防龋DNA疫苗诱导产生唾液分泌型IgA(S-IgA)对变异链球菌黏附力影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龋病是人类最常见的细菌感染性疾病之一,变异链球菌(Streptococcus mutans, S. mutans)是其主要的致病菌。变异链球菌作为牙菌斑的优势菌在菌斑的形成、发展和成熟过程中发挥重要作用。牙菌斑是龋病的始动因素,作为典型的细菌性生物膜,由链球菌属,放线菌属,乳杆菌属和其他菌属微生物细胞和细胞外多糖基质组成,各种细菌存在于细菌胞外多聚物基质包绕的立体三维结构中,相互黏附、附着、定植于牙表面及界面。变异链球菌产生的酶在糖代谢中起主导作用,产酸能力和耐酸性使之在菌斑酸化和釉质的脱矿中起作用。变异链球菌表面蛋白抗原PAc参与牙表面获得性膜的非选择性黏附,能够促进变异链球菌在牙面的定植和牙菌斑的形成,PAc在细菌对牙面的初始黏附中起重要作用,是致龋的重要毒力因子之一。变异链球菌另外一个重要毒力因子是GTFs,其葡聚糖结合区(glucan-binding domain,GLU)负责葡聚糖的合成。合成的葡聚糖介导了细菌和牙面之间的蔗糖依赖性黏附,作用是使得变异链球菌更加紧密地黏附于牙面,形成致密的牙菌斑。因此将PAc与GLU作为候选的抗原通过免疫学手段控制致病菌的感染,可以达到防治龋病的目的。
     本课题组成功构建了编码人细胞毒性T淋巴细胞的相关抗原4(cytotoxic T lymphocyte-associated antigen4, CTLA-4)的信号肽和胞外区基因,免疫球蛋白IgAl型的绞链区和CH2和CH3区基因片段,变异链球菌葡糖基转移酶葡聚糖结合区(GLU区)和表面蛋白抗原PAcA区和P区的靶向融合防龋DNA质粒pGJA-P,以FDA认可的PVAX1为载体构建新型的DNA疫苗pGJA-P/VAX,且证实可以有效激发唾液特异型IgA (secretory IgA,S-IgA)抗体的产生,龋齿积分结果也显示其确实存在明显的免疫防龋效果。
     本实验旨在证明pGJA-P/VAX1的免疫效果是否是因为其刺激唾液特异性IgA (secretory IgA, S-IgA)抗体的产生而影响了牙菌斑的形成,实验同时在大鼠体内外检测S-IgA对变异链球菌黏附力的影响机制。实验将靶向融合防龋DNA疫苗pGJA-P/VAX1免疫大鼠,观察诱导产生的特异型分泌型IgA(secretory IgA,S-IgA)抗体动力学;使用变异链球菌UA140::Φ(mutAp-mrfρ1)体外培养变异链球菌生物膜;使用特异型IgA(secretory IgA,S-IgA)抗体作用于不同时期的变异链球菌生物膜,激光共聚焦显微镜(confocal laser scanning microscope,CLSM)观察变异链球菌生物膜厚度的变化,CFU计数计算生物膜重悬细菌的数量以检测S-IgA抗体对变异链球菌的黏附能力的影响,同时探讨了S-IgA影响变异链球菌黏附能力的机制;实验还研究了DNA疫苗诱导产生的唾液分泌型IgA对变异链球菌在HA珠上的黏附的影响,得出唾液产生阻断变链黏附作用的最高稀释倍数;实验还同时在大鼠口腔内使用测量生物膜厚度,检测牙表面生物膜细菌量,扫描电镜观察生物膜细菌生长状态等多方面观察S-IgA对变异链球菌在动物体内牙面上黏附力的影响以及直观观察S-IgA在大鼠唾液中对变异链球菌生长状态的影响。
     本实验分为以下三个部分:
     第一部分:防龋DNA疫苗诱导产生唾液分泌型IgA对变异链球菌黏附力影响体外实验研究
     实验一靶向融合防龋DNA质粒pGJA-P/VAX1免疫原性和免疫效能的实验研究
