大型电力变压器三维涡流场结构件损耗计算方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确计算变压器结构件的杂散损耗从而避免局部过热,对于提高变压器运行的可靠性和保证电力系统的安全运行具有十分重要的意义。由于漏磁场和杂散损耗分布的不合理性而造成的局部损耗集中,是局部过热和运行故障的直接原因。在结构复杂的大型电力变压器三维漏磁场和结构件损耗的计算中,由于存在庞大的求解区域和小透入深度的矛盾,若要考虑叠片铁心复杂的电磁特性(非线性、各向异性等)和铁心叠片材料的不连续性,采用传统方法计算时计算规模过大,且计算误差不可接受。本文针对这一问题,研究了提高变压器结构件损耗的计算精度并减小计算规模的几种方法。
     为了计及场量(磁通密度B和涡流密度J)的高次谐波,本文提出了一种时域分析方法,将解析解与数值解相结合,对叠片铁心区域做均匀化处理,并计算了包含非线性各向异性的叠片铁心的三维漏磁场及结构件损耗。该方法能够在保证工程精度的条件下减少计算规模,可应用于大型电力变压器三维漏磁场及其结构件损耗计算。
     已在三维涡流场计算中广泛应用的复频域运算具有其省时和简单性,但理论上不适于求解非线性问题。为了保留其优点并提高计算的精度,本文对传统复频域计算做了改进,推导了在复频域下分别考虑不同材料的非线性各向同性和各向异性电磁特性的三维涡流场有限元离散化公式,其中离散化得出的非线性代数方程组应用复数牛顿-拉夫逊法求解,得到了满足工程精度的计算结果。
     区域分解法是另一种减小复杂问题计算规模的方法。本文将重叠型区域分解法应用于复频域三维非线性涡流场有限元分析中,将求解区域分解为互相重叠、互相影响的子区域,不同的子区域可以单独剖分,应用不同的离散化方式和不同的力法求解,有效地减小了计算规模并降低了计算的复杂性。
     为了验证所提出的计算方法和所编制的计算机程序的正确性,本文采用了小模型测试和实际变压器产品测试的检验方法。制作了TEAM问题21的补充模型,对其磁场和损耗分布进行了测试,并应用所提出的叠片铁心均匀化处理的时域分析方法对该模型进行了仿真计算。此外还对两台大型电力变压器产品做了实例计算和实验值对照。计算结果与实验结果的比较验证了本文研究成果的正确性和有效性。
It is of great significance to accurately calculate stray losses of structural parts of a large power transformer thus to avoid the local overheating for improving the reliability of transformer operation and ensuring the safety operation of power system. The local losses concentration is the direct reason of local overheating and operational failure caused by the inappropriate distribution of the magnetic leakage fields and stray losses.
     In the computation of three dimensional magnetic leakage field and its related structural part losses of large power transformer with a complex structure, when the complicated electromagnetic properties (anisotropy, nonlinearity, and so on) and discontinuity of laminated core material have to be considered, the computational scale will be too large to carry out the whole computation, or the calculated error become unacceptable if the conventional method is used, mainly because the contrast between the huge size of the computation region and very small skin depth. To treat with the problem, this thesis researches several methods of improving the calculation accuracy and reducing the calculation scale for these computations.
     In order to consider the higher-order harmonics of the field quantities (flux density B, eddy current density J), a time domain analysis method combining analytical and numerical solutions for laminated core homogenization is proposed in the thesis to calculate3D magnetic leakage field and its structural parts stray losses including nonlinear and anisotropic laminated core. On the premise of guarantee engineering precision, this method can reduce the scale of calculation and make it feasible to calculate this kind of problems.
     Although the calculation carried out in complex frequency domain is widely applied in3D eddy current field analysis due to its simplicity and time saving, it is not suitable for solving nonlinear problems. For preserving the advantages and improving calculation accuracy, the calculation method of traditional complex frequency domain is improved, and the discretized finite element equations of3D eddy current field are deduced considering the electromagnetic characteristics of different materials such as anisotropy, isotropy and nonlinearity in complex frequency domain. The nonlinear complex algebraic equations are solved by complex Newton-Raphson method, and the calculation results meeting engineering precision are obtained.
