新型无铅铁电薄膜的化学溶液沉积法制备及铁电材料的工程畴结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电材料作为重要的功能材料在电子材料领域占据相当大的比重。近几年来,铁电陶瓷在全球每年销售量按15%左右的速度增长。随着信息产业的飞速发展,铁电器件(变压器、存储器、换能器、驱动器、滤波器、谐振器、鉴频器等)已在音视频、通讯、电脑周边等领域大量应用。
     然而,环境问题现在已经广泛存在于全世界,世界范围的无铅化呼声日益高涨;同时,随着电子整机向数字化、高频化、多功能化和薄、轻、小、便携式的方向发展,以铅为主的铁电器件正面临着前所未有的挑战。本文正是以此为切入点,从介观到宏观尺度,对铁电材料及铁电器件进行了深刻的研究。我们制备了铁电薄膜材料,系统总结和优化工艺参数;分析了一种应用于变压器的新型结构的压电陶瓷板;并从理论上对铁电材料的宏观性能与其介观尺度内部组织之间的关系做了一些有意义的探讨。
     本论文的主要工作如下:
     1.采用化学溶液沉积法(CSD)制备出纯铋层状钙钛矿结构的BNT(Bi3.50Nd0.50Ti3O12)无铅铁电薄膜,用X射线衍射仪分析了BNT薄膜的晶体结构;用扫描电镜(SEM)对BNT薄膜表面形貌进行了表征,并得到了薄膜的厚度等信息;用RT66A铁电测试仪测量分析BNT薄膜的铁电性能;用HP4194A测量分析BNT薄膜的介电性能。电滞回线表明我们制备的BNT薄膜具有大的剩余极化强度,适合做非挥发性铁电存储器。
     2.分析了一种应用于压电变压器的电强迫厚度扭转振动矩形陶瓷板,利用线形压电理论,得到了其三维方程的一个解析解,并计算了该压电变压器的变压比,输入电导以及工作效率与系统参数之间的关系。
     3.提出了一种铁电晶体增强压电性能的理论机制:综合利用铁电体本征的晶体各向异性以及外在的铁电变体的90°畴翻转。基于能量最小化的原理,分析计算了在不同的晶体学取向下,钛酸钡单晶的工程畴结构及其本征的和外在的压电反应,计算结果表明:外在的铁电变体的90°畴翻转极大地增大了压电系数,尤其是在外加电场比较小,畴壁的运动可逆的情况下。同时,确定了最优化的极化方向。
As one of the most important active materials, ferroelectric materials hold a large ratio in the field of electronic materials. The sales volume of ferroelectric ceramics in the world increases at about 15 percent in recent years. With the rapid development of information industry, ferroelectric devices, such as ferroelectric memory, transducer, actuator, filter, resonator, frequency discriminator, have been extensively applied in the field of audio, video, communication, and computer devices.
     However, environmental issues are world-widely concerned. Ferroelectric devices which is mainly made from lead materials are facing great challenges both for the voice from ever-rising environmental protection and the development trend of electronic devices along the digital, high-frequent, multifunctional, thin, light, small and portable direction. This dissertation takes this as the cutting point and makes a deep study in ferroelectric materials and devices from mesoscale to macroscale. We prepare ferroelectric thin films by chemical solution deposition method. We analyze a rectangular ceramic plate in electrically forced thickness-twist vibration as a piezoelectric transformer. Meanwhile, we explore the relationship between the macro behavior of ferrolectric materials and their inner microstructure in mesoscale.
     The main work of this dissertation is as follows:
     1. We prepared the lead-free BNT thin films by chemical solution deposition. Phase identification, crystalline orientation and degree of crystallinity of the films were studied by a D/max-rA X-ray diffractometer. Scanning electron microscopy(SEM) was used to determine the thickness and the surface morphology of the thin films. The ferroelectric and dielectric measurements were performed using a RT66A ferroelectric tester and a HP4194A impedance analyzer equipped with a micrometer probe station. P-E hysteresis loop showed the chemical solution deposition derived BNT thin films were a potentially important candidate for non-volatile random access memory devices.
