伺服驱动压边力控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于伺服电机驱动的数控技术已广泛用于现代制造行业,并已成为核心技术,其用于成形制造领域也成为必然趋势。由于成形过程中的载荷大、成形工序种类多,伺服驱动技术至今还未能广泛地用于成形制造领域。将伺服驱动技术应用于拉深过程的压边力控制,可根据冲压工艺的特点和工艺需要,使压边力随行程变化,达到最优的控制目标。新的压边力控制技术将对冲压成形的自动化、柔性化和智能化产生积极的推动作用。这也体现了更精、更快、更省的成形理念,是先进冲压成形技术的发展趋势。
     本文提出了伺服驱动压边力控制方法,将伺服电机与六杆机构复合,作为控制系统的动力和机械系统的主要组成部分,设计研制了新的压边力控制系统。对该控制系统的基本原理和方法、控制系统中的机械系统和数控系统的参数优化、软件开发和控制过程的实现等关键技术,以及相关的工艺理论问题进行了研究。
     首先在平面应力假设条件下,对轴对称拉深成形问题,采用能量原理导出了法兰区起皱临界压边力的计算式,绘制了临界压边力随拉深过程变化曲线。采用有限元模拟方法和分别采用平面应力假设、平面应变假设以及等效应变与质点位置半径成反比三种假设条件下的理论分析方法,分析了法兰区的应变分布情况,验证了平面应力假设条件下的分析结果与实际情况更接近。
     然后,采用复合伺服驱动设计方案,设计了应用于正装模具结构的双滑块六杆机构的压边力执行机构。分析给出了六杆机构的运动方程,以额定工作行程内传动比、机构传动角等为约束条件,以机构总体尺寸最小为优化目标,优化确定了杆系尺寸。采用虚拟样机技术对压边系统进行了仿真分析。分别在恒定压边力和变压边力情况下,验证了复合伺服驱动方法的可行性,通过调整电机速度,实现了变压边力加载控制。分析表明,采用复合伺服驱动设计方法,产生200kN的压边力只需不超过2kW功率的电机。还分析了杆系尺寸加工误差对压料板运动精度的影响,并给出了杆件尺寸公差选择方法,为压边机构的设计提供了依据。
     对倒装模具结构,采用双滑块六杆机构与伺服电机复合的设计方案,综合考虑了伺服跟随系统的刚性位移和弹性位移对输出速度的影响,建立了压边力执行机构的输入与输出关系的数学模型。以伺服跟随机构中的压料板的速度与给定的压力机滑块速度之差最小及机构尺寸最紧凑为优化目标,在保证工作行程和最优传力效果的条件下,按某拉深工艺给定的压边力与滑块位移关系曲线,优化确定了机构参数。对压边过程进行了仿真分析,结果表明,当电机按预先设定的输入速度运动时,输出的压边力达到了预定的要求。输入的压边力曲线和输出压边力曲线非常接近,压边力最大相对误差小于4.7%(压边力>100kN时)。仿真分析表明,当最大压边力为194kN时,所需电机的最大转矩为36.6N×m,中小功率的电机即可满足要求。分析结果表明,采用六杆机构与伺服电机复合的设计方法,实现拉深过程的变压边力控制是可行的。
     进而根据数控系统的结构特点和压边力控制的总体要求,设计了压边力数控系统的硬件系统。选用伺服电机和运动控制器为系统的主要部件,根据控制系统功能的要求,设计开发了相应的软件。对压边力控制系统的伺服驱动系统、机械系统进行建模,采用Simulink进行了仿真试验。结果表明,系统具有良好的稳定性和动态性能。
     最后,设计研制了伺服驱动压边力控制的机械系统和数控系统,分别实现了用于正装模具结构的恒定压边力和变压边力加载。实验结果表明,采用伺服驱动压边力控制方法,可以达到工艺设定的压边力要求。实验结果还显示,在施加大约200kN压边力的情况下,电机的转矩、功率等都小于其额定值。
CNC technology based on servo drive has been widely used in manufacturingindustry, and has become the core technology of modern manufacturing. Its application informing manufacturing field is going to be an inevitable trend. Due to heavy loads,diversities of processes and other difficulties in metal forming, servo drive technology isstill not widely used in forming manufacturing. By applying the servo drive technology inblank holder force control during deep drawing process, the BHF can be changed alongwith the stroke of arbitrary in order to reach the optimal control goal, according to thecharacteristics of sheet metal forming and the process requirements. This new blankholding force control technology will play an important role in promoting the automation,flexibility and intelligence of the sheet metal forming. It also reflects the advancedforming concept which is more precise, faster and more economical, presenting thedevelopment tendency of the advanced stamping technology.