     Domain Decomposition Method (DDM) is another method reducing calculation scale of complicated problem. Overlapping Domain Decomposition Method (ODDM) is applied to the nonlinear FE analysis of3D eddy current field in complex frequency domain in the thesis. The solved region is divided into different sub-regions which are overlapped and influenced on each other. Different sub-regions can be meshed independently and solved with different discretization mode and method. The calculation scale is reduced and the computational complexity is decreased effectively.
     In order to verify the validity of the proposed methods and the self-compiled computer programs, the computation examples of small models and the models of real transformer products are adopted. A supplementary model of TEAM Problem P21C-M1is made, and the magnetic field distribution and losses of this model are measured. A simulation calculation is executed for this model with the proposed time domain analysis method for laminated core homogenization. In addition, the calculated results are compared with measured results of two large power transformers. The comparison of the computed and measured results confirmed the validity and efficiency of the methods proposed in this thesis.
引文
[1]辜承林,陈乔夫,熊永前.电机学(第三版).武汉:华中科技大学出版社,2010.
    [2]谢毓城.电力变压器手册.北京:机械工业出版社,2009.
    [3]郭振岩.40年来电力变压器发展的回顾.变压器,2004,41(3):32-35.
    [4]贺以燕.国内外变压器的现状及发展.电器工厂设计,2004,(3):18-21.
    [5]郭振岩.中国变压器行业的现状及发展趋势.电器工业,2008,(12):32-37.
    [6]冯庆东,王伟.国外特高压变压器技术现状及发展趋势.电力设备,2005,6(8):18-19.
    [7]刘向阳.特(超)高变压器的市场前景及竞争形势.变压器,2009,(3):6-12.
    [8]Higuchi, Yoshiya, Koizumi, et al. Integral equation method with serface impedance model for 3d eddy current analysis in transformers. IEEE Transactions on Magnetics,2000,36(4):774-779.
    [9]E.M. Deeley. Serface impedance near edges and corners in three-dimensional media. IEEE Transactions on Magnetics,1990,26(2):712-714.
    [10]Yong-Gyu Park, Tae-Kyung Chung, Hyun-Kyo Jung, et al. Three dimensional eddy current computation using the surface impedance method considering geometric singularity. IEEE Transactions on Magnetics,1995,31(3):1400-1403.
    [11]Christophe Guerin, Gerad Meunier. Serface impedance for 3d nonlinear eddy current problems application to loss computation in transformers. IEEE Transactions on Magnetics,1996,32(3): 808-811.
    [12]Hiroyuki Kaimori, Akihisa Kameari, Koji Fujiwara. FEM computation of magnetic field and iron loss in laminated iron core using homogenization method. IEEE Transactions on Magnetics,2011, 47(5):1358-1361.
    [13]Yanhui Gao, Muramatsu Kazuhiro, Hatim Muhd Juzail, et al. The effect of laminated structure on coupled magnetic field and mechanical analysis of iron core and its homogenization technique. IEEE Transactions on Magnetics,2001,37(5):3329-3331.
    [14]Laurent Krahenbuhl, Patrick Dular, Tarek Zeidan, et al. Homogenization of lamination stacks in linear magnetodynamics. IEEE Transactions on Magnetics,2004,40(2):912-915.
    [15]Hiroyuki Kaimori, Akihisa Kameari, Koji Fujiwara. FEM computation of magnetic field and iron loss in laminated iron core using homogenization method. IEEE Transactions on Magnetics,2007, 43(4):1405-1408.
    [16]谢德馨.三维涡流场的有限元分析(第二版).北京:机械工业出版社,2008.