     方法:20只6-8周龄雌性SD大鼠随机分为2组:靶向融合防龋DNA质粒pGJA-P/VAX1免疫组和空白载体pVAXl免疫组,将两种质粒分别与布比卡因(Bupivacaine)混旋,制备Bupivacaine-DNA复合体,经鼻粘膜滴注途径免疫SD大鼠,免疫前和免疫后每隔两周采取唾液至初免后16周,ELISA检测特异性IgA抗体的滴度水平。结果:经鼻粘膜滴注途径,pGJA-P/VAX1比PVAX1诱导了更高的唾液特异性IgA反应(p<0.01),且第10周达到高峰。结论:证实靶向融合防龋DNA质粒pGJA-P/VAX1可以有效诱导机体抗体反应。
     实验二体外变异链球菌生物膜模型的建立
     方法:使用UA140::Φ(mutAp-mrfρ1)体外培养变异链球菌生物膜。收集未免疫大鼠的空白唾液,60℃巴氏消毒30min,离心收集上清0.22μmm滤膜滤菌后备用。24孔板内置羟基磷灰石片,无菌唾液37℃摇床孵育4h形成获得性膜后去除唾液,每孔加BHI培养基,蔗糖,变异链球菌悬液厌氧共培养16h。细菌CFU计数使用振荡器上剧烈震荡2分钟的方法。取羟基磷灰石片,附着培养16h后生物膜的羟基磷灰石片,剧烈震荡后羟基磷灰石片各一片,常规处理扫描电镜观察。
     结果:HA片表面可以见到由规则六边形构成,最大程度模仿牙齿主要结构羟基磷灰石;16h后羟基磷灰石表面生物膜形成可以见到清晰的变异链球菌结构,变异链球菌在HA片表面均匀附着,形成生物膜结构,高倍镜下可以明显观察到链球菌的链状结构;振荡器剧烈震荡2min后表面存留变异链球菌很少,说明此重悬的方法能够有效去除HA表面附着的细菌,可以用于生物膜的后期重悬处理并用于细菌计数。结论:证实此方法可以用于本实验。
     实验三:S-IgA影响变异链球菌生物膜影响的机制的实验研究
     方法:使用不同的实验设计检测S-IgA减少变异链球菌生物膜形成的机制。Ⅰ组实验分别采用A组或B组唾液孵育4h在HA片上形成获得性膜后,然后加入正常未免疫大鼠培养生物膜,培养方法同前。实验结束,使用FITC标记的羊抗大鼠IgA标记获得性膜上的IgA,使用激光共聚焦显微镜观察获得性膜表面S-IgA的荧光强度是否有区别,并测量培养后的生物膜厚度和CFU计数,研究S-IgA是否对变异链球菌的初期定植产生影响;Ⅱ组实验采用正常唾液培养获得性膜后,加入A组或B组唾液与细菌共培养,观察对后期的黏附产生的影响。培养结束后取培养皿中剩余培养液,加入PBS稀释的FITC标记的羊抗大鼠IgAlml,使用PBS洗涤菌体数次,干净玻片涂片激光共聚焦显微镜观察S-IgA与变异链球菌是否存在结合情况;Ⅲ组实验常规培养变异链球菌生物膜16h后,在孔中加入A组或B组唾液,另设PBS对照组,37℃水浴孵育2h,观察S-IgA对成熟的生物膜是否产生影响。结果:使用A组唾液形成的获得性膜上面可以见S-IgA的附着且比B组明显增加,且形成生物膜厚度和CFU计数均与B组有显著性差异(P<0.01),A组形成获得性膜后在其上黏附的细菌厚度(少41.02%)和数量(少41.79)比B组形成的获得性膜要明显减少;直接使用两组唾液共培养,两组生物膜厚度和CFU存在显著性差异(P<0.01),A组形成的生物膜的厚度和黏附细菌数量分别比B组减少27.4%,22.81%,而且可以观察到S-IgA包裹在变异链球菌表而或是黏附在变异链球菌表面或同时产生作用;而对于牙菌斑生物膜已经形成,两组唾液对变异链球菌生物膜的厚度和CFU的影响无显著性差异(P>0.05);
     结论:S-IgA阻断变异链球菌生物膜的形成的机制在于可以参与形成获得性膜,对变异链球菌的初期黏附产生影响,且通过和变异链球菌表面成分相结合,促进变异链球菌的成团生长,影响其后期的定植,而对已经形成的生物膜没有明显作用。
     第二部分S-IgA对变异链球菌在羟基磷灰石珠上黏附力的影响研究
     实验四S-IgA对变异链球菌在羟基磷灰石珠上黏附力的影响结果
