驱动技术系统进化的概念设计过程及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,TRIZ理论在概念设计问题求解的应用方法研究成为热点,主要缘于TRIZ理论的抽象性和丰富性。丰富性使得TRIZ理论适合处理设计中遇到的多样的、复杂的设计问题,抽象性有助于激发设计者的创新思想。然而,抽象性和丰富性也给TRIZ理论的学习和应用带来了困难,即设计者如何选择TRIZ理论的工具、如何将抽象的TRIZ理论知识转化为具体设计问题的解。针对这一问题,本文研究概念设计求解过程,以功能求解、解的诊断、改良为主线,通过设计中遇到的问题引导TRIZ理论多种工具的集成应用,形成面向技术系统进化的概念设计求解过程模型,并研究其实现的支持技术。
     本文主要研究内容包括六个方面:
     1.研究驱动技术系统进化的概念设计求解过程。以提高技术系统理想度为目标,总结影响技术系统进化的关键因素,将进化问题归类问功能求解和技术系统与环境关系改良问题,抽象出技术系统进化的驱动知识,对可供性概念进行扩展,将其用于驱动知识的描述,形成功能、行为、结构、可供性四种驱动知识,提出以驱动知识集成TRIZ理论多种求解工具的目标;针对TRIZ理论知识抽象这一特征,研究通过驱动知识之间的映射关系实现抽象知识向具体知识转化的的支持技术,通过对情景设计过程中创新驱动力的来源进行分析,提出以FBS-A (Function Behaviour Structure Affordance)知识表示法来支持情景设计的未预见发现过程。在此工作的基础上,提炼出能够集成应用TRIZ理论知识库和求解工具的概念设计求解过程U-FES (Unexpected Discovery FunctionEffect’s Example Structure)过程模型。
     2.研究以U-FES过程为基础的功能问题求解实现技术。讨论了模型中设计任务抽象、功能分解、映射过程的具体实现技术。采用动名词+流的形式来支持U-FES模型上述操作过程中的功能表达;对TRIZ理论功能效应目录的结构进行扩展,以TRIZ理论功能词汇为基础建立了功能语义本体结构,使其满足功能求解过程中功能语义的一致理解的要求,并建立效应库和效应实例库结构,来支持功能到效应实例的映射关系。在此基础上讨论了功能至效应实例映射的实现技术。
     3.研究情景类比方法来支持功能元求解和功能元解的诊断。针对来自于不同专业领域的效应实例与目标设计不存在明显相似,以至于给类比带来困难这一问题,提出采用情景FBS (Situated Function Behaviour Structure)模型支持的未预见发现UXD(UnexpectedDiscovery)驱动的创新过程,利用未预见发现的认知特点来支持抽象的效应实例向具体专业领域的功能元解转化。建立可供性表示法,提出以可供性表示为基础的UXD驱动创新的情景类比方法,通过这一情景类比方法,在设计的早期对效应实例分析发现目标设计中存在的、需要改良的问题。
     4.研究技术系统总体理想度提高的方法。针对由功能元解组合而成的技术系统设计方案的理想度提高问题,研究基于可供性表示的理想度定义方法,通过可供性分析来发现对技术系统理想度提高阻碍较大的因素,从而将技术系统与环境关系与技术系统进化目标结合起来,为技术系统进化目标的确定提供依据。
     5.研究技术系统中存在多冲突时,主要冲突问题选择的方法。针对概念解改良过程中会存在多个阻碍进化的冲突,而这些冲突对技术系统的阻碍程度不同且难以完全消除这一问题,提出了重要度和广泛度的概念及计算方法,以此为基础建立了主要冲突的选择提供量化方法。
     6.在前述研究的基础上,讨论了人与计算机交互的U-FES实现过程,建立了基于U-FES模型的概念设计求解设计流程。通过驱动采煤机螺旋滚筒进化的概念设计过程验证了设计流程中所建立的信息模型的准确与完整性、以及基于可供性表示的UXD驱动设计的正确性和有效性。
In recent years, more and more research has been focused on how to use TRIZmethodology to generate new ideas at the stage of conceptual design. There are two reasons.Firstly, TRIZ contains abundant problem solving tools, including knowledge base, effect base,contradiction matrix,40principles and so on, which is capability of dealing with themultiform, complex conceptual design problems. Secondly, the knowledge recommended byTRIZ to solve the problem is not lean to any science or industrial field, which is propitious togenerate new ideas due to the avoidance of thinking set. However, it is complex and abstrusefor TRIZ beginner to learn. My job is focused on conceptual design process and the keytechnique, including function design, diagnose of solutions and solution’s evolution. The aimis to integrate TRIZ tools to support the process of conceptual design mentioned above. Themain jobs are as follows:
     (1) In order to create conceptual design process which is capabililty of supportingtechnical system’s evolution, the key problems affecting the technical system’s evolution arefound, they are functional problem and the relationship problem between technical systemand environment. Therefore, affordance is extended to express the knowledge structure ofconceptual design companying with function, behavior and structure. Situated design processis studied to find the driving force for innovation under the supporting of knowledge frommulti-field. Based on jobs above, a conceptual design process model which supportedintegrating application the kinds of TRIZ tools is formed. The model is U-FES (Unexpecteddiscovery function effect structure).