    [17]Patrick D, Johan G. A 3-d magnetic vector potential formulation taking eddy currents in lamination stacks into account. IEEE Transactions on Magnetics,2003,39(3):1424-1427.
    [18]Xie Dexin, Osama A. Mohammed, G.Fuat Uler, et al. T-Ω finite element analysis of 3D nonlinear transient eddy current problems. Advanced Computational and Design Techniques in Applied Electromagnetic Systems,1995:211-214.
    [19]Zhanxin Zhu, Dexin Xie, Yanli Zhang. Computation of 3d transient eddy current field and losses in laminated core with sinusoidal excitation. ICEMS 2010, Incheon, Korea,2010:1781-1786.
    [20]Karl Hollaus, Oszkar Biro. A FEM formulation to treat 3d eddy currents in laminations. IEEE Transactions on Magnetics,2000,36(4):1289-1292.
    [21]Hajime Igarashi, Kota Watanabe, Arnulf Kost. A reduced model for finite element analysis of steel laminations. IEEE Transactions on Magnetics,2006,42(4):739-742.
    [22]谢德馨,杨仕友.工程电磁场数值分析与综合.北京:机械工业出版社,2009.
    [23]Gyselinck J, Sabariego R. V. Dular P. A nonlinear time-domain homogenization technique for laminated iron cores in three-dimensional finite-element models. IEEE Transactions on Magnetics, 2006,42(4):763-766.
    [24]Muto H, Takahashi Y, Wakao S, et al. Magnetic field analysis of laminated core by using homogenization method. Journal of applied physics,2006,99(8):1-3.
    [25]Laurent Krahenbuhl, Patrick Dular, Tarek Zeidan, et al. Homogenization of lamination stacks in linear magnetodynamics. IEEE Transactions on Magnetics,2004,40(2):912-915.
    [26]J. H. Krah,A. Bergqvist, G. Engdahl. Homogenization algorithms for calculation of field quantities in laminated magnetic materials. IEEE Transactions on Magnetics,2002,38(5):2385-2387.
    [27]Imre Sebestyen, Szabolcs Gyimothy, Jozsef Pavo, et al. Calculation of losses in laminated ferromagnetic materials. IEEE Transactions on Magnetics,2004,40(2):924-927.
    [28]Nogawa S, Kuwata M, Nakau T, et al. Study of modeling method of lamination of reactor core. IEEE Transactions on Magnetics,2006,42(4):1455-1458.
    [29]Hiroyuki Kaimori, Akihisa Kameari, Koji Fujiwara. FEM computation of magnetic field and iron loss in laminated iron core using homogenization method. IEEE Transactions on Magnetics, 2007,43(4):1405-1408.
    [30]N. A. Demerdash, D. H. Gillott. New approach for determination of eddy current and flux penetration in nonlinear ferromagnetic materials. IEEE Transactions on Magnetics,1974,10(3): 682-685.
    [31]J. D. Lavers. Finite element solution of nonlinear two dimensional TE-mode eddy current problems. IEEE Transactions on Magnetics,1983,19(5):2201-2203.
    [32]尤福.分析电机电磁场用有效磁导率和复磁导率的计算.电机技术,1995,(4):8-10.
    [33]D. Lederer, A. Kost. Modeling of nonlinear magnetic material using a complex effective reuctivity. IEEE Transactions on Magnetics,1998,34(5):3060-3062.
    [34]Dimitris Labrids, Petros Dokopoulos. Calculation of eddy current losses in nonlinear ferromagnetic materials. IEEE Transactions on Magnetics,1989,25(3):2665-2669.
    [35]A. G. Jack, B.C. Mecrow. Methods for magnetically nonlinear problems involving significant hysteresis and eddy currents. IEEE Transactions on Magnetics,1990,26(2):424-429.
    [36]M. Djurovic, C. J. Carpenter.3-dimensional computation of transformer leakage fields and associated losses. IEEE Transactions on Magnetics,1975,11(5):1535-1537.