     方法:20只6-8周龄雌性SD大鼠随机分为2组:靶向融合防龋DNA质粒pGJA-P/VAX1免疫组和空白载体pVAX1免疫组,将两种质粒分别与布比卡因(Bupivacaine)混旋,制备Bupivacaine-DNA复合体,经鼻粘膜滴注途径免疫SD大鼠,免疫前和免疫后每隔两周采取唾液至初免后16周,ELISA检测特异性IgA抗体与唾液总IgA比值。取5mg羟基磷灰石检测分别与第4,10,16周大鼠唾液共培养1小时观察这几周唾液分别对变异链球菌的黏附力的影响。另外将第10周唾液分别稀释1:2;1:4;1:8;1:16;1:32后加入共培养1小时检测能发挥阻断作用的最大稀释倍数。培养结束后使用KCL洗涤三次,取洗涤后的悬浮菌液使用液体闪烁谱仪根据变异链球菌特性计算菌液中细菌量。其中使用对照组唾液和PBS作为对照组。结果:经鼻粘膜滴注途径,pGJA-P/VAX1比PVAX1诱导了更高的唾液特异性IgA反应(p<0.01),且第10周达到高峰;4w,10w,16w唾液处理后HA片上粘附的细菌量比对照组和PBS组都有明显减少(P<0.(01),且第十周唾液的阻断作用更加明显;10周唾液经过1:2;1:4;1:8;1:16稀释后与对照组和空白组相比均更多减少变异链球菌的黏附(P<0.01),且1:16是最高稀释倍数。结论:疫苗免疫后的大鼠唾液持续存在阻断变异链球菌在HA上的黏附且此黏附作用与唾液中S-IgA的量成正相关。
     第三部分防龋DNA疫苗诱导产生唾液分泌型IgA对变异链球菌黏附力影响的体内实验研究实验五S-IgA在大鼠口腔内对变异链球菌在牙而上黏附的影响
     方法:免疫后第九周开始一周内去除大鼠口腔内牙菌斑,最后一次清洁牙面4小时后断颈处死大鼠,无菌环境下取下带大鼠磨牙的下颌骨,体外使用Rhodamine标记的羊抗大鼠IGA二抗孵育(1:2500稀释于PBS中)2h后激光共聚焦显微镜观察表面S-IgA荧光强度的对比,观察S--IgA是否参与获得性膜的形成。之后两天无菌棉签定菌,48h后取大鼠唾液和上下颌磨牙:左上颌磨牙使用扫描电镜观察牙表面变异链球菌黏附细菌的量和形态的区别;左下颌的磨牙激光共聚焦显微镜观察牙表面变异链球菌黏附的量的比较;右上颌磨牙体外振荡表面黏附细菌后细菌计数;激光共聚焦显微镜观察唾液中S-IgA与变异链球菌相互作用的情况;并在定菌后持续取唾液样本检测唾液中UA140::Φ(mutAp-gfp1)总变链的比值。结果:实验组唾液比对照组唾液在牙表面形成获得性膜的荧光强度高,说明S-IgA参与获得性膜的形成;扫描电镜实验组牙表面变异链球菌比对照组细菌明显减少;实验组牙表面生物膜厚度和细菌量比对照组明显减少(P<0.01);且在激光共聚焦显微镜下可见实验组唾液中的变异链球菌多成团生长,而对照组唾液中变异链球菌成散在分布,镜下可观察到S-IgA能够与变异链球菌紧密结合,包裹在细菌表面;实验期间实验组显著降低了定菌数口腔内UA140::Φ(mutAp-gfp1)占口腔变链的百分比(P<0.01),此趋势一直维持到实验结束。结论:防龋DNA疫苗诱导产生唾液分泌型IgA在体内也能明显减少变异链球菌对牙面的黏附,并能通过形成获得性膜和促进细菌的成团生长利于清除起到防龋的效果。
Dental caries is one of the most common infectious diseases in the word. Streptococcus mutansfS.mutansJh the major etiological agent of dental caries. Plaque is the incipient factor of caries.As the typical bacteria biofilmjt is made up of Streptococci,Actino?nycetes,Lactobