柴油机电—液驱动可变气门系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着排放法规的日趋严格和世界能源的日益短缺,节能、高效与环保成为内燃机技术发展的主导方向。而计算机软、硬件技术的飞速发展,使得电子技术被更加广泛地用于发动机的监控系统中。电控喷油技术、相继增压技术、可变喷嘴涡轮增压技术等在发动机上的成功应用,极大地改善了发动机性能。而传统内燃机配气相位固定不变的弊端日益凸现,取消凸轮轴及其从动件,实现发动机气门的开启定时、持续时间和升程等的全可变气门技术更显现其重要性。
     电液驱动可变气门系统作为一种较为理想的可变气门系统,它可以使得配气机构的运动与柴油机运行工况相互独立,在较大范围内实现气门正时、气门开启持续期和升程的灵活控制,实现发动机低油耗、低排放和高效率的控制目标。国外在可变气门系统的设计和控制方面已做了大量研究,但由于仍存在许多问题尚未解决,有关研究工作还在进行之中,要实现产品化尚需时日。
     本论文在参阅文献和借鉴国内外设计开发经验的基础上,结合我校在电控气门系统方面的研究成果,采用模型分析、仿真设计与试验研究相结合的研究模式。针对200型柴油机配气系统的特点,开发了一套单作用弹簧复位电-液驱动可变气门系统,并在我校自行研制的柴油机电子—液压控制系统试验台上进行了较为系统和深入的试验研究。最后,根据200型柴油机的运行工况特点,对该可变气门系统的适应性进行了分析,取得了一定成果,但也发现了其中存在的问题,如变工况下,气门开启响应和重叠角的控制问题等。
     由于电-液驱动气门系统所固有的响应特性,使得进气门开启速度和排气门的关闭速度仅仅从共轨压力、控制定时的角度较难解决,因此对原有的驱动系统在原理和结构上做了一些改进,但限于时间,只能从理论上予以分析,进一步的试验研究只能留待以后。
Accompanying with the gradually stricting of emission control regulations and the increasingly scarce of the world's energy, efficient, economical and environment protection become predominant direction of the I.C. engine technique's development .And the rapidly developing of the computer's software and hardware technic, it makes the electronic technique be widely used on the supervision system of engine .The electrical controlled injection fuel technique, STC(sequential turbocharging compression) technique and variable turbo nozzle technique etc. are successfully applied on engine, these consumedly improved its performance .But the traditional I.C. engine's disadvantage working together with the fixed constant valve phase is increasingly outstand, throwing off camshaft and its accessorial parts, fulfilling valve opening timing, opening continuance time and valve lift's variable. This type whole variable valve technique is more present its importance.
     Electronics-hydraulic driving variable valve system ,as a promising camless valve train ,depending on it can completely eliminate the cam-crank shaft mechanical linkage, allowing for a wide continuously variable valve timing, opening continuance time and valve lift .Through the use of variable valve timing(VVT), engine operation can be optimized in fuel economy, performance and emissions .Abroad, vast researches have been made in the area of electronics—hydraulic pressure driving variable valve system at structure design and control strategies ,but still being continuing due to some problems to deal with. It is far away from production.
     This paper based on the cultural heritage of the design and development experience from domestic to international at the variable valve system, combined my school's research result of the electronic control valve system,model analysis, simulating design and experiment research are combined together in research process .Aiming to 200 type diesel engines valve system, developed a set of single function, spring restoration, electronics-hydraulic driving variable valve system, and experience be done on the test-bed of the diesel engine electronics—hydraulic driving control system ,which is researched and manufactured by ourself. And according to work movement condition characteristics of 200 type diesel engine, analysing this variable valve system's controllable, obtaining some results. But some problems also be discovered, for example, corresponding to different rotate speed, controlling of valve lap over angle.
     Because the proper respond characteristic of electricity- liquid drive valve system, makes the open speed of inlet valve and close speed of exhaust valve are more difficult to solve from the aspect of the common rail pressure and timing control, so I did some improvement at system design towards originally system, but be limited by time, I can stay to do further research and developments for future only.