    [37]M. Djurovic, J. E. Monson.3-dimensional computation of the effect of the horizontal magnetic shunt on transformer leakage fields. IEEE Transactions on Magnetics,1977,13(5):1137-1139.
    [38]谢德馨,汤蕴璆,徐子宏.变压器三维涡流问题的有限元解.哈尔滨电工学院学报,1986,9(2):91-104.
    [39]周剑明.电磁场有限元综合模拟方法及大型变压器漏磁场的研究: (博士学位论文).武汉:华中理工大学,1990.
    [40]T. Morisue. Magnetic vector potential and electric scalar potential in three dimensional eddy current problem. IEEE Transactions on Magnetics,1982,18(2):531-535.
    [41]O. Biro, K. Preis. On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy current. IEEE Transactions on Magnetics,1989,25(4):3145-3159.
    [42]Fengyan Yi, Mingjin Yu. Computation of 2d and 3d eddy currents of eddy current retarders. ICECE 2010, Wuhan, China,2010:3478-3481.
    [43]H. Hedia, J. F. Remacle, P. Dular, et al. A sinusoidal magnetic field computation in nonlinear materials. IEEE Transactions on Magnetics,1995,31(6):3527-3529.
    [44]O. Biro, K. Preis. Finite element analysis of 3-d eddy currents. IEEE Transactions on Magnetics, 1990,26(2):418-423.
    [45]Jinbiao Li, Dexin Xie, Xiaoming Liu. A posteriori error estimation and adaptive mesh refinement controlling in finite element analysis of 3-d steady state eddy current fields. IEEE Transactions on Magnetics,2010,46(8):3500-3503.
    [46]程志光,高生,李琳.电气工程涡流问题的分析与验证.北京:高等教育出版社,2001.
    [47]吕涛,石济民,林振宝.区域分解算法.北京:科学出版社,1992.
    [48]C.T.米赫林著,王维新译.二次泛函的极小问题.北京:科学出版社,1964.
    [49]Miller K..Numerical analogs to the schwarz alternating procedure. Numerische Mathematik,1965, 7(2):91-103.
    [50]康立山,孙乐林,陈毓平.解数学物理问题的异步并行算法.北京:科学出版社,1985.
    [51]R. Glowinski, Q. V. Dinh, J. Periaux. Domain decomposition methods for nonlinear problems in fluid dynamics. Fenomech'81, Stuttgart, West Germany,1981.
    [52]P. Lions. On the schwarz alternating method.I. Proceedings of first international symposium on domain decomposition methods for partial differential equations. SIAM, Philadephia, PA,1988.
    [53]P. Lions. On the schwarz alternating method.II. Proceedings of second international symposium on domain decomposition methods for partial differential equations. SIAM, Philadephia, PA,1989.
    [54]朱汉清.区域分解法在电磁问题分析中的应用研究: (博士学位论文).成都:电子科技大学,2002.
    [55]常鑫.时域计算电磁方法及其在电磁兼容性分析中的应用研究:(硕士学位论文).长春:吉林大学,2005.
    [56]甘辉.电磁散射特性的有限元分析: (硕士学位论文).南京:南京理工大学,2008.
    [57]郁美艳.复杂媒质电磁特性的有限元分析: (硕士学位论文).南京:南京理工大学,2008.
    [58]贾会亮.频域有限元区域分解法的研究: (硕士学位论文).南京:南京理工大学,2009.
    [59]施一飞,陈如山,樊振宏等.区域分解法结合时域积分方程法分析电磁问题.电波科学学报,2007,22:225-228.
    [60]Zhu Z. H.. Ji H., Hong W. An efficient algorithm for the parameter extraction of 3d interconnect structures in the VLSI circuits domain decomposition method. IEEE Transactions on Microwave Theory and Techniques,1997,45(8):1179-1184.
    [61]Zhu Z. H., Ji H., Hong W. A generalized algorithm for the capacitance extraction of 3d VLSI interconnects. IEEE Transactions on Microwave Theory and Techniques,1999,47(10): 2027-2030.