     This paper presents a servo drive blank holding force control method whichcomposes a servo motor and a six-bar mechanism acting as the power of the controlsystem and the main part of the mechanical system and a new BHF control system isdeveloped. Researches on the basic principles, optimizations of the mechanical systemand the numerical control system, the designs of the hardware and software of the controlsystem and the related processing theories were made.
     First, the formula of critical BHF of flange region in axisymmetric deep drawing isdeduced under the plane strain assumption and the energy principle. Meanwhile, thevariation curve of the BHF versus the travel distance changing is drawn. Comparisonsunder the assumptions of plane stress, plane strain and equivalent strain inverselyproportional to radial coordinates in the flange region is made and results show that theplane stress condition is the closest to the actual situation.
     Then, taking an upright constructive mold for instance, the BHF actuator withdouble-slider and six-bar mechanism is designed adopting the composite servo drivemethod. The analysis gets the motion equation of the six-bar mechanism which can optimize linkage sizes under constraint conditions such as the drive ratio in the ratedworking stroke and the drive angle, and the goal is to optimize the overall size.Simulations of the blank holding system by virtual prototype technology are taken underthe circumstances of the constant BHF and the variable BHF. And the feasibility of thecomposite servo drive method is proved under the variable BHF by adjusting the motorspeed. The analysis indicates that it only requires motors below2kW to generate200kNBHF adopting the new drive method. In addition, how the linkage size machining errorsinfluence the precise movement of blank holders are analyzed. A linkage size toleranceselecting method is proposed as a basis to design blank holding mechanisms.
     For inverted pattern structures, a mathematical model indicating the input and outputof the BHF actuator is established, adopting the composite drive method, and consideringhow the rigid and flexible distances effect on outcome speeds. In order to minimize thedifference value between the binder speed and the sliding block speed, mechanismparameters are determined based on the BHF-slide distance curve from a deep-drawingprocess, under the conditions of guaranteeing the working stroke and the optimum valueof loading-pass effects. The simulation of blank holding process proves that the outputsmeet the requirements when the input motor speed is given. The input BHF curve and theoutput BHF curve are very close to each other. And the minimum relative error is lessthan4.7%when the BHF is more than100kN. It also indicates that the maximum torqueis36.6N×m when the max BHF is194kN, in other words, small or medium-sized powermotors can meet the requirements. The analysis results show that the variable BHFcontrol adopting composite method combining the six-bar linkage drive technique andthe servo motor drive technique is feasible.
     Furthermore, according to the characteristics of numerical system structures and therequirements of the BHF control, the hardware of the numerical BHF control system isdesigned. The system mainly consist servo motor and motion card. And the relatedsoftware is developed according to the requirements of the control system. Models of theservo drive system and the mechanical system are built and simulations are carried out byusing Simulink. It’s shown that the system has good feasibility and good dynamicproperty.
     Finally, the mechanical system and the numerical control system under the controlof the servo drive BHF are designed realizing the constant BHF and the variable BHFloading for upright constructive molds. The experimental results indicate thattechnological BHF requirements are reached adopting the BHF control method of theservo drive. Torque and power of motors are lower than rated values under thecircumstance that the blank holding force is up to about200kN.