     (2) To explore the techniques supporting the key steps of U-FES model, we studied thekey techniques including function formulization, function decomposed and mapping ofanalogy. And use the expression of verb-noun-flow to formulize function semantic expression.Furthermore, the structure of TRIZ’s function-effect catalog is modified, and explored thefunction ontology structure based on the TRIZ’s function vocabulary to support the techniquementioned above. The structure of effect database and effect example database are established.Based on the jobs above, the technique which support the mapping from function semantemeto effect’s example is built.
     (3) Situational analogy is introduced to support functional problem solving andsolution’s diagnosing. And UXD process based on the situated FBS representation is appliedto drive the new idea generating, which overcome the difficult of analogy between the objectsfrom different domain. Furthermore, A-representation is putted forward to support the UXDprocess to aid the diagnosing process, which is helpful to find the problem at the early stage of conceptual design.
     (4) To study the concept ideality, and introduce a new expression of ideality based onaffordance, which is helpful when designer aims to find the main factors exactly whichprevent the evolution of artifact. The proposal expression of ideality links the environmentfactors to the ideality of artifact.
     (5) To select the main contradictions from contradictions’ set which are composed of thedesign contradictions preventing the evolution of artifact seriously, the concept importanceand influence is introduced, and the equation of importance and influence is established,which provide a quantifying method for main contradictions’ selection.
     (6) To explore the conceptual design process model based on situated design, and theflow chart of conceptual design is established based on U-FES model, which is supported byhuman-computer cooperation process. The proposal conceptual design process is verified bythe evolution of electro-haulage shearer screw drum.
引文
[1] http://www.icad.com.cn.李培根.中国创造需要信息化.中国制造信息化,2005.7
    [2]陈宗舜,史祥生.产品数字化与产品数据管理.北京:清华大学出版社,2004.3
    [3]邓家褆.产品设计的基本理论与技术.中国机械工程.2000,11:139–143页.
    [4]邓家褆,韩晓建,曾硝等.产品概念设计—理论、方法与技术.北京:机械工业出版社,2002.
    [5] Pahl, Beitz. Engineering Design:A Systematic Approach. London: Springer-Verlag,2nd printing.1999:1-4p
    [6]杨艳华,朱祖平,姚立纲.机械产品概念设计推理技术研究综述.现代制造工程,2010,2:4-8页
    [7] GORTI S R, GUPTA A, KIM GJ, et al. An object-oriented representation for productand design processes. Computer-Aided Design.2000,32(14):489-501p
    [8] Gick, M L and Holyoak, K J. Analogical problem solving. Cognitive Psychology.1980,12(3):306-355p
    [9] Altshuller, G. The Innovation Algorithm: TRIZ Systematic Innovation and TecnicalCreativity, Technical Innovation Center, Inc,1999:26-33p
    [10] French M J. Conceptual design for engineers. London: The Design Council,1985:1-4p
    [11]胡勃卡V.工程设计原理.北京:机械工业出版社.1989.2:20-25页
    [12]谢友柏.产品的性能特征与现代设计.中国机械工程.2000,11(l):26-32页
    [13]邓家褆.产品设计的基本理论与技术.中国机械工程.2000,11(2):139-143页
    [14]邹慧君,汪利,王石刚,郭为忠.机械产品概念设计及其方法综述.机械设计与研究.1998,14(2):9-12页