     2. A rectangular ceramic plate with appropriate electrical load and operating mode is analyzed for piezoelectric transformer application. An exact solution from the three-dimensional equations of linear piezoelectricity is obtained. The solution simulates the real operating situation of a transformer as a vibrating piezoelectric body connected to a circuit. Transforming ratio, input admittance, and efficiency of the transformer are obtained.
     3. We propose a mechanism for enhanced piezoelectricity that takes advantage of both intrinsic crystalline anisotropy of ferroelectric crystal and extrinsic 90°domain switching of ferroelectric variants. The intrinsic and extrinsic piezoelectric responses of barium titanate single crystals under different crystallographic orientations are calculated using an energy minimization theory, where it is observed that the piezoelectric coefficient is significantly enhanced by the 90°domain switching, especially under the small field measurement where the domain wall movement is reversible. The optimal crystallographic orientation is also identified.
引文
[1] Dragan Damjanovic. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 1998,61(9):1267-1324.
    [2] 钟 维 烈 . 铁 电 体 物 理 学 . 北 京 :科 学 出 版 社 , 2000:269.
    [3] E. G. Fesenko, V. G. Gavrilyatchenko, A. F. Semenchev. Domain structure in multiaxial ferroelectrics. Ferroelectrics, 1989, 100:195.
    [4] 杨 卫 . 力 电 失 效 学 . 北 京 : 清 华 大 学 出 版 社 , 2001:87-101.
    [5]J. F. NYE. Physical properties of Crystals: Their representantion by tensors and matrices. Oxford:Oxford Science Publications, 1957:110-130.
    [6] 杜 善 义 , 王 彪 . 复 合 材 料 细 观 力 学 . 北 京 :科 学 出 版 社 , 1997:273-276.
    [7] 白 辰 阳 ,桂 治 轮 ,李 龙 士 . 多 层 压 电 变 压 器 基 本 工 作 特 性 的 研 究 . 压 电 与 声 光 ,1998, 20(6):377-381.
    [8] 山 东 大 学 压 电 铁 电 物 理 教 研 室 编 . 压 电 陶 瓷 及 其 应 用 . 山 东 :人 民 教 育 出 版 社 . 1973:285-296.
    [9] Rosen C A. Ceramic transformer and filters[A]. Proc electron compn symp[C]. 1957, 205-211.
    [10]Nam-Chi Mun, Sang-Don Lee, Jae-Shin Lee. The electric properties of piezoelectric transformers using PMS-PZ-PT ceramics. Korea-Russia Int’l Symp. On science and Tech. Procedding of the 4th , 2000, 4:394-397.
    [11]A. F. Devonshire. Theory of ferroelectrics. Advances in Physics, 1954, 3(10):85-130.
    [12] Yu. A. Izyumov, V. N. Syromyatnikov. Phase transitions and crystal symmetry. Kluwer Publishers, Dordrecht. 1990.
    [13] L. D. Landau, E. M. Lifshitz. Statistical Physics, 3rd Edition. Oxford:Pergamon Press. 1980.
    [14] R. E. Cohen. Theory of ferroelectrics: a vision for the next decade and beyond. J. Phys. Chem. Solids., 2000, 61(2):139-146.
    [15] L. Bellaiche, A. Garcia, D. Vanderbilt. Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles. Phys. Rev. Lett., 2000, 84(23):5427-5430.
    [16] N. D. Huang, Z. R. Liu, Z. Q. Wu, J. Wu, W. H. Duan, B. L. Gu, X. W. Zhang. Huge enhancement of electromechanical responses in compositionally modulated Pb(Zr1-xTix)O3. Phys. Rev. Lett., 2003, 91(6), article number 067602.
    [17] M. Sepliarsky M, S. R. Phillpot, D. Wolf, M. G. Stachiotti, R. L. Migoni. Atomic-level simulation of ferroelectricity in perovskite solid solutions. Appl. Phys. Lett., 2000, 76(26):3986-3988.