引文
[1]中国机械工程学会锻压学会.锻压手册[M],第2卷,冲压.第2版.北京:机械工业出版社,2002:301.
    [2] Rodrigues D M, Leit o C, Menezes L F. A Multi-Step Analysis for Determining AdmissibleBlank-Holder Forces in Deep-Drawing Operations[J]. Materials&Design,2010,31(3):1475-1481.
    [3] Krichen A, Kacem A, Hbaieb M. Blank-Holding Effect on the Hole-Flanging Process of SheetAluminum Alloy[J]. Journal of Materials Processing Technology,2011,211(4):619-626.
    [4] Hassan M A, Ahmed K I E, Takakura N. A Developed Process for Deep Drawing of Metal FoilSquare Cups[J]. Journal of Materials Processing Technology,2012,212(1):295-307.
    [5] Demirci H I, Ya ar M, Demiray K, et al. The Theoretical and Experimental Investigation ofBlank Holder Forces Plate Effect in Deep Drawing Process of Al1050Material[J]. Materials&Design,2008,29(2):526-532.
    [6] Zhang Wenfeng, Shivpuri R. Probabilistic Design of Aluminum Sheet Drawing for Reduced Riskof Wrinkling and Fracture[J]. Reliability Engineering&System Safety,2009,94(2):152-161.
    [7] Kim H, Altan T, Yan Q. Evaluation of Stamping Lubricants in Forming Advanced High StrengthSteels (Ahss) Using Deep Drawing and Ironing Tests[J]. Journal of Materials ProcessingTechnology,2009,209(8):4122-4133.
    [8] Sun Guangyong, Li Guangyao, Gong Zhihui, et al. Multiobjective Robust Optimization Methodfor Drawbead Design in Sheet Metal Forming[J]. Materials&Design,2010,31(4):1917-1929.
    [9]赵军.圆锥形件拉深成形智能化的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1997:90.
    [10] Lin Zhongqin, Wang Wurong, Chen Guanlong. A New Strategy to Optimize Variable BlankHolder Force Towards Improving the Forming Limits of Aluminum Sheet Metal Forming[J].Journal of Materials Processing Technology,2007,183(2–3):339-346.
    [11]朱伟,董湘怀,张质良,等.圆筒件拉深成形临界防皱变压边力加载曲线研究[J].塑性工程学报,2007(01):109-114.
    [12]李连成,李渊婷,李明哲.板料柔性拉边成形与压边成形方式的比较[J].机械工程学报,2013(02):67-72.
    [13] Li C H, Tso P L. Experimental Study on a Hybrid-Driven Servo Press Using Iterative LearningControl[J]. International Journal of Machine Tools and Manufacture,2008,48(2):209-219.
    [14] Osakada K, Mori K, Altan T, et al. Mechanical Servo Press Technology for Metal Forming[J].CIRP Annals-Manufacturing Technology,2011,60(2):651-672.
    [15]鲁文其,胡育文,黄文新.基于交流电机重载驱动的复合型伺服压力机[J].电机与控制应用,2008(09):11-14.
    [16]苏敏,王隆太.几种伺服压力机传动结构方案的分析与比较[J].锻压装备与制造技术,2008(05):35-38.
    [17]白勇军.大型重载伺服机械压力机的关键技术及实验研究[D].上海:上海交通大学博士学位论文,2012:27.
    [18] Song Qingyu, Guo Baofeng, Li Jian. Drawing Motion Profile Planning and Optimizing forHeavy Servo Press[J]. The International Journal of Advanced Manufacturing Technology,2013,69(9-12):2819-2831.
    [19]莫健华,张正斌,吕言,等.三角肘杆式伺服压力机传动机构的仿真与优化[J].锻压装备与制造技术,2011(01):21-25.
    [20] Altintas Y, Munasinghe W K. A Hierarchical Open-Architecture CNC System for MachineTools[J]. CIRP Annals-Manufacturing Technology,1994,43(1):349-354.
