用户名: 密码: 验证码:
基于三轴土样变形数字图像测量的黄土变形和强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土在我国有比较广泛的分布。它作为一种特殊的土,除了具有一般土的工程性质外,还具有其独特的力学特征,主要如湿陷性、结构性和非饱和等。为满足黄土地区岩土工程建设的需要,黄土的工程性质研究一直是我国岩土工程和岩土力学研究的重要领域。但是受到三轴试验手段的限制,使用常规三轴试验方法研究非饱和黄土湿陷变形和强度特性时难以准确测定土体变形,也因为黄土的力学试验周期长,比较耗时,所以有关黄土试验资料的积累还不够丰富。
     将基于亚像素角点检测的数字图像测量方法应用于三轴试验试样变形测量中,为三轴试验试样变形测量提供了一种新方法,该方法通过捕捉橡皮膜上方块标记的角点位移对试样变形进行测量,测量结果能够达到较高的亚像素精度。应用该方法能够更加准确地测量饱和土和非饱和土三轴试验试样的局部变形,进而深入研究土在三轴应力状态下的变形与强度特性。
     本文使用GDS三轴试验仪,并结合数字图像测量系统对陕西杨凌Q_3黄土进行了三轴条件下的分级固结试验、三轴湿陷试验、不同应力比条件下的三轴增湿试验以及固结不排水剪切试验,分析和探讨了黄土在固结、湿陷和剪切阶段的变形特性和强度特性。通过研究,本文主要取得了如下成果:
     首先,通过分析黄土分级固结试验数据,得到了不同围压下土体的应变和时间之间的关系,探讨了三轴固结过程中,试样帽和底座对试样产生端部约束的影响范围,尝试使用围压和体应变的关系曲线确定土体的临界压力,为进一步预测土体在剪切试验中的应力—应变形式提供一定的依据。研究发现:在某一级围压下,无论是轴向应变、径向应变还是体积应变都和时间呈良好的双曲线关系。坐标变换后可以得到每级围压下的最终应变值,拟合发现最终应变值和围压呈良好的幂函数关系。应用通过拟合得到的应力—应变—时间的经验公式不但可以得到给定应力水平下的土体最终固结变形量,而且可以得到任意时刻的变形量。将土样划分为11个土段并对其径向应变进行分析发现,土体在中间五段的变形比较均匀,其他部分变形差异较大。因此,为减少端部约束对试样变形的影响,建议采用土体中间五段数据进行分析整理。
     基于重塑黄土三轴湿陷试验结果得到了试样各截面达到给定湿陷径向应变值所需要的时间,分析了土体累积湿陷体变率与湿陷时间的关系,并对重塑黄土湿陷变形影响因素进行了探讨。研究发现:土体湿陷应变与围压、初始含水率和初始干密度均呈反比例关系。使用试样中间五段数据进行处理得到的湿陷应变明显高于使用试样整体数据得到的湿陷应变值,但由于端部约束对不同初始条件的土体影响程度不同,因此两种方法得到的曲线形式并不完全一致。
     基于重塑黄土不同应力比条件下的三轴增湿试验,定义了单位球应力下的湿陷体应变ε_(vp)~*,以此表明球应力对湿陷体应变的贡献率。研究发现:在相同含水率的情况下,围压越大,湿陷体应变的值也越大,但同时,围压越大,单位球应力下的湿陷体应变却越小。提出了由试验结果得到的s_(vp)~*与含水率w之间关系的数学表达式,该表达式中包括峰值单位球应力下的湿陷体应变ε_(vpmax)~*和表征曲线关系发生转折时的特征含水率w~*这2个待定参数,可以通过试验确定。通过归一化处理发现在4种k值和4种围压组合的16种情况下的试验结果都分布在S型条带内,通过平均化处理,给出了以特征含水率w~*的平均值,最大值和最小值确定的平均特征曲线、下包络线和上包络线。研究发现对于参数ε_(vpmax)~*,围压水平越低,在不同k值条件下的ε_(vpmax)~*之间差异越大,反映出在低围压,高偏压固结条件下单位球应力下重塑黄土会产生更大的湿陷体应变,对于实际工程而言不利于安全,因此在工程中应尽量避免低围压,高偏压固结情况的产生。
     最后通过对不同初始条件下的重塑黄土进行固结不排水剪切试验分析了不同初始条件下土体的应力—应变表现形式,并对围压、初始含水率和初始干密度等影响因素进行了探讨,研究了土体抗剪强度与含水率、干密度的关系。研究发现在不同的初始含水率和初始干密度条件下,重塑黄土应力—应变关系曲线既有软化型又有硬化型。对比局部变形和整体变形的结果,认为在较高围压条件下,围压对于端部约束对测量结果的影响起到了限制作用。研究还表明采用局部变形数据进行数据处理,其优势在于对软化型曲线的测量上更加准确,体变的突变点更加清晰。对于体变的测量更加准确,试验数据整理方法的差异对于体变—轴向应变关系曲线而言比应力—应变关系更加敏感。研究重塑黄土粘聚力和内摩擦角与含水率之间的关系后发现:由整体变形和局部变形确定的粘聚力和内摩擦角都随着含水率的增大而减小,随着干密度的增大而增大,且由局部变形确定的内摩擦角比由整体变形确定的值要小。含水率对粘聚力和内摩擦角都有很大影响,粘聚力和内摩擦角随着含水率的增加而下降,相关分析表明粘聚力与含水率二者呈指数关系,内摩擦角与含水率之间呈二次多项式关系。水分状态变量对重塑黄土抗剪强度指标粘聚力的影响在含水率水平较低时起主要作用,在含水率水平较高时,对土体抗剪强度的弱化作用并不显著。水分状态变量对抗剪强度指标内摩擦角的影响在含水率水平较高时起主要作用,在含水率水平较低时,对土体抗剪强度的弱化作用并不显著。
Loess is widely distributed in China.Besides the engineering properties of general soil, loess has particular mechanics characteristics,such as collapsibility,structural property,and unsaturated.In order to meet requirements in the geotechnical engineering construction in loess area,study on engineering characteristics of loess is an important field of research on the geotechnical engineering and geotechnical mechanics.But accumulation of loess's test data is not enough abundant,because the limitation of triaxial test means,and the long test period,and much time consuming of the mechanics tests of loess.