    [62]厉天威,阮江军,黄道春等.大规模电磁场数值计算中并行迭代方法的比较.电工技术学报,2007,22(8):166-173.
    [63]周平.电磁散射问题中有限元法和边界元法及其混合技术研究:(博士学位论文).南京:南京航空航天大学,2006.
    [64]Guarnieri, G.,Pelosi, G., Rossi, L.,Selleri, S. A domain decomposition technique for efficient iterative solution of nonlinear electromagnetic problems. IEEE Transactions on Antennas and Propagation,2010,58(12):4090-4095.
    [65]Lavers D. Boglaev I, Sirotkin V. Numerical solution of transient 2d eddy current problem by domain decomposition algorithms. IEEE Transactions on Magnetics,1996,32(3):1413-1416.
    [66]Yuanqing Liu, Jianshen Yuan. A finite element domain decomposition combined with algebraic multigrid method for large-scale electromagnetic field computation. IEEE Transactions on Magnetics,2006,42(4):655-658.
    [67]Lei Yin, Jie Wang, Wei Hong. A novel algorithm based on the domain decomposition method for the full-wave analysis of 3d electromagnetic problems. IEEE Transactions on Microwave Theory and Techniques,2002,50(8):2011-2017.
    [68]Guangyuan Yang, Xiaoming Chen, Gang Lei, et al. Domain decomposition combined radial basis function collocation method to solve transient eddy current magnetic problems with moving conductrors. IEEE Transactions on Magnetics,2011,47(10):2939-2942.
    [69]Qing Yang, Licheng Lin, Wwnxia Sima, et al. Electric field calculation of 800kV composite insulator with domain decomposition and iterative method. CEIDP 2008, Quebec City, Canda, 2008:345-348.
    [70]Xie Dexin, Bai Baodong, Tang Renyuan. Accurate 3-d eddy current field computation with the finite element method. COMPEL'1990,9:71-74.
    [71]R.L.斯托尔著,史乃译.涡流分析.哈尔滨:黑龙江科学技术出版社,1983.
    [72]汤蕴璆编著.电机内的电磁场.北京:科学出版社,1998.
    [73]汤蕴璆,梁艳萍编著.电机电磁场的分析与计算.北京:机械工业出版社,2010.
    [74]http://www.compumag.co.uk/team.html.
    [75]Zhiguang Cheng, Norio Takahashi, Sumei Yang, et al. Loss spectrum and electromagnetic behavior of problem 21 family. IEEE Transactions on Magnetics,2006,42(4):1467-1470.
    [76]程志光,高桥则雄,博扎德·弗甘尼.电气工程电磁热场模拟与应用.北京:科学出版社,2009.
    [77]姚缨英.电力变压器直流偏磁现象研究:(博士学位论文).沈阳:沈阳工业大学,2000.
    [78]Sotoshi Yamada, Kazuo Bessho. Harmonic field calculation by the combination of finite element analysis and harmonic balance method. IEEE Transactions on Magnetics,1988,24(6).2588-2590.
    [79]Sotoshi Yamada, Oaul P Biringer, Kazuo Bessho. Calculation of nonlinear eddy-current problems by the harmonic balance finite element method. IEEE Transactions on Magnetics,1991,27(5): 4122-4125.
    [80]Stefan Ausserhofer, O. Biro, Kurt Preis. An efficient harmonic balance method for nonlinear eddy-current problems. IEEE Transactions on Magnetics,2007,43(4):1229-1232.
    [81]Takehisa Hara, Tadashi Naito, Juro Umoto. Time-periodic finite element method for nonlinear diffusuin equations. IEEE Transactions on Magnetics,1985,21(6):2261-2264.
    [82]Oszkar Biro, Kurt Preis. An efficient time domain method for nonlinear periodic eddy current problems. IEEE Transactions on Magnetics,2006,42(4):695-698.
