventive and curative biological control mechanism. FEMS Microbiology Ecology, 2003, 45: 71-81.
    [13] Shin S H, Lim Y, Lee S E. CAS agar diffusion assay for the measurement of siderophores in biological fluids. Journal of Microbiological Methods, 2001, 44: 89-95.
    [14] Sacherer P, Defago G., Haas D. Extracellular protease and phospholipase-C are controlled by the global regulatory gene gasA in the biocontrol strain Pseudomonas fluoresens CHA0. FEMS Microbiology Letters, 1994, 116: 155-160.
    [15] Ams D A., Maurice P A., Larry E. Hersman Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chemical Geology, 2002, 188: 161-170.
    [16] Matselis E., Roussis I. G. Proteinase and lipase production by Pseudomonas fluorescens. Proteolysis and lipolysis in thermized ewe's milk. Food Control, 1998, 9(5): 251-259.
    [17] Boopathi E, Rao K. S. A siderophore from Pseudomonas putida type Al: structural and biological characterization. Biochimica et Biophysica Acta, 1999, 1435: 30-40.
    [18] O'Brien A, Sharp R, Russell N J, Roller S. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiology Ecology, 2004, 48: 157-167.
    [19] Gram L. The influence of substrate on siderophore production by fish spoilage bacteria, Journal of Microbiological Methods, 1996, 25: 199-205.
    [20] Rasch M, Andersen J B, Nielsen K F. Involvement of Bacterial Quorum-Sensing Signals in Spoilage of Bean Sprouts. Applied and Environmental Microbiology, 2005, 71(6): 3321-3330.
    [21] Bruhn J B, Christensen A B, Ravn L. Presence of acylated homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat. Applied and Environmental Microbiology, 2004, 70(7): 4293-4302.
    [22] Gram L, Christensen A B, Ravn L, Molin S. Production of acylated homoserine lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods. Applied and Environmental Microbiology. 1999, 65: 3458-3463.
    [23] 綦国红,董明盛.细菌胞间的分子通讯与食品保藏新策略.广西农业生物科学,2005,24(3):259-261.
    [24] Teplitski M, Chen H, Rajamani S, Gao MS. Chlamydomonas reinhardtii Secretes Compounds That Mimic Bacterial Signals and Interfere with Quorum Sensing Regulation in Bacterial. Plant Physiology, 2004, 134: 137-146.
    [25] Dong, Y H, Xu J L, Li X C, Zhang L H, et al. AiiA, a novel enzyme inactivates acyl homoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A, 2000, 97: 3526-3531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700