     Digital image measurement method,which is based on sub-pixel comer detection,is a new technique of triaxial specimen deformation measurement.This technique measures the specimen deformation through the tracking of comer detection displacement,and the result precision can be up to sub-pixel level.This new technique can measure the triaxial specimen deformation of both saturated and unsaturated soil more exactly,and can deeply analyze the soil stress-strain property under triaxial stress state.
     As a typical unsaturated soil,it is difficult to accurately confirm the deformation of loess sample in order to study the characteristics of collapsible deformation and strength using conventional triaxial test method.A new deformation measurement method is provided in triaxial test of loess by using digital image measurement system.In this paper,deformation and strength characteristics of loess in the process of consolidation,collapse and shearing are analysed and inquired by means of triaxial staged consolidation test,triaxial collapsibility test, triaxial moistening test under different stress ratio and consolidation-undrained triaxial shear test of Yangling Q_3 loess in Shanxi by using of GDS triaxial testing apparatus along with digital image measurement system.
     Firstly,the relationship between strain and time of loess under different confining conditions is obtained by analyzing data of triaxial staged consolidation,the influence scope of end restraint is discussed,and the critical strength is determined through analysis of the relation between confining pressure and volumetric strain.The research shows that,to axial strain,radial strain and volumetric strain,each of which and time can be described with hyperbolic curve under the certain confining pressure.The final strain under each grade pressure can be obtained through coordinate transformation,and the final strain has an exponential relationship with the confining pressure by fitting.The formula found by fitting that can predict the consolidation deformation of soil under next grade load.The Soil specimen is divided into 11 segments and the radial strain is analyzed,what can find that the deformation difference of the middle five segments is uniform,and the deformation of other parts is great different.Therefore,in order to reduce the effect of end constraint on the deformation of specimen,using the data of middle five segments is proposed to analysis.
     The results based on the remolded loess triaxial collapsibility test can educe the time that every cross-section of specimen achieved required collapsible radial strain.The relationship between the accumulated collapsible volumetric strain rate of soil and the time is analyzed, and the factors of collapsible deformation for remolded loess are discussed.Study shows that collapsible strain with confining pressure,initial water content and initial dry density have reciprocal proportion relations.The collapsible strain can be gained by using the data of middle five segments of the specimen to process that significantly higher than the collapsible strain of overall specimen.However,due to the effect of end constraints is different on the soil under different initial conditions,so the curves of two methods are not exactly same.