    [83]O. A. Mohammed, F. G. Uler. A state space technique for the solution of nonlinear 3-d transient eddy current problems. IEEE Transactions on Magnetics,1991,27(6):5220-5222.
    [84]O. A. Mohammed, F. G. Uler. A state space approach and formulation for the solution of nonlinear 3-d transient eddy current problems. IEEE Transactions on Magnetics,1992,28(2):1111-1114.
    [85]李觉民,郭立炜.常用铁磁材料的有效磁导率和磁阻率及其解析表达式.哈尔滨电工学院学报,1988,11(4):324-330.
    [86]谢德馨.用有限元法计算鼠笼型感应电动机的起动电流.哈尔滨电工学院学报,1981,4(3):55-66.
    [87]G. Paoli, O. Biro, G. Buchgraber. Complex representation in nonlinear time harmonic eddy current problems. IEEE Transactions on Magnetics,1998,34(5):2625-2628.
    [88]P. M. Morse, H. Feshbach. Methods of theoretical physics. Mcgraw Hill,1953.
    [89]数学手册编写组.数学手册.北京:人民教育出版社,1979.
    [90]Y. Du Terrail, Jean Claude Sabonnadiere, P. Masse, et al. Nonlinear complex finite elements analysis of electromagnetic field in steady-state AC devices, IEEE Transactions on Magnetics, 1984,20(4):549-552.
    [91]李大潜.有限元素法续讲.北京:科学出版社,1979.
    [92]O. Biro, K. R. Richter. Solution of TEAM workshop problem No.10. Peoceedings of TEAM Workshop, Qingdaohu Lake,1992,58-67.
    [93]程志光.电力变压器电磁场分析与验证:(博士学位论文).北京:清华大学,1994.
    [94]Zhiguang Cheng, N. Takahashi, B. Forghani, et al. Analysis and measurements of iron loss and flux inside silicon steel laminations. IEEE Transactions on Magnetics,2009,45(3):1222-1225.
    [95]Sumei Yang, Zhiguang Cheng, Weili Yan, et al. Stray loss analysis for magnetic shielding with lamination. Electrical Machines and Systems, ICEMS 2008, Wuhan, China,2008:3907-3911.
    [96]Du,Y., Cheng, Z. Zhang, J., et al. Additional iron loss modeling inside silicon steel lamination. electric machines and drives conference, IEMDC 2009, Miami, FL, USA,2009:826-831.
    [97]Zhiguang Cheng, N. Takahashi, Sumei Yang, et al. Analysis and measurement of iron loss and linkage flux inside nonlinear magnetic steel. Automation Congress, WAC 2008, Belgium,2008: 1-4.
    [98]Zhiguang Cheng, Norio Takahashi, Sumei Yang, et al. Eddy current and loss analysis of multisteel configuration and validation. IEEE Transactions on Magnetics,2007,43(4):1737-1740.
    [99]Sumei Yang, Zhiguang Cheng, Qingxin Yang, et al. Electromagnetic field analysis on ferromagnetic material with lamination. Automation Congress, WAC 2008, Belgium,2008:1-5.
    [100]Z. Cheng, R. Hao, Norio Takahashi, et al. Engineering-oriented benchmarking of problem 21 family and experimental verification. IEEE Transactions on Magnetics,2004,42(2):1394-1397.
    [101]Z. Cheng, N. Takahashi, B. Forghani, et al. Large power transformer-based stray-field loss modeling and validation. Electric Machines and Drives Conference, IEMDC 2009, Miami, FL, USA,2009:548-555.
    [102]Norio Takahashi, Toshiomi Sakura, Zhiguang Cheng. Nonlinear analysis of eddy current and hysteresis losses of 3-d stray field loss model (problem 21). IEEE Transactions on Magnetics,2001, 37(5):3672-3675.
    [103]杨素梅.大型变压器屏蔽中三维涡流场及杂散损耗的研究: (博士学位论文).天津:河北工业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700