    [18] M. Sepliarsky, S. R. Phillpot, M. G. Stachiotti, R. L. Migoni. Ferroelectric phase transitions and dynamical behavior in KnbO3/KtaO3 superlattices by molecular-dynamics simulation. J. Appl. Phys., 2002, 91(5):3165-3171.
    [19] Y. C. Shu, and K. Bhattacharya. Domain patterns and macroscopic behavior of ferroelectric materials. Phil. Mag. B, 2001, 81(12):2021-2054.
    [20] J. Y. Li and D. Liu. On ferroelectric crystals with engineered domain configurations. Journal of the mechanics and physics of solids., 2004, 52(8): 1719-1742.
    [21] C. W. Nan, and D. R. Clarke. Piezoelectric moduli of piezoelectric ceramics. Journal of the American ceramic society, 1996, 79(10):2563-2566.
    [22] X. Chen, D. N. Fang, and K. C. Hwang. Micromechanics simulation of ferroelectric polarization switching. Acta Materialia, 1997, 45(8):3181-3189.
    [23] J. E. Huber, N. A. Fleck, C. M. Landis, R. M. McMeeking. A constitutive model for ferroelectric polycrystals. Journal of the Mechanics and Physics of Solids, 1999, 47(8):1663-1697.
    [24]J. Y. Li. The effective electroelastic moduli of textured piezoelectric polycrystalline aggregates. Journal of the Mechanics and Physics of Solids, 2000, 48(3):529-552.
    [25] Y. L. Li, S. Y. Hu, Z. K. Liu, L. Q. Chen. Phase-field model of domain structures in ferroelectric thin films. Appl. Phys. Lett., 2001, 78(24):3878-3880.
    [26] J. Wang, S. Q. Shi, L. Q. Chen, Y. L. Li, and T. Y. Zhang. Phase field simulations of ferroelectric/ferroelastic polarization switching. Acta Materialia, 2004, 52(3):749-764.
    [27] M. E. Lines and A. M. Glass. Principles and applications of ferroelectrics and related materials. Oxford:Clarendon Press. 1977.
    [28] 王 根 水 . 钙 钛 矿 结 构 铁 电 薄 膜 及 其 异 质 结 构 的 制 备 和 光 电 性 能 研 究 .中 科 院上 海 技 术 物 理 研 究 所 , 博 士 论 文 , 2003.
    [29] S. Choudhury, Y. L. Li, C. E. Krill III, L. –Q. Chen. Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals. Acta Materialia, 2005, 53(20):5313-5321.
    [30] Yong Kwan Kim, Sang Sub Kim, Hyunjung Shin, Sunggi Baik. Thickness effect of ferroelectric domain switching in epitaxial PbTiO3 thin films on Pt(001)/MgO(001). Appl. Phys. Lett., 2004, 84(25):5085-5087.
    [31] 薛 增 泉 . 薄 膜 物 理 . 北 京 : 电 子 工 业 出 版 社 . 1991.
    [32] Robert W. Schwartz. Chemical Solution Deposition of Perovskite Thin Films. Chem. Mater., 1997, 9(11):2325-2340.
    [33] 杨 雪 娜 ,王 弘 et, al. 化 学 溶 液 法 制 备 掺 镧 Bi2Ti2O7 薄 膜 及 其 特 性 的 研 究 . 硅酸 盐 学 报 , 2004, 32(3):252-255.
    [34] Woo Seok Yang, Nam Kyeong Kim, Seung Jin Yeom, Soon Yong Kweon and Jae Sung Roh. Electrical properties of Bi4-xLaxTi3O12 ferroelectric thin films prepared by Metaorganic Decomposition Method. Jpn. J. Appl. Phys., 2002, 41(2A):727-730.
    [35] Hiroshi Uchida, Hiroki Yoshikawa, Isao Okada, Hirofumi Matsuda, Takashi Iijima, Takayuki Watanabe and Hiroshi Funakubo. Fabrication of M3+-Substituted and M3+/V5+-Cosubstituted Bismuth Titanate Thin Films[M=lanthanoid] by Chemical Solution Deposition Techinique. Jpn. J. Appl. Phys., 2002, 41(11B):6820-6824.