     Based on the triaxial moistening test of remolded loess under different deviatoric stress,ε_(vp)~*,the collapsible volumetric strain in the unit spherical stress is defined in order to show the contribution rate of stress on the collapsible volumetric strain.Under the same water content condition,the greater confining pressure,the greater collapsible volumetric strain,but at the same time,the collapsibile volume strain under the unit spherical stress was smaller when the confining pressure was greater.The mathematical expression ofε_(vp)~* and water content w is made by the test results,which included two parameters those are the collapsible volumetric strain under the peak unit spherical stress and the characteristic water content w~*. Through normalization processing found that 4 kinds of k value and 4 kinds of confining pressure combined 16 kinds of circumstances,the test results are distributed in S-band.By an average of treatment,the average characteristic curve,the lower envelope and the upper envelope are determined by the average,maximum and minimum value of the characteristic water content.To parameterε_(vpmax)~*,the lower confining pressure,the greater the difference of eachε_(vpmax)~* under different k values conditions.The results reflect that the remolded loess can generate more collapsible volumetric strain in the unit spherical stress under the low confining pressure and the high deviatoric pressure consolidation,which is not conducive to security at actual projects,so it should try to avoid generating low confining pressure and high deviatoric pressure consolidation in the project.
     Finally,stress-strain curve types of remolded loess under different initial conditions are analyzed,and the influence factors such as confining pressure,initial water content,initial dry density are discussed,the relationships between shear strength and water content,dry density are studied.It is found that strain softening and hardening both appeared in the stress-strain curves of remolded loess under different initial water content and initial dry density. Compared the result of local deformation with overall deformation,confining pressure restricts the influence which end restraint to measurement result under higher confining pressure.The study also indicates that the advantages of data processing with the local deformation are more accurate measurement of strain softening curve,much clearer break point of volumetric strain.The relationships between the cohesive strength,the friction angle and water content of remolded loess are studied.And the research finds that the cohesive strengths and the friction angles confirmed with the local deformation and overall deformation both minish along with the accretion of water content,increase along with the increase of dry density,and the friction angle obtained from the local deformation is smaller than the overall deformation.Analysis indicates that the cohesive strength has an exponential relationship with the water content,the relationship between the friction angle and water content conforms to quadratic polynominal function.The influence on cohesive strength from water state variable plays main effect only when the level of water content is lower,the debilitation is not significant on the shear strength when the level of water content is higher. The influence on the friction angle from water state variable plays main effect only when the level of water content is higher,the debilitation is not sigcificant on the shear strength when the level of water content is lower.
引文
[1]高国瑞.我国黄土湿陷性质的形成研究.南京建筑工程学院学报,1994,2:1-8.
    [2]A.A.穆斯塔伐耶夫著.湿陷性黄土上地基与基础的计算.张中兴译.北京:水利水电出版社,1984.
    [3]关文章.湿陷性黄土工程性能新篇.西安:西安交通大学出版社,1992.
    [4]冯连昌,郑晏武.中国湿陷性黄土.北京:中国铁道出版社,1982.
    [5]刘祖典.黄土力学与工程.西安:陕西科学出版社,1997.
    [6]中华人民共和国国家标准,湿陷性黄土地区建筑规范(GB 50025-2004).北京:中国建筑工业出版社,2004.
    [7]高华平.注浆法在加固黄土地基中的应用.山西建筑,2001,27(1):67-68.
    [8]杨有海,李中歧,徐光有等.″双灰桩″加固既有建筑物饱和黄土地基研究.兰州铁道学院学报(自然科学版),2002,21(1):56-59.
    [9]邵福元,刘玉良.桥台因湿陷性黄土地基沉降产生的病害的综合整治.铁道建筑,2002,8:19-22.
    [10]郑书彦,李占斌,李喜安等.黄土滑坡稳定性及其整治对策研究.水土保持通,2002,22(3):25-27.
    [11]王家鼎,白铭学,肖树芳等.强震作用下低角度黄土斜坡滑移的复合机理研究.岩土工程学报,2001,23(4):445-449.
    [12]汪国烈,明文山.湿陷性黄土的浸水、变形研究与工程对策.湿陷性黄土研究与工程.北京:中国建筑工业出版社,2001:21-32.
    [13]陈正汉.重塑非饱和黄土的变形、强度、屈服和水量变化特性.岩土工程学报,1999,21(1):82-90.
    [14]郭敏霞,张少宏,邢义川.非饱和原状黄土湿陷变形及孔隙压力特性.岩石力学与工程学报,2000,19(6):785-788.
    [15]钱鸿缙,王继唐,罗宇生等.湿陷性黄土地基.北京:中国建筑工业出版社,1985.
    [16]关文章.试论可溶盐与黄土湿陷机理.桂林冶金地质学院学报,1986,(3):271-278.