引文
[1] 刘永长.内燃机原理.华中科技大学出版社.2001.6
    [2] 冒晓建,肖文雍,周兴利,卢成委,杨林,卓斌等.轿车动力柴油化的技术措施探析.汽车工程.2006年(第28卷)第7期
    [3] Thomas Dresner. A Review and Classification of Variable Valve Timing Mechanisms. SAE890674. 1989
    [4] Kellchi. M.. Development of a Valve Timing Control System. SAE890680. 1989
    [5] 赵雨东,陆际清.实现汽车发动机可变气门相位的新方法.清华大学学报.1994(2)
    [6] Titolo A.. The Variable Valve Timing System -Application on a V8 engine. SAE910009. 1991
    [7] Thomas D.. A Review and Classification of Variable Valve Timing Mechanisms. SAE890674. 1989
    [8] 冯迎霞,俞水良.车用发动机可变气门驱动技术进展.机电工程技术,2005年第34卷第1期
    [9] Thomas D. A Review and Classification of Variable Valve Timing Mechanisms. SAE890674. 1989
    [10] M. F. Mathieson. A Hydraulic Tappet with Variable Timing Properties. SAE930823. 1993
    [11] Salber W, Kemper H,Staay F and Esch T. The Electro-mechanical Valve Train-A System Modulefor Future Powertrain Concepts. MTZ, 61(2000)12: 826-826 and MTZ, 62(2000) 1: 44-55
    [12] Michael Met al. Careless Engine. SAE paper 960581, 1996
    [13] Rassem R.. A Novel, Fully Flexible, Electromechanical Engine Valve Actuation System. SAE970249. 1997
    [14] Mark A, Theobaid. Control of Engine Load Via Electromagnetic Valve Actuators. SAE940816. 1994
    [15] Michael M. S.. Camless Engine. SAE960581. 1996
    [16] John Steven Brader, Development of a Piezoelectric Controlled Hydraulic Actuator for a Camless Engine, Bachelor of Science Boston University, 1995
    [17] J. E. Mardell. An Integrated, Full Authority, Electrohydraulic Engine Valve and Diesel Fuel Injection System. SAE880602. 1988
    [18] Shibano K et al. A Newly Developed Variable Valve Mechanism with Low-Mechanical Friction. SAE paper 920451, 1992
    [19] 杰米道夫.可变压缩比发动机.机械工业出版社.1985
    [20] (美国)S.J.Charlton等,可变气门定时在高增压柴油机中的应用.国外内燃机车,1994年第9期(总第291期)
    [21] 石磊,邓康耀,崔毅,刘宇,何方正,气门正时对柴油燃料HCCI燃烧影响的初步实验研究.燃烧科学与技术,2005年第11卷第4期
    [22] H. Sono and H. Umiyama. A Study of Combustion Stability of Non-throttling S. I. Engine with Early Intake Valve Closing Mechanism. SAE paper 945009, 1994
    [23] Y Urata, H. Umiyama, K. Shimizu, Y Fujiyoshi, H. Sono, and K. Fukuo. A Study of Vehicle Equipped with Non-Throttling S. I. Engine with Early Intake Valve Closing Mechanism. SAE paper 930820, 1993
    [24] P. Kreuter, P. Heuser, and M. Schebitz. Strategies to Improve SI-Engine Performance by Means of Variable Intake Lift, Timing and Duration. SAE paper 920449, 1992
    [25] 肖超胜,陆华忠.可变气门配气相位和升程电子控制系统,世界汽车,1997年第10期.
    [26] Hakan Yilmaz, Anna Stefanopoulou. control of charge dilution in turbocharged diesel engines via exhaust valve timing, Proceedings of the American Control Conference Denver, Colorado June 4-6, 2003
    [27] 王尚勇,杨青,柴油机电子控制技术.机械工业出版社,2005.1
    [28] 武汉水运工程学院.200GZC-Ⅰ柴油机设计计算书.武汉水运工程学院.1983年
    [29] 陈庆生,冲击振动理论与应用.国防工业出版社,1989
    [30] 罗冠炜,谢建华,碰撞振动系统的周期运动和分岔,科学出版社,2004.3
    [31] 许回江,潘志翔.柴油机电液驱动可变气门系统仿真设计研究.船海工程,2006年第5期.
    [32] 武汉理工大学柴油机电子控制技术课题组,“柴油机中压共轨电控喷油技术研究”鉴定技术文件.武汉理工大学,2006.1
    [33] 陈勤学,中压共轨电控发动机可变气门系统的研究,武汉理工大学博士学位论文,2002.9
    [34] 潘文全,工程流体力学,清华大学出版社,1988
    [35] 许回江,任晓莉,潘志翔,柴油机可变气门系统优化研究,现代车用动力,2007年第1期.
    [36] 沈维道,郑佩芝,蒋淡安等,工程热力学,高等教育出版社,1983.10
    [37] 路甬祥,液压气动技术手册,机械工业出版社,2003.6
    [38] 易梅芝,邝吴,MATLAB/SIMULlNK构建打桩机液压系统仿真平台,建筑机械,2005.9
    [39] 周志鸿,喻勇,阎建辉,液压锤活塞行程与冲程时间的研究,凿岩机械气动工具,2002年1月
    [40] 薛定宇,陈阳泉,基于MATLAB/SIMULINK的系统仿真技术与应用,清华大学出版社,2003
    [41] 机械设计手册编委会.机械设计手册(第三版)1、2、3、4卷,机械工业出版社,2004.8
    [42] 徐东升,余伟巍,万欣等.Unigraphics NX3.0中文版标准实例教程.机械工业出版社,2006.1
    [43] 陈虹微.液压卡紧的影响因素及诊断和防治.煤矿机电.2005年第4期
    [44] 石磊,电控中压共轨共轨柴油机综合试验台监控系统开发,武汉理工大学硕士学位论文,2005.11
    [45] BWG2-20型电感调频式位移传感器说明书.中国西安闫良兰华传感器厂.2001.4
    [46] 汪志刚,柴油机中压共轨系统大流量高速电磁阀的优化研究,武汉理工大学博士学位论文,2006.5
    [47] 尹晓青,135型柴油机气门定时及升程的电子控制技术研究,武汉理工大学硕士学位论文,2006.4
    [48] Umut Genc, Richard Ford, Keith Glover and Nick Collings, Experiment Investigation of Changing Fule Path Dynamics in Twin-Independent Variable Camshaft Timing Engines, Society of Automotive Engineers, 2002-01-2752
    [49] 李勤,现代内燃机排气污染物的测量与控制,机械王业出版社,]998
    [50] Eric Rask and Mark Sellnau, Simulation-Based Engine Calibration: Tools, Techniques, and Applications. 2004 SAE World Congress Detroit, Michigan March 8-11, 2004
    [51] 陆威岑,新一代MTU2000共轨系统柴油机,柴油机,第27卷(2005)第3期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700