    [36] Mio Yamada et, al. Processing and properties of rare earth ion-doped bismuth titanate thin films by chemical solution deposition method. Jpn. J. Appl. Phys., 2003, 42(8):5222-5226.
    [37] Wataru Sakamoto et, al. Preparation and properties of Bi1-xNdxTi3O12 thin Films by chemical solution deposition. Journal of Electroceramics, 2004, 13(1-3):339-343.
    [38]金 原 粲 . 薄 膜 的 基 本 技 术 . 北 京 :科 学 出 版 社 , 1982:110-112.
    [39] Hiroshi Uchida,Hiroki Yoshikawa,and Isao Okada. Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd3+/V5+ cosubstitution. Appl.Phys.Lett., 2002, 81(12):2229-2231.
    [40] Hiroshi Maiwa, Naoya iawa,Daichi Togawa, and Takashi Hayashi. Electro- mechanical properties of Nd-doped Bi4Ti3O12 films: A candidate for lead-free thin-film piezoelectrics. Appl.Phys.Lett., 2003, 82(11):1760-1762.
    [41] Tkashi Kojima, Tomohiro Sakai, Takayuki Watanabe, and Hiroshi Funakubo. Large remanent polarization of (Bi,Nd)4Ti3O12) epitaxial thin films grown by metalorganic chemical vapor deposition. Appl. Phys. Lett., 2002, 80(15): 2746-2748.
    [42] Hiroshi Uchida,Hiroki Yoshikawa,and Isao Okada. Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd3+/V5+ cosubstitution. Appl.Phys.Lett., 81(12):2229-2231.
    [43]J. S. yang. Piezoelectric transformer structural modeling-A review. IEEE Trans. Ultrason., Ferroelect., Fre1. Contrl., accepted for publication.
    [44] K. Nakamura and K. Kumasaka. Lame-mode piezoelectric resonators and transformers using LiBnO3 crystals. in Proc. IEEE Ultron. Symp., 1995, pp. 999-1002.
    [45] J. W. C. de Vries, P. Jedeloo, and R. Porath. Co-fired piezoelectric multiplayer transformers. IEEE int. Symp. Appl. Ferroelect., 1996, pp. 173-176.
    [46] W. Pajewski, P. Kielczynski, and M. Szalewski. Resonant piezoelectric ring transformer, in Proc. IEEE Ultrason. Symp., 1998, pp. 977-980.
    [47]J. S. Yang and W. Zhang. A thickness-shear high voltage piezoelectric transformer. Int. J. Appl. Electromagn. Mechan., 1990, 10(2):105-122.
    [48] R. Gausmann and W. Seemann. A model for a piezoelectric transformer. Zeitschrift fur Angewandte Mathematik unk Mechanik, 2001, 81(suppl 2):S189-S190.
    [49] J. S. yang and X. Zhang. Extensional vibration of a nonuniform piezoceramic rod and high voltage generation. Int. J. Appl. Electromagn. Mechan., 2002, 16(12):29-42.
    [50] V. L. Karlash. The forced electroelastic vibration of a planar piezoelectric transformer of longitudinal-transverse type. Int. J. Appl. Mechan., 2000, 36(7):923-930.
    [51] J. S. Yang. Analysis of Rosen piezoelectric transformers, in Proc. 10th Int. Symp. Appl. Electromagn. Mech., Tokyo, May 13-16, 2001, pp. 449-450.
    [52] J. S. Yang and X. Zhang. Analysis of a thickness-shere piezoelectric transformer. Int. J. Appl. Electromagn. Mech., 2005, 21(2):131-141.
    [53] Y.-H. Hsu, C.-K. Lee, and W.-H. Hsiao. Electrical and mechanical fully coupled theory and experimental verification of Rosen-type piezoelectric transformers. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2005, 52(10):1829-1839.
    [54] Y. T. Hu, C. Y. Chen, X. H. Yang, Q. G. Du, and Z. J. Cui. Electric energy transmission between two piezoelectric transducers. Acta Mechanica Solida Sinica, 2003, 24(3):304-312.