    [17]孙建中.黄土湿陷的原因、因素和机制(理)湿陷性黄土研究与工程.北京:中国建筑工业出版社,2001,146-151.
    [18]涂光祉.试论黄土地基的自重湿陷敏感性.工程勘察,1980:168-170.
    [19]谢定义.试论我国黄土力学研究中的若干新趋向.岩土工程学报,2001,23(1):3-13.
    [20]张炜.黄土力学性质试验中的若干问题.工程勘察,1995,3:6-12.
    [21]郑建国,张苏民.湿陷性黄土在增湿时强度特性.水文地质与工程地质,1989,2:15-18.
    [22]郑建国,张苏民.湿陷性黄土的增湿变形特性.岩土工程学报,1990,12(4):40-44.
    [23]余雄飞,谢定义.超湿陷黄土及其湿陷特性.西安理工大学学报,1996,12(2):133-137.
    [24]孙建中,刘建民.黄土的未饱和湿陷、剩余湿陷和多次湿陷.岩土工程学报,2000,22(3):365-367.
    [25]熊冰,胡小明.黄土路基湿化特性的离心模型研究.四川联合大学学报(工程科学版),1999(1):1-4.
    [26]董思远.湿陷性黄土的变形与强度特性:(博士学位论文).西安:西安理工大学,1988.
    [27]陈正汉,刘祖典.黄土的湿陷变形机理.岩土工程学报,1986,8(2):1-12.
    [28]陈正汉,刘祖典.黄土的变形特性.土木工程学报,1985,18(1):69-76.
    [29]张原丁.论黄土的湿陷敏感性.岩土工程学报,1996,18(5):79-83.
    [30]张炜,张苏民.我国黄土工程性质研究的发展.岩土工程学报,1995,17(6):80-86.
    [31]张宗枯.黄土湿陷变形过程中微结构变化特征及湿陷性评价.中国黄土.石家庄:河北教育出版社,2003,4.
    [32]高国瑞.中国黄土的微结构与地理、地质环境的关系.地质学报,1984,3:265-272.
    [33]高国瑞.黄土显微结构分类与湿陷性.中国科学,1980,12:1203-1208.
    [34]雷祥义.西安附近黄土孔隙特征.水文地质工程学报,1984,4:34-37.
    [35]雷祥义.陕北陇东黄土孔隙分布特征.科学通报,1985,3:206-209.
    [36]雷祥义.西安黄土显微结构类型.西北大学学报,1983,4:56-65。
    [37]施斌,刘志彬,蔡奕.超微型贯入仪的研制及其应用.岩土力学,2005,26(8):1211-1215.
    [38]张宗枯.中国黄土.石家庄:河北教育出版社,2003,4.
    [39]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形-强度的关系.水利学报,1999,10:1-6.
    [40]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径.岩土工程学报,1999,21(6):651-656.
    [41]胡再强.黄土结构性模型及黄土渠道的浸水变形试验与数值分析:(博士学位论文).西安:西安理工大学,2000.
    [42]胡再强等.黄土湿陷变形的室内试验研究,湿陷性黄土研究与工程.北京:中国建筑工业出版社,2001,85-92.
    [43]刘祖典,谢定义.黄土的湿陷变形特性和机理.中国科学院基金课题研究报告,陕西机械学院,1989.
    [44]张苏民,张炜.湿陷性黄土(Q3)的增湿变形特征.岩土工程学报,1990,12(4):21-31.
    [45]张苏民,张炜.减湿和增湿时黄土的湿陷性.岩土工程学报,1992,14(1):57-61.
    [46]焦五一.地基变形计算的新参数.弦线模量的原理与应用.水文地质工程地质,1986,8(2):1-12.
    [47]焦彦利.黄土增湿的工程性状仿真分析:(硕士学位论文).西安:长安大学,2004.
    [48]刘保健,谢定义,郭增玉.黄土地基增湿变形的实用算法.岩土力学,2004,25(2):270-274.
    [49]杨代泉.非饱和土二维广义固结非线性数值模型.岩土工程学报,1992,14:2-11.
    [50]Habibagahi G,Mokohberi M.A hyperbolic model for volume change behavior of collapsible soils.Canadian Geotechnical Journal,1998,35:264-272.
    [51]沈珠江.结构性粘土的非线性损伤力学模型.水利水运科学研究,1993,4:247-255.
    [52]沈珠江,胡再强.黄土的二元介质模型.水利学报,2003,7:1-6.