    [15]孙守迁,包恩伟,陈蒲等.计算机辅助概念设计研究现状和发展趋势.中国机械工程.1999,10(6):697-701页
    [16] Kai Ming Yu, C.T.Lau, K.L.Tong and W.K.Wong. Integrated Conceptual Design withTRIZ. http://www.triz-journal.com
    [17] Petrov V. Law of increasing the degree of ideality. http://www.trizland.ru/trizba/pdf-books/zrts-08-ideal.pdf
    [18]王玉新,张旭光,毛晓辉. FBS模型中行为与结构创新的商空间表达与实现.机械工程学报.2010,8:107-116页
    [19]龚京忠,邱静,李国喜,李伟.产品模块可拓变型设计方法.计算机集成制造系统.2008,7: P1256-1267页
    [20]宋慧军,林志航.机械产品概念设计多层次混合映射功能求解框架.机械工程学报.2003,39(5):82-87页
    [21]邹光明,胡于进等.基于功能基的产品概念设计模型研究.中国机械工程.2004,15(3):206-209页
    [22]胡小平,杨世锡.产品概念设计过程中信息映射模型的研究.中国机械工程.2005,16(15):1366-1368页
    [23]曹国忠,檀润华,孙广建.基于扩展效应模型的功能设计过程实现.机械工程学报.2009,45(7):157-167页
    [24]曹国忠,檀润华,张瑞红,江屏.基于效应的概念设计过程模型研究.中国机械工程.2005,16(9):823-827页
    [25] Gero, J. S. and U. Kannengiesser. The situated function–behaviour–structureframework. Design studies,2004,25(4):373-391p
    [26]刘晓敏,檀润华.基于功能-行为-结构情境设计的未预见发现构造模型驱动产品创新.机械工程学报.2006,42(12):186-191页
    [27]刘晓敏,檀润华.情景类比构造模型驱动产品创新设计研究.机械设计.2007,24(11):1-4页
    [28] Christophe, F., A. Bernard, et al. RFBS: A model for knowledge representation ofconceptual design. CIRP Annals-Manufacturing Technology.2010,59(1):155-158p
    [29] Yasushi Umeda, Masaki Ishii, Masaharu Yoshloka, et al. Supporting ConceptualDesign Based on the Function-Behavior-State Modeler. Artificial Intelligence forEngineering Design, Analysis and Manufacturing.1996,10:275-288p
    [30]王靖滨,俞杰,耿卫东,潘云鹤.基于FBS的产品创新设计模型.计算机辅助设计与图形学学报.2000,11:824-826页
    [31]赵有珍,李健,邓家褆.产品功能结构建模研究.计算机应用研究.2003,11:32-38页
    [32] Komoto, H. and T. Tomiyama. A system architecting tool for mechatronic systemsdesign. CIRP Annals-Manufacturing Technology.2010,59(1):171-174p
    [33]设计方法学-原理、方法和应用.北京机械工程学会.内部资料,1989.10
    [34]何斌,冯培恩,潘双夏.面向产品创新的功能空间拓展进程.机械工程学报.2009,45(11):190-196页
    [35] Koller, Rudolf. Engineering Design. Berlin: Springer-Verlage,1994.3:20-33p
    [36]发明问题解决理论基础.内部资料,2007:132-138页
    [37]冯培恩,张帅等.复合功能产品概念设计循环求解过程及其实现木.机械工程学报.2005,41(3):1-4页
    [38] Feigenbaum E A. The Art of Artificial Intelligence. Themes and Case Studies inKnowledge Engineering, IJCAI5:1014-1029p
    [39] Amaresh Chakrabarti. Towards a Theory for Functional Reasoning in Design.International Conference on Engineering Design. The Hague,1993.17-19p
    [40] Luca Chittam, Amruth N Kumar. Reasoning about Function and its applications toEngineering. Artificial Intelligence in Engineering,1998,12:331-336p
    [41] Murali Barathwaj Jayaram. A Formal Method for Functional Modeling andConceptual Design of Complex Mechatronic System. Master Thesis. Canada:University of Toronto,2002:1-4p
    [42] F A Salustri. A Formal Theory for Knowledge-Based Product Model Representation.2nd IFIP WG5.2Workshop on Knowledge Intensive CAD. Carnegie-MellonUniversity,1996.59-78p
    [43] Hundal, M. A systematic method for developing function structures, solutions andconcept variants. Mechanism and Machine theory.1990,25(3):243-256p
    [44] Information on http://function.creax.com/
    [45] Malmqvist, J., R. Axelsson, et al. A comparative analysis of the theory of inventiveproblem solving and the systematic approach of pahl and beitz. Proceedings of the1996ASME Design Engineering Technical Conferences.1996:1-4p