    [21] Rober S J, Shin Y C. Modeling and Control of CNC Machines Using a PC-Based OpenArchitecture Controller[J]. Mechatronics,1995,5(4):401-420.
    [22] Yamazaki K, Hanaki Y, Mori M, et al. Autonomously Proficient CNC Controller forHigh-Performance Machine Tools Based on an Open Architecture Concept[J]. CIRP Annals-Manufacturing Technology,1997,46(1):275-278.
    [23] Pritschow G, Altintas Y, Jovane F, et al. Open Controller Architecture–Past, Present andFuture[J]. CIRP Annals-Manufacturing Technology,2001,50(2):463-470.
    [24]杨建武.国内外数控技术的发展现状与趋势[J].制造技术与机床,2008(12):57-62.
    [25] Schützer K, Uhlmann E, Del Conte E, et al. Improvement of Surface Accuracy and Shop FloorFeed Rate Smoothing through Open CNC Monitoring System and Cutting Simulation[J].ProcediaCIRP,2012,1:90-95.
    [26] Morales-Velazquez L, Romero-Troncoso R J, Osornio-Rios R A, et al. Open-ArchitectureSystem Based on a Reconfigurable Hardware–Software Multi-Agent Platform for CNCMachines[J]. Journal of Systems Architecture,2010,56(9):407-418.
    [27] Hong K S, Choi K H, Kim J G, et al. A PC-Based Open Robot Control System: PC-ORC [J].Robotics and Computer-Integrated Manufacturing,2001,17(4):355-365.
    [28]武传宇.基于PC+DSP模式的开放式机器人控制系统及其应用研究[D].杭州:浙江大学博士学位论文,2002:29-35.
    [29] Song Weike, Wang Gang, Xiao Juliang, et al. Research on Multi-Robot Open Architecture of anIntelligent CNC System Based on Parameter-Driven Technology[J]. Robotics andComputer-Integrated Manufacturing,2012,28(3):326-333.
    [30] Osornio-Rios R A, Romero-Troncoso R J, Herrera-Ruiz G, et al. The Application ofReconfigurable Logic to High Speed CNC Milling Machines Controllers[J]. Control EngineeringPractice,2008,16(6):674-684.
    [31] Ramesh R, Jyothirmai S, Lavanya K. Intelligent Automation of Design and Manufacturing inMachine Tools Using an Open Architecture Motion Controller[J]. Journal of ManufacturingSystems,2013,32(1):248-259.
    [32] Xu Xiaoming, Li Yi, Sun Jihong, et al. Research and Development of Open CNC System Basedon PC and Motion Controller[J]. Procedia Engineering,2012,29(0):1845-1850.
    [33]陈建魁,尹周平,熊有伦.一种基于PMAC的非连续卷绕张力控制方法[J].华中科技大学学报(自然科学版),2010(07):1-4.
    [34]姜永成,任福君.基于多轴运动控制器的电极丝恒张力控制系统[J].中国机械工程,2008(16):1920-1924.
    [35]李明华,文立伟,肖军,等.纤维缠绕张力控制系统新技术研究[J].玻璃钢/复合材料,2008(03):46-49.
    [36] Olsson T, Haage M, Kihlman H, et al. Cost-Efficient Drilling Using Industrial Robots withHigh-Bandwidth Force Feedback[J]. Robotics and Computer-Integrated Manufacturing,2010,26(1):24-38.
    [37]王磊,柳洪义,郭大忠.一种开放式机器人控制器力/位混合控制的实现方法[J].组合机床与自动化加工技术,2004(10):75-77.
    [38]柳洪义,王磊,王菲.基于智能预测的力/位混合控制方法[J].东北大学学报,2006(12):1365-1368.
    [39]邵华,王立平,关立文,等.模拟过载动感座椅机构的力控制[J].清华大学学报(自然科学版)网络,2009(11):1787-1790,1794.
    [40]王清华,韩秋实,孙志永,等.基于Turbo PMAC数控系统的PID在线调节[J].微计算机信息,2007(16):226-228.