    [53]Fredlund D G,Xing A,Huang S.Predicting the permeability function for unsaturated soils using the soil-water characteristic curve.Canadian Geotechnical Journal,1994,31(4):533-546.
    [54]Fredlund D G,Xing A,Fredlund M D,et al.The relationship of the unsaturated soil shear strength to the soil-water characteristic curve.Canadian Geotechnical Journal,1996,33(3):440-448.
    [55]Wang Q,Pufahl D E,Fredlund D G.A study of critical state on an unsaturated silty soil.Canadian Geotechnical Journal,2002,39:213-218.
    [56]Wheeler S J,Sivakkumar V.An elasto-plasticity critical state framework for unsaturated silt soil.Geotechnique,1995,45(1):35-53.
    [57]陈正汉,周海清.非饱和压实黄土的本构关系研究.西部探矿工程,1996,8:1-4.
    [58]Alonso E E,Gens A,Josa A.A constitutive model for partially saturated soils.Geotechnique,1990,40(3):405-430.
    [59]沈珠江.广义吸力和非饱和土的统一变形理论.岩土工程学报,1996,18(2):1-9.
    [60]苗天德.黄土湿陷变形机理的研究现状,湿陷性黄土工程与研究.北京:中国建筑工业出版社,2001,73-82.
    [61]苗天德,王正贵.考虑黄土微结构失稳的湿陷性和黄土变形机理.中国科学(B),1991,1.
    [62]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题.岩土工程学报,1996,18(1):95-97.
    [63]蒋明镜,沈珠江.结构性粘土研究综述.水利水电科学进展,1999,19(1):26-30.
    [64]林崇义.黄土的结构特征.中国科学院哈尔滨土木建筑研究院黄土基本性质研究论文集,1962.
    [65]骆亚生,谢定义.复杂应力状态下的土的结构性参数.岩石力学与工程学报,2004,23(24):4248-4251.
    [66]雷祥义.黄土的孔隙大小与湿陷性.水文地质与工程地质,1987,5:15-18.
    [67]杨运来.黄土湿陷机理的研究.中国科学B辑,1998,7:756-765.
    [68]张宗枯.我国黄土显微结构的研究.地质学报,1964,44(3).
    [69]王永炎,林在贯.中国黄土的结构特征及物理力学性质.北京:科学出版社,1990.
    [70]汤连生,王思敏.湿吸力及非饱和土有效应力原理探讨.岩土工程学报,2000,19(1):83-88.
    [71]汤连生.从粒间吸力特性再认识非饱和土抗剪强度理论.岩土工程学报,2001,23(4):412-417.
    [72]汤连生.黄土湿陷性的微结构不平衡吸力成因论.工程地质学报,2003,11(1):24-30.
    [73]沈珠江.理论土力学.北京:水利水电出版社,2000.
    [74]张炜,张苏民.非饱和黄土的结构强度特性.水文地质,1992,14(1).
    [75]党进谦,李靖.非饱和土的结构强度与抗剪强度.水利学报,2001,7:79-90.
    [76]党进谦,李靖.非饱和黄土的结构特征.岩土工程学报,1997,19(2):56-61.
    [77]胡再强,沈珠江,谢定义.非饱和黄土的显微结构与湿陷性.水利水运科学研究,2000,2.
    [78]胡再强,沈珠江,谢定义.结构性黄土的变形特性.岩土力学与工程学报,2004,23(24):4142-4146.
    [79]骆亚生.非饱和黄土在动静复杂应力条件下的结构变化特性及结构性本构关系研究:(博士学位论文).西安:西安理工大学,2003.
    [80]邵生俊,周飞飞,尤吉勇.原状黄土结构性及其定量化参数研究.岩土工程学报,2004,26(4):531-536.
    [81]Zhou Minfeng.Study on a nonlinear stress-strain relationship of cemented loess.Journal of Harbin Institute of Technology,2002:1400-1402.
    [82]Xia Wangmin,Guo Jinxiao,Guo Zengyu.Strain-space-based elasto-plastic constitutive model of loess.Chinese Journal of Rock Mechanics and Engineering,2004:4147-4150.
    [83]Prevost J H,Hoeg K.Soil mechanics and plasticity analysis of strain softening.Geotechnique,1975,25(2):279-297.
    [84]夏旺民,郭增玉.Q1黄土的非线性弹性模型.工程力学,2002,23(增刊).
    [85]Prashant,Penumadu D.Effect of intermediate principal stress on overconsolidated Kaolin clay.Journal of geotechnical and geoenvironmental engineering,ASCE,2004,130(3):284-292.
    [86]张斌,屈智炯.考虑剪胀和软化特性的粗粒土应力应变模型.岩土工程学报,1991,6:64-69.
    [87]龚晓南,叶黔元,徐日庆.工程材料本构方程.北京:中国建筑工业出版社,1985.
    [88]黄文熙.土的工程性质.北京:水利水电出版社,1984.
    [89]蒋彭年.土的本构关系.北京:科学出版社,1982.
    [90]李广信.高等土力学.北京:清华大学出版社,2003.
    [91]沈珠江.几种屈服函数的比较.岩土力学,1993,1:41-50.
    [92]沈珠江.软土工程特性和软土地基设计.岩土工程学报,1998,1:110-111.
    [93]郭瑞平,李广信.以塑性功函数为硬化参数的土的弹塑性模型.清华大学学报,2000,5:125-127.
    [94]郭瑞平,李广信.土的应变软化模型及其在边值问题中的应用.清华大学学报,2000,40(8):106-109.
    [95]郭瑞平,李广信.土的应变软化性状的弹塑性模拟.中国土木工程协会第八届土力学及岩土工程学术会议论文集,万国学术出版社,1990,10:73-76.
    [96]夏旺民,郭增玉.Q1黄土的弹塑性软化模型.西安理工大学学报,2004,20(3):241-244.
    [97]郑颖人,龚晓南.岩土的塑性理论基础.北京:中国建筑出版社,1990.
    [98]Chu J,Lo S C R.Asymptotic behavior of a granular soil in strain path testing.Geotechnique,1994,44(1):65-82.
    [99]Chu J S,Leroueil,Leong W K.Unstable behaviour of sand and its implication for slope instability.Canadian Geotechnical Journal,2003,40:873-885.
    [100]夏旺民,郭金晓,郭增玉.应变空间Q1黄土的弹塑性模型.岩石力学与工程学报,2004,23(24):4147-4150.
    [101]殷宗泽.一个土体的双屈服面应力-应变模型.岩土工程学报,1988,4:64-71.
    [102]陈瑜瑶,王敬林,郑颖人.由试验数据拟合重庆红粘土的屈服条件.岩土力学,2001,22(4):443-450.
    [103]段建立,郑颖人.一种基于广义塑性力学的硬化剪胀土模型.岩土力学,2000,21(4):360-362.
    [104]孔亮,郑颖人.一个基于广义塑性力学的土体三屈服面模型.岩土力学,2000,21(2):108-112.
    [105]郑颖人.广义塑性力学理论.岩土力学,2000,21(2):188-192.
    [106]郑颖人,段建立,陈瑜瑶.广义塑性力学中的屈服面与应力-应变关系.岩土力学,2000,21(3):305-308.
    [107]郑颖人,陈瑜瑶,段建立.广义塑性力学的加卸载准则与土的本构模型-广义塑性力学讲座(3).岩土力学,2000,21(4):426-429.
    [108]郑颖人,严德俊.基于试验拟合的土的多重屈服面模型.第五届全国岩土力学数值分析与解析方法讨论会论文集,重庆,1994,10:9-14.
    [109]沈珠江.结构性粘土的弹塑性损伤模型.岩土工程学报,1993,15(3):21-28.
    [110]Desai C S,Toth J.Disturbed state constitutive modeling based on stress-strain and nondestructive behavior.Int.J.Solids Struct.,1996,33:1619-1650.
    [111]Desai C S,Basaran C,Zhang W.Numerical algorithms and mesh dependence in the Disturbed State Concept.Int.J.Numer.Meth.Engng.,1997,40:3059-3-83.
    [112]Desai C S,Wang Zhichao.Disturbed state model for porous saturated materials.International Journal of Geomechanics,2003,3(2):260-265.
    [113]Desai C S.Evaluation of liquefaction using disturbed state and energy approches.J.Geotech.Geoenviron.Eng.,ASCE,2000,126(7):618-631.
    [114]Shao,C,Desai,C S.Implementation of DSC model and application for analysis of field pile test under cyclic loading.Int.J.Numer.Analyt.Meth.Geomech.,2000,24(6):601-624.
    [115]沈珠江,章为民.损伤力学在土力学中的应用.第三届全国岩土力学数值分析与解析方法讨论会论文集,珠海,1988,586-595.
    [116]沈珠江.土体变形特性的损伤力学模拟.第五届全国岩土力学数值分析与解析方法讨论会论文集,重庆,1994,1-8.
    [117]沈珠江.结构性粘土的堆砌体模型.岩土力学,2000,21(1):2-4.
    [118]杨松岩,俞茂宏.一种基于混合物理论的非饱和岩土类材料的弹塑性损伤模型.岩土工程学报,1998,20(5):58-63..
    [119]孙红,赵锡宏.软土的弹塑性各向异性损伤分析.岩土力学,1999,20(3):7-12.
    [120]赵锡宏,孙红,罗冠威.损伤土力学,上海:同济大学出版社,2000.
    [121]张我华,金荑.各向异性损伤力学中的弹塑性分析.固体力学学报,2000,21(1):89-94.
    [122]卢再华.非饱和膨胀土的弹塑性损伤本构模型及其在土坡多场耦合分析中的应用:(博士学位论文).重庆:重庆后勤工程学院,2000.
    [123]夏旺民.黄土的软化本构模型研究:(硕士学位论文).西安:西安理工大学,2002.
    [124]夏旺民,郭增玉.Q1黄土的弹塑性损伤模型.岩土力学,2004,25(9):1423-1426.
    [125]夏旺民.黄土弹塑性损伤本构模型及工程应用研究:(博士学位论文).西安:西安理工大学,2005.
    [126]陈春霖,张惠明.饱和砂土三轴试验中的若干问题.岩土工程学报,2000,22(6):659-663.
    [127]常素萍.浅谈影响三轴压缩试验结果的因素.岩土工程界,2004,6(11):69-72.
    [128]Bressani L A.External measurement of axial strain in the triaxial test.Geotechnical Testing Journal,1995,18(2):226-240.
    [129]Ueng T,Tzou Y,Lee C.The effect of end restraint on volume change and partical breakage of sands in triaxial tests.Advanced Trixial Testing of Soil and Rock,ASTM STP977,1988.
    [130]Duncan J M,Dunlop P.The significance of cap and base restraint.Journal of Soil Mechanics and Foundations Division,ASCE,1968,94(1):271-290.
    [131]Zhang H,Garga V K.Quasi-steady state:a real behavior.Canadian Geotechnical Journal,1997,34(5):749-761.
    [132]Rowe P W,Barden L.Importance of free ends in triaxial testing.Journal of Soil Mechanics and Foundations Division,ASCE,1964,90(1):1-27.
    [133]Shockly W G,Ahlvin R G.Nonuniform condition in triaxial test specimens.Proc.Research Conf.on Shear Strength of Cohesive Soils,1960.
    [134]Morgan J R,Moore P J.Experimental techniques:Soil mechanics.American:Elsevier publishing company,1968.
    [135]Goto S,Tatsuoka F.A simple gauge for local small strain measurements in the laboratory.Soils and Foundations,1991,31(1):169-180.
    [136]Tatusoka F,Shibuya S,Goto S,et al.Discussion on the use of Hall effect semiconductors on geotechnical instrumentation.Geothchnical Testing Journal,ASTM,1990,13(1):63-65.
    [137]孔宪京,韩国城,娄树莲等.土工试验新技术研究.辽宁省第二届青年学术年会,大连,1995.
    [138]孔宪京,贾革续,邹德高等.微小应变下堆石料的变形特性.岩土工程学报,2001,23(1):32-37.
    [139]Clayton C R I,Khatrush S A,Bica A V D et al.Use of Hall effect semiconductors in geotechnical instrumentation.Geotech Test,1989,12(1):69-76.
    [140]Escario V,Uriel S.Optical methods of measuring the cross-section of samples in the triaxial tests.Proc.5th ICMFE,1961.
    [141]David M C.A technique for measuring radial deformation during repeated load triaxial testing.Canadian Geotechnical Journal,1978,15:426-429.
    [142]El-Ruwayih A A.Design,manufacture and performance of a lateral strain device.Geotechnique,1976,26.
    [143]Wheeler,S J.The stress-strain behaviour of soils containing gas bubbles.Ph.D.Thesis,University of Oxford,Oxford,1986.
    [144]Sivakumar V.A critical state framework for unsaturated soil.Ph.D.Thesis,University of Sheffield,Sheffield,1993.
    [145]殷建华.新双室三轴仪用于非饱和土体积变化的连续测量和三轴压缩试验.岩土工程学报,2002,24(5):552-555.
    [146]徐永福,刘松玉.非饱和土强度理论及其工程应用.南京:东南大学出版社,1999.
    [147]Ng C W W,Zhan L T,Cui Y J.A new simple system for measuring volume changes in unsaturated soils.Canadian Geotechnical Journal,2002,39(2):757-764.
    [148]詹良通,吴宏伟.新双室非饱和土体积变化量测系统.中国土木工程学会第9届土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003:401-405.
    [149]詹良通,吴宏伟.非饱和膨胀土变形和强度特性的三轴试验研究.岩土工程学报,2006,28(2):196-201.
    [150]Sun D A,Matsuoka H,Xu Y F.Collapse behavior of compacted clays in suction-controlled triaxial tests.Geotechnical Testing Journal,ASTM,2004,27(4):362-370.
    [151]Sun D A,Matsuoka H,Cui H B.Three-dimensional elasto-plastic model for unsaturated compacted soils with different initial densities.International Journal for Numerical and Analytical Methods in Geomechanics,2003,27:1079-1098.
    [152]Escario V,Uriel S.Optical methods of measuring the cross-section of samples in the triaxial test.Proc.5th ICSMFE,1961,1.
    [153]Juca J F T,Frydman S.State of the art report-Experimental techniques.Encontro Sobre Solos Nao Saturados.1995:76-111.
    [154]Emir J M,Nicholas C C,Joey K P.Digital image techniques for volume change measurements in triaxial tests.Proceedings of the Conference on Digital Image Processing Techniques and Applications in Civil Engineering,1993:211-219.
    [155]Khalid A A,Mohammad Z,Al-Hamdan.Estimating volume change of triaxial soil specimens from planar images.Computer-Aided Civil and Infrastructure Engineering,2001,16(6):415-421.
    [156]邵龙潭,王助贫,韩国城等.三轴试验土样径向变形的计算机图像测量.岩土工程学报,2001,23(3):337-341.
    [157]邵龙潭,王助贫,刘永禄.三轴土样局部变形的数字图像测量方法.岩土工程学报,2002,24(2):159-163.
    [158]王助贫,邵龙潭,刘永禄等.三轴试样变形数字图像测量误差和精度分析.大连理工大学学报,2002,42(1):98-103.
    [159]王助贫.三轴试验土样变形的数字图像测量方法及其应用:(博士学位论文).大连:大连理工大学,2002.
    [160]刘永禄.三轴实验土样变形数字图像测量的实现:(硕士学位论文).大连:大连理工大学,2002.
    [161]邵龙潭,孙益振,王助贫等.数字图像测量技术在土工三轴试验中的应用研究.岩土力学,2006,27(1):29-34.
    [162]孙益振.基于三轴试样局部变形测量的土体应力应变特性研究:(博士学位论文).大连:大连理工大学,2005.
    [163]邵龙潭,董建军,刘永禄等.基于亚像素角点检测的试样变形图像测量方法.岩土力学,2008,29(5):1329-1333.
    [164]董建军,邵龙潭,刘永禄.基于图像测量的非饱和土p-s平面屈服轨迹研究.水利水运工程学报,2007,3:6-11.
    [165]Dong Jianjun,Shao Longtan,Liu Yonglu.Study of deformation properties of unsaturated compacted soil in suction-controlled triaxial test based on digital image measurement method.The International Workshop on Constitutive Modelling-Development,Implementation,Evaluation,and Application,HongKong,2007,1:380-386.
    [166]Shao Longtan,Liu Yonglu,Dong Jianjun.Strain measurement of soil specimen in triaxial test with digital image processing technology.6th International Symposium on Test and Measurement,Dalian,2005,6:4368-4371.
    [167]刘永禄,邵龙潭.角点识别在三轴试验土样变形数字图像测量中的应用.教育部科技发展中心:中国科技论文在线,2007,5.
    [168]邵龙潭,刘永禄.三轴试验土样变形数字图像测量(DDIM)的一种改进算法.全国第十一届试验力学学术会议,2005,1020-1022.
    [169]董建军.基于数字图像测量的非饱和压实土应力-应变特性研究:(博士学位论文).大连:大连理工大学,2007.
    [170]盛树馨,窦宜,陶秀珍等.土工试验规程.北京:中国水利水电出版社,1999.
    [171]杨有海,王丽琴,苏在朝等.重塑黄土的强度特性及其影响因素的研究.兰州铁道学院学报(自然科学版),2003,3:38-41.
    [172]刘祖典,郭增玉,陈正汉.黄土的变形特性.中国科学院基金课题研究报告,陕西机械学院,1989.
    [173]熊承仁,刘宝琛,张家生等.重塑非饱和粘性土的抗剪强度参数与物理状态变量的关系研究.中国铁道科学,2003,24(3):17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700