    [46] Szykman S, Racz J W. A foundation for Interoperability in Next-generation ProductDevelopment Systems. Computer-Aided Design,2001,33(7):545-559p
    [47] Stone, R. B. Towards a theory of modular design, University of Texas at Austin.1998
    [48] Hirtz J, Stone R, Mcadams D, et al. A Functional Basis for Engineering Design:Reconciling and Evolving Previous Efforts. Research in Engineering Design,2001,13(2):65-82p
    [49]张鹏,檀润华.组合复杂性消除过程模型.农业机械学报.2010,41(3):183-188页
    [50]张鹏,檀润华.组合复杂性理想解快速获取过程.计算机集成制造系统.2010,16(4):746-754页
    [51] Sun JianGuang. Roadmapping the Disruptive Innovation Based on Technology SystemDecomposition Analysis. ICMIT2010.2010-01:748-753页
    [52] Yao BingYi. A method of technology roadmappingbased on TRIZ.The5th IEEEInternational Conference on Management of Innovation and Technology, ICMIT2010in Singapore,2010,06:51-54p
    [53] Cascini, G., P. Rissone. Systematic design through the integration of TRIZ andoptimization tools. Procedia Engineering,2011,9:674-679p
    [54] Chen, Y., Z. L. Liu, et al. A knowledge-based framework for creative conceptualdesign of multi-disciplinary systems. Computer-aided design,2012,44(2):146-153p
    [55] Runhua, T., M. Lihui, et al. Systematic method to generate new ideas in fuzzy frontend using TRIZ. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2008,21(2)
    [56] Lee, K.W. Mutual compensation of TRIZ and Axiomatic Design, Proceedings of theEuropean TRIZ Association Conference, TRIZ Futures.2005
    [57] Cavallucci, D. and P. Lutz. Intuitive design method (IDM)-a new approach on designmethods integration. Proceeding of ICAD2000: First International Conference onAxiomatic Design, Cambridge, MA-June.
    [58] Hu, M., K. Yang, et al. Enhancing robust design with the aid of TRIZ and axiomaticdesign (Part I). TRIZ Journal,2000,10
    [59] Mann, D. Axiomatic design and TRIZ: compatibilities and contradictions. Proceedingsof ICAD2002,2nd International Conference on Axiomatic Design, Cambridge, MA: APublication of ICAD.
    [60] Kim, Y-S and Cochran, D.S. Reviewing TRIZ from the perspective of the axiomaticdesign. Journal of Engineering Design, Vol.11, No.1:79–94p
    [61] Thompson, M. K. Teaching axiomatic design in the freshman year: a case study atKAIST. Proceedings of the5th International Conference on Axiomatic Design,2009
    [62] Qi hua, T., X. Ren-bin, et al. Integration of axiomatic design and theory of inventiveproblem solving for conceptual design. Journal of Chongqing University (EnglishEdition).2009,8(3):1-4p
    [63] Zhang, X. and D. Z. Chen. A conceptual design approach generated by integrating ADand TRIZ into the conceptual design phase of SAPB. Advanced Materials Research,2010,118:977-981p
    [64] Thompson, M. K. ED100: Shifting Paradigms in Design Education and StudentThinking at KAIST. Proceedings of the19th CIRP Design Conference–CompetitiveDesign, Cranfield University Press,2009
    [65] CHANG, A., J. XU, et al. Analysis of TRIZ's Transmission Status in Mainland China.Science of Science and Management of S.&T,2010,8:018.
    [66] Jiang Ping, Zhai Jin Jin, Zhao Xiu Ping, Tan Run Hua, The Integrated Innovation ofFunction Combination Based on Axiomatic Design, Applied Mechanics and Materials,2010, Vols.20-23:1222-1228p
    [67]江屏,檀润华.基于公理设计的产品平台设计方法.机械工程学报.2009,45(10):216-221页
    [68]华中生,汪炜.基于QFD与TRIZ技术工具的产品概念设计方法.计算机集成制造系统.2004,10(12):1588-1593页
    [69]徐起贺.现代机械产品创新设计集成化方法研究.农业机械学报.2005,36(3):102-105页
    [70] Jianmin Xie, Xiaowo Tang, Yunfei Shao. Research on Product Conceptual DesignBased on Integrated of TRIZ and HOQ. Growth and Development of Computer-AidedInnovation, IFIP Advances in Information and Communication Technology,2009,Vol.304:203-209p
    [71]檀润华,马建红,张换高,苑彩云.基于QFD及TRIZ的概念设计过程研究.机械设计.2009,9:1-4页
    [72] Ma Jianhong, Yang Jing. Quality Tree of QFD: A New Method to Ensure SoftwareQuality.2009World Congress on Software Engineering,2009,53-58p
    [73]马怀宇,孟明辰.基于TRIZ/QFD/FA的产品概念设计过程模型.清华大学学报(自然科学版).2001,41(11):56-59页
    [74] Kai Ming Yu, C.T. Lau, K.L. Tong and W.K. Wong. Integrated Conceptual DesignWith TRIZ. www.triz-journal.com
    [75] Chen, L. S., C. C. Hsu. Developing a TRIZ-Kano model for creating attractive quality.Wireless Communications, Networking and Mobile Computing,2008. WiCOM'08.4thInternational Conference on, IEEE.
    [76] Huang, Q., X. Zhou, et al. Review on the Research of TRIZ Technological EvolutionTheory and It's Application. Science of Science and Management of S.&T.2009,4:13-17p
    [77] Shaobo, L., M. Yuqin, et al. An integrated mode research of QFD and TRIZ and itsapplications. Computer Science and Engineering,2009. WCSE'09. SecondInternational Workshop on, IEEE.
    [78] Shi, G. l. and Y. g. She. Study on problem-solving theory based on QFD, TRIZ andTaguchi methods. Systems Engineering and Electronics.2008,5:21-25p
    [79] Su, Chao Ton. and Lin, Chin Sen. Lin. A case study on the application of Fuzzy QFDin TRIZ for service quality improvement. Quality&Quantity.2008,42(5):563-578p
    [80]刘晓敏,檀润华,姚立纲.产品创新概念设计集成过程模型应用研究.机械工程学报.2008,44(9):153-161页
    [81]李萌.基于TRIZ和DEA理论的产品概念设计方法.系统工程.2007,25(2):116-120页
    [82] Ellen Domb. Using Analogies to Develop Breakthrough Concepts. Information onwww.triz-journal.com
    [83]马力辉,檀润华.发明问题解决理论解到领域解的转化方法研究.计算机集成制造系统.2008,14(10):1873-1888页
    [84]檀润华,张瑞红,刘芳,杨伯军.基于TRIZ的二级类比概念设计研究.计算机集成制造系统.2006,12(3):329-333页
    [85] Lihui Ma1, Guozhong Cao, Yun-xia Chang, Zihui Wei, Kai Ma. UXDs-drivenTransferring Method from TRIZ Solution to Domain Solution. Growth andDevelopment of Computer-Aided Innovation, IFIP Advances in Information andCommunication Technology,2009, Volume304:51-58p
    [86]高常青,黄克正,王国锋,张勇.由TRIZ理论的通用解求问题的特殊解.中国机械工程.2006,17(1):84-88页
    [87]檀润华,苑彩云,张瑞红,曹东兴.基于技术进化的产品设计过程研究.机械工程学报.2002,38(12):61-65页
    [88] Fang Liu, Liya Song, Zhonghang Bai, Peng Zhang. Study on Capturing FunctionalRequirements of the new product based on evolution. Growth and Development ofComputer-Aided Innovation, IFIP Advances in Information and CommunicationTechnology,2009, Volume304:286-294p
    [89]檀润华,马建红,陈子顺,江屏.基于TRIZ中需求进化定律的一类原始创新过程研究.中国工程科学.2008,10(11):52-57页
    [90]曹国忠,郭海霞,檀润华,张承业,李青海.面向功能创新的功能进化、组合与失效研究.机械工程学报,2012(6):29-38页
    [91]发明问题解决理论基础.内部资料,2007
    [92] Chulvi, V. and R. Vidal. TRIZ on design-oriented knowledge-based systems. TheTRIZ Journal,2009,5.