    [55] J. S. Yang and S. H. Guo. Thickness-twist modes in a rectangular piezoelectric resonator of hexagonal crystals. Appl. Phys. Lett., 2006, vol. 88, art. no. 153506.
    [56] H. F. Tierten. Linear piezoelectric plate vibrations. New York:Plenum. 1969.
    [57] J. L. Bleustein. A new surface wave in piezoelectric materials. Appl. Phys. Lett., 1968, 13(12):412-413.
    [58] J. S. Yang. An introduction to the theory of piezoelectricity. New York:Springer. 2005.
    [59] L. H. Royster. Flextensional Underwater Acoustics Transducer. J. Acous. Soc. Amer., 1969, 45(3):671-682.
    [60] Quate, C. F. Atalar, A. Wickramasinghe, H. K.. Acoustic microscopy with mechanical scanning-A review. Proceedings of the IEEE, 1979, 7(8):1092-1114.
    [61] Kuo-Hsiung Yen et al. Recent advances in shallow bulk acoustic wave devices. Ultrasonics Symposium, 1979, pp. 776-785.
    [62] P. J. Bolhuis. Gas discharge flash lamp with piezoelectric trigger generator. US Patent 4, 082, 985, 1978.
    [63]B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, W. Jo.. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999, 401(6754):682-684.
    [64] H. N. Lee, D. Hesse, N. Zakharov, U. Cosele. Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrate. Science, 2002, 296(5575):2006-2009.
    [65] S. E. Park and T. R. Shrout. Ultrastrain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys., 1997, 82(4):1804-1811.
    [66] S. Wada, S. Suzuki, T. Noma, T. Suzuki, M. Osada, M. Kakihana, S. E. Park, L. E. Cross, and T. Shrout. Enhanced Piezoelectric Property of Barium Titanate Single Crystals with Engineered Domain Configurations. Jpn. J. Appl. Phys., 1999, 38(9B):5505-5511.
    [67] H. S. Luo, G. S. Xu, H. Q. Xu, P. C. Wang, and Z. W. Yin. Compositional Homogeneity and Electrical Properties of Lead Magnesium Niobate Ti- tanate Single Crystals Grown by a Modified Bridgman Technique Jpn. J. Appl. Phys., 2000, 39(9B):5581-5585.
    [68] E. Burcsu, G. Ravichandran, and K. Bhattacharya. Large strain electrostrictive actuation in barium titanate. Appl. Phys. Lett., 2000, 77(11):1698-1700.
    [69]E. Burcsu, G. Ravichandran, and K. Bhattacharya. Large electrostrictive actuation of barium titanate single crystals. J. Mech. Phys. Solids., 2004, 52(4):823-846.
    [70]X. Ren. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater, 2004, 3(2):91-94.
    [71] Desimone, A., James, R. D.. A constrained theory of magnetoelasticity. J. Mech. Phys. Solids, 2002, 50(2):283-320.
    [72] A. DeSimone. Energy minimizers for large ferromagnetic bodies. Arch. Rat. Mech. Anal., 1993, 125(2):99-143.
    [73] Bhattacharya, K.. Comparison of geometrically nonlinear and linear theories of martensitic-transformation. Continuum Mech. Therm, 1993, 5(3):205-242.
    [74] Ball, J. M., James, R. D.. Proposed experimental tests of a theoy of fine microstructure and the two well problem. Philos. Trans. Roy. Soc., London A 338, 1992, 389-450.
    [75] Dunn, M. L.. Effects of grain shape anisotropy, porosity, and microcrack on the elastic and dielectric constants of polycrystalline piezoelectric ceramics. J. Appl. Phys., 1995, 78(3):1533-1542.
    [76] J. Y. Li et al. Domain switching in polycrystalline ferroelectric ceramics. Nat. Mater., 2005, 4(10):776-781.
    [77]D. Liu and J. Y. Li. The enhanced and optimal piezoelectric coefficients in single crystalline barium titanate with engineered domain configurations. Appl. Phys. Lett., 2003, 83(6):1193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700