    [41]牛志刚,张建民.基于Turbo PMAC的数控系统自定义伺服算法的嵌入和实现[J].新技术新工艺,2005(07):11-13.
    [42] Ulmer J B, Kurfess T R. Integration of an Open Architecture Controller with a Diamond TurningMachine[J]. Mechatronics,1999,9(4):349-361.
    [43]黄鹏.肘杆式压力机数控系统的研发[J].机床与液压,2009(06):42-44.
    [44] Liu Lin, Li Yong, Wen Liwei, et al. PMAC-Based Tracking Control System for8-AxisAutomated Tape-Laying Machine[J]. Chinese Journal of Aeronautics,2009,22(5):558-563.
    [45]夏罗生,卢端敏,朱树红.基于PMAC的二维搅拌摩擦焊开放式数控系统研究[J].制造技术与机床,2010(05):71-74.
    [46]高东强.基于层合速凝原理的陶瓷件快速制造设备及材料成型研究[D].西安:陕西科技大学博士学位论文,2012:64-80.
    [47] Gunnarsson L, Asnafi N, Erik S. In-Process Control of Blank Holder Force in Axi-SymmetricDeep Drawing with Degressive Gas Springs[J]. Journal of Materials Processing Technology,1998,73(1-3):89-96.
    [48] Thiruvarudchelvan S,Travis F W,Poh T K. On the Deep Drawing of Cups with Punch andBlank-Holding Forces Proportional to a Hydraulic Pressure[J]. Journal of Materials ProcessingTechnology,1999,92(93):375-380.
    [49] Hassan M A, Suenaga R, Takakura N, et al. A Novel Process on Friction Aided Deep DrawingUsing Tapered Blank Holder Divided into Four Segments[J]. Journal of Materials ProcessingTechnology,2005,159(3):418-425.
    [50] Gavas M, Izciler M. Design and Application of Blank Holder System with Spiral Spring in DeepDrawing of Square Cups[J]. Journal of Materials Processing Technology,2006,171(2):274-282.
    [51] Endelt B, Tommerup S, Danckert J.A Novel Feedback Control System–Controlling the MaterialFlow in Deep Drawing Using Distributed Blank-Holder Force[J]. Journal of Materials ProcessingTechnology,2013,213(1):36-50.
    [52]余海燕,金隼,孙成智,等.多点变压的压边力控制系统开发[J].中国机械工程,2004(08):3-5.
    [53]秦泗吉.轴对称拉深成形多点压边常压边力拉深模设计[J].塑性工程学报,2002(01):78-80.
    [54]刘礴,王仲奇,张旭东,等.基于模糊控制算法的多点压边力控制系统的设计与实现[J].科学技术与工程,2006(17):2697-2701.
    [55] Wang Hu, Li Guangyao, Zhong Zhihua. Optimization of Sheet Metal Forming Processes byAdaptive Response Surface Based on Intelligent Sampling Method[J]. Journal of MaterialsProcessing Technology,2008,197(1–3):77-88.
    [56]谢晖,钟志华.基于CAE和神经网络的压边力优化[J].机械工程学报,2004(07):105-109.
    [57] Zhang Zhibing, Liu Yuqi, Du Ting, et al. Blank Design and Formability Prediction ofComplicated Progressive Die Stamping Part Using a Multi-Step Unfolding Method[J]. Journal ofMaterials Processing Technology,2008,205(1–3):425-431.
    [58]吴畏.板料拉深成形压边力控制研究[D].南京:南京理工大学硕士学位论文,2009:9-18.
    [59]谭晶,孙胜,赵振铎,等.拉深工艺变压边力控制数值模拟研究[J].中国机械工程,2003(04):23-25.
    [60]王作成,韩福涛,崔国涛.圆锥形件变压边力拉深工艺的研究[J].塑性工程学报,2006(02):25-28.
    [61] Chen L, Yang J C, Zhang L W, et al. Finite Element Simulation and Model Optimization ofBlankholder Gap and Shell Element Type in the Stamping of a Washing-Trough[J]. Journal ofMaterials Processing Technology,2007,182(1–3):637-643.
    [62] Sim H B,Boyce M C. Finite Element Analysis of Real-Time Stability Control in Sheet FormingProcessing[J]. ASME Journal of Engineering Materials and Technology,1992,114(2):180-188.
    [63] Lee C, Hardt D E. Closed-Loop Control of Sheet Metal Stability During Stamping[J]. NorthAmerican Manufacuring Conference,1986:28-30.
    [64] Thomas W, Oenoki T, Altan T. Process Simulation in Stamping–Recent Applications forProduct and Process Design[J]. Journal of Materials Processing Technology,2000,98(2):232-243.
    [65]马瑞,赵军,屈晓阳.盒形件智能化拉深变压边力控制规律及其预测[J].机械工程学报,2010(08):32-36.
    [66]何大钧,王勇勤,李华基,等.薄板深拉深压边力变化规律研究[J].锻压机械,2002(01):41-43,67-68.
    [67]李西宁,姜澄宇,王仲奇.基于数值模拟的矩形件成形变压边力曲线确定方法[J].塑性工程学报,2009(04):25-28.
    [68] Azaouzi M, Belouettar S, Rauchs G. A Numerical Method for the Optimal Blank ShapeDesign[J]. Materials&Design,2011,32(2):756-765.
    [69] Siegert K, Ziegler M, Wagner S. Closed Loop Control of the Friction Force. Deep DrawingProcess[J]. Journal of Materials Processing Technology,1997,71(1):126-133.
    [70] Sheng Z Q, Jirathearanat S, Altan T. Adaptive FEM Simulation for Prediction of Variable BlankHolder Force in Conical Cup Drawing[J]. International Journal of Machine Tools andManufacture,2004,44(5):487-494.
    [71] Seo Y R. Electromagnetic Blank Restrainer in Sheet Metal Forming Processes[J]. InternationalJournal of Mechanical Sciences,2008,50(4):743-751.
    [72] Siegert K, Dannenmann E, Wagner S, et al. Closed-Loop Control System for Blank HolderForces in Deep Drawing[J]. CIRP Annals-Manufacturing Technology,1995,44(1):251-254.
    [73]丁明明,许少宁,蔡丹云.新型计算机控制多点上置式变压边力拉深装置的研究[J].机电工程,2013(06):700-703.
    [74]刘念聪,王银芝.拉深工艺中新型变压边力装置的设计[J].制造技术与机床,2010(02):126-128.
    [75]柳建安,肖亮,董永平.新型变压边力拉深模设计[J].模具工业,2008(05):20-23.
    [76]江财明,管爱枝,吴立军,等.拉深变压边力机构的设计[J].浙江科技学院学报,2009(03):224-226.
    [77]史东才,吴华英,魏公际,等.一种新型的变压边力装置[J].模具工业,2006(04):34-36.
    [78]杨连发,李和平.变压边力拉伸模设计[J].模具工业,2002(09):20-22.
    [79]秦泗吉.压边力控制技术研究现状及伺服数控压边方法可行性探讨[J].中国机械工程,2007(01):120-125.
    [80]孙华建,李学森,朱宝忠.永磁同步电机伺服系统的现状及发展前景[J].中国西部科技,2009(16):33-34,59.
    [81]秦泗吉,梁韶伟,张树栋.轴对称拉深成形法兰区起皱失稳变形能及临界压边力[J].中国机械工程,2013(23):3244-3248.
    [82] R.希尔(王仁等译).塑性数学理论[M].北京:科学出版社,1966:14-369.
    [83]梁炳文.板料成形塑性理论[M].北京:机械工业出版社,1987:129-251.
    [84]李敏华.硬化材料的轴对称塑性平面应力问题的研究.北京:科学出版社,1960:9-20.
    [85]李敏华.材料的应力应变曲线对于塑性平面应力问题的解的影响[J].力学学报,1957,1(1):77-94.
    [86]秦泗吉.轴对称拉深成形凸缘变形区应力的解析求解[J].机械工程学报,2011,47(24):20-25.
    [87] Barata Marques M J M, Baptista R M S O. Theoretical and Experimental Analysis ofAxisymmetrical Deep Drawing [J]. Journal of Materials Processing Technology,1990,24(12):53-63.
    [88] Hill R. A General Theory of Uniqueness and Stability in Elastic-Plastic Solids[J].1958,6:236-249.
    [89] Hutchinson J W. Plastic Buckling[J]. Advances in Applied Mechanics,1974,14:67-144.
    [90] Triantafyllidis N, Needleman A. An Analysis of Wrinkling in the Swift Cup Test[J]. Journal ofEngineering Materials and Technology,1980,102(3):241-248.
    [91] Senior B W. Flange Wrinkling in Deep-Drawing Operations[J]. Journal of the Mechanics andPhysics of Solids,1956,4(4):235-246.
    [92] Yu T X, Johnson W. The buckling of annular plates in relation to the deep-drawing process[J].International Journal of Mechanical Sciences,1982,24(3):175-188.
    [93]高凯祁,杜颂,胡世光.轴对称零件拉深过程中的最小无皱压边力[J].塑性工程学报,1997(04):30-37.
    [94]赵军,张双杰,曹宏强,等.拉深过程智能化控制中的法兰起皱临界条件[J].燕山大学学报,1998(03):12-16.
    [95]王东哲.板料拉深成形变压边力理论和实验研究[D].上海:上海交通大学博士学位论文,2001:37-50.
    [96] Qin Siji, Xiong Baiqing, Lu Hong, et al. Critical blank-holder force in axisymmetric deepdrawing[J]. Transactions of Nonferrous Metals Society of China,2012(S2):239-246.
    [97] Wang Xi, Cao Jian. An Analytical Prediction of Flange Wrinkling in Sheet MetalForming[J].Journal of Manufacturing Processes,2000,2(2):100-107.
    [98]Anupam Agrawal, Venkata Reddy N, Dixit P M. Determination of Optimum Process Parametersfor Wrinkle Free Products in Deep Drawing Process[J]. Journal of Materials ProcessingTechnology,2007,191(1):51-54.
    [99]阮卫平,胡建国,孙友松.伺服机械压力机传动方案分析[J].锻压技术,2010(04):67-71.
    [100]孙恒.机械原理(第5版)[M].北京:高等教育出版社,1996:154-155.
    [101]华大年,华志宏.连杆机构设计与应用创新[M].北京:机械工业出版社,2008:203-204.
    [102]陈春.尺寸误差对平面四杆机构运动精度的影响[J].机械研究与应用,2005(01):47-48.
    [103]罗中华.最优化方法及其在机械行业中的应用[M].北京:电子工业出版社,2008:94-95.
    [104]Koren Y, Hu S J, Gu P, et al. Open-Architecture Products[J]. CIRP Annals-ManufacturingTechnology,2013,62(2):719-729.
    [105]徐伟,叶树亮,李东升.全闭环工作台的建模及PID控制[J].自动化仪表,2010(05):8-9,12.
    [106]Wang Weibing, Zhao Pengbing. Application of kalman filter in the CNC servo control system[J]. Procedia Engineering,2010,7:442-446.
    [107]Ebrahimi M, Whalley R. Analysis, modeling and simulation of stiffness in machine tooldrives [J]. Computers&Industrial Engineering,2000,38(1):93-105.
    [108]费继友,代明匣.基于PMAC运动控制器的伺服电机同步控制系统[J].大连交通大学学报,2010(01):41-44.
    [109]罗亚军.板材拉深成形变压边力理论和数值模拟[D].上海:上海交通大学博士学位论文,2003:2-10.
    [110]Wang Xi, Cao Jian. An Analytical Prediction of Flange Wrinkling in Sheet Metal Forming[J].Journal of Manufacturing Processes,2000,2(2):100-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700