    [93]曹国忠,檀润华,孙建广.基于扩展效应模型的功能设计过程及实现.机械工程学报,2009,45(7):157-167页
    [94]余海亮.面向产品概念创新设计的本体集成模型研究.北京交通大学硕士论文,2007
    [95] Robert B. Stone, Kristin L. Wood. Development of a Functional Basis for Design.Journal of Mechanical Design.2000,22(4):359-371p
    [96] Cong, H. and L. H. Tong. Grouping of TRIZ Inventive Principles to facilitateautomatic patent classification. Expert systems with applications.2008,34(1):788-795p
    [97] Li, Z., D. Tate, et al. A framework for automatic TRIZ level of invention estimation ofpatents using natural language processing, knowledge-transfer and patent citationmetrics. Computer-aided design,2012,44(10):987-1010p
    [98] Liang, Y., R. Tan, et al. Patent analysis with text mining for TRIZ. Management ofinnovation and technology,2008. ICMIT2008.4th IEEE international conference on,IEEE.
    [99] Regazzoni, D. and R. Nani. TRIZ-Based Patent Investigation by EvaluatingInventiveness. Computer-Aided Innovation (CAI).2008, Springer:247-258p
    [100] Verhaegen, P. A., J. D’hondt, et al.. Relating properties and functions from patents toTRIZ trends. CIRP Journal of Manufacturing Science and Technology,2009,1(3):126-130p
    [101] Wu Hongtao, Yang Haobo, Ma Jianhong, Tan Runhua. Function-Based PatentRetrieval for Concept Design. The IEEE International Conference on IndustrialEngineering and Engineering Management (IEEM10), Macao, China.2010, Dec.7-10:348-351p
    [102] Gibson JJ (1979). The theory of affordances. In: The ecological approach to visualperception. Houghton Mifflin, Hopewell,127–143p
    [103] NORMAN, D. A.1999, May/June, Affordances, conventions, and design. Interactions,38–42p
    [104] H. REX HARTSON. Cognitive, physical, sensory, and functional affordances ininteraction design. BEHAVIOUR&INFORMATION TECHNOLOGY,SEPTEMBER–OCTOBER2003,22(5):315–338p
    [105] Maier JRA, Ezhilan T, Fadel GM. The affordance structure matrix—a conceptexploration and attention directing tool for affordance based design. In: Proceedings ofASME Design Theory and Methodology Conference, Las Vegas, NV. Paper no.DETC2007-34526
    [106] Maier JRA, Fadel GM, Batisto D. An affordance based approach to architecturaltheory, design, and practice. Des Stud (submitted)
    [107] Maier, J.R.A., G. Mocko, and G.M. Fadel. Hierarchical Affordance Modeling.Proceedings of ICED'09, Stanford, CA. August24-27,2009,314p
    [108] Stoffregen, T.A. Affordances as properties of the animal-environment system.Ecological Psychology.2003,15(2):115-134p
    [109] Maier and Fadel. Affordance based design: a relational theory for design. Research inEngineering Design.2006,20(4):225-239p
    [110] Gero JS, Kannengisser U. Representational affordances in design, with examples fromanalogy making and optimization. Res Eng Des,2012,23(3):35–249p
    [111] Udo Kannengiesser, John S. Gero. A Process Framework of Affordances in Design.Design Issues. Winter2012,28(1):50-62p
    [112] Maier, J. R. A. and G. M. Fadel. Affordance Based Design: Status and Promise.Proceedings of IDRS'06, Seoul, South Korea
    [113] Maier, J. R.A., Sandel, J., Fadel, G. M. Extending the Affordance Structure Matrix–Mapping Design Structure and Requirements to Behavior. Proceedings of the10thInternational DSM Conference, Product Architecture Modeling and Analysis,2008:339-346p
    [114] Brown DC, Blessing L. the relationship between function and affordance. In:Proceedings of ASME Design Theory and Methodology Conference, Longview, CA.Paper no. DETC2005-85017
    [115] S. D. Savransky: Engineering of Creativity. Introduction to TRIZ Methodology ofInventive Problem Solving; CRC Press, Boca Raton, Florida,2000
    [116] Yao BingYi, Jiang Ping. A study of designing around patents based on trimming. The5th IEEE International Conference on Management of Innovation and Technology,ICMIT2010in Singapore,2010,06:214-219p
    [117] Information on http://function.creax.com/.
    [118] http://en.wikipedia.org/wiki/Analogy
    [119] Ian Tseng, Jarrod Moss, Jonathan Cagan, Kenneth Kotovsky.The role of timing andanalogical similarity in the stimulation of idea generation indesign. Design studies.29(2008):203-221p
    [120] Jansson, D G and Smith, S M. Design fixation. Design Studies.1991,12(1):3-11p
    [121] Linsey, J S, Wood, K L and Markman, A B. Modality and Representation in Analogy,Artificial Intelligence in Engineering Design Analysis and Manufacturing.2008,22(2)
    [122] Dewey. J. The reflex concept in psycology psychological review.1896,3:357-370p
    [123] ClanceyW J. Situated cognition: on human knowledge and computer representations.Cambridge: Cambridge University Press,1997:5-10p
    [124] Sch n, D. A.&G. Wiggins. Kinds of seeing and their functions in designing. DesignStudies.1992,13(2):135–156p
    [125] Suwa, M., J. Gero and T. Purcell. Unexpected discoveries and s-invention of designrequirements: a key to creativity in designs, in J. S. Gero&M. L. Maher (eds),Computational Models of Creative Design IV, Key Centre of Design Computing andCognition, University of Sydney, Sydney, Australia.1999,297–320p
    [126] John S. Gero and Udo Kannengiesser. The situated function behaviour structureframework. Design Studies.2004,25(4):373–391p
    [127] Gero JS, Tham KW, Lee HS Behaviour: A Link Between Function and Structure inDesign. In: Brown DC, Waldron MB, Yoshikawa H (eds) Intelligent Computer AidedDesign. Elsevier, Amsterdam,1992,193–225p
    [128] Rosenman MA, Gero JS Purpose and Function in Design: From the Socio-Cultural tothe Techno-Physical. Design Studies,1998,19:161–186p
    [129] Gero JS, Kannengiesser U. The Situated Function-Behaviour-Structure Framework. In:Gero JS (ed) Artificial Intelligence in Design ‘02. Kluwer, Dordrecht,2002,89–104p
    [130] S.D.Bacon, D.C.Brown. Reasoning about mechanical device: a top-down approach toderiving behavior from structure. Computers in Engineering.1988:467-472p
    [131] A.Chakrabarti, T.P.Bligh. An approach to functional synthesis of solutions inmechanical conceptual design. PartI: Introduction and Knowledge representation.Research in Engineering Design.1994,6:127-141p.
    [132] B.chandrasekaran. Design problem solving: a task analysis. AI Magazine.1990,11(4):59-71p
    [133] J K Gui, M.Mantyla. Functional understanding of assembly modelling.Computer-Aided Design.1994,26(6):435-451p
    [134] F.M.Haslim, N.P.Juster, A.De Pennington. A functional approach to redesign.Engineering with Computers.1994,10:125-139p
    [135] M.R.Henderson, L.E.Taylor. A meta-model for mechanical products based upon themechanical design process. Research in Engineering Design.1993,5:140-160p
    [136] V.Hubka, W.E.Eder. Theory of technical systems. Springer-Verlag, London,1988.
    [137] D.Kutting. Potential and limits of functional modelling in the CAD process. Researchin Engineering design,1993,5:40-48p
    [138] Y.Shimomura etc. Reprsentation of design object based on the functional evolutionalprocess model. J. of Mechanical Design, Trans. Of ASME,1998,12:221-229p
    [139] R.H.Sturges etc. Computational model for conceptual design based on extendedfunction logic. AIEDAM,1996,10:255-274p
    [140] Y.Umeda etc. Supporting conceptual design based on thefunction-behaviour-statemodeler. AIEDAM,1996,10:275-288p
    [141] R.V.Welok, J.R.Dixon. Conceptual design of mechanical systems. Design Theory andMethodology,1991,31:61-68p
    [142] Robert B. Stone, Kristin L. Wood. Development of a Functional Basis for Design. J. ofMechanical Design, Trans. Of ASME,2000,12:359-371p
    [143] T.Tomiyama, H.Yoshikawa. Extended general design theory. In: Design Theory forCAD. H.Yoshikawa, E.A. Warman (eds). North0Holland,1987:95-130p
    [144] Vicente Chulvi and Rosario Vidal. TRIZ on Design-oriented Knowledge-basedSystems. Information on www.triz-journal.com
    [145] Studer R, Benjamins V R, Fensel D. Knowldege Engineering, Principles and Methods.Data and Knowledge Engineering,1998,25(1-2):161-197p
    [146] Kulinski, J. M. and J. S. Gero. Constructive representation in situated analogy indesign. Computer Aided Architectural Design Futures2001, Springer:507-520p.
    [147]刘晓敏,檀润华.基于功能—行为—结构情景设计的未预见发现构造模型驱动产品创新.机械工程学报.2006,42(12):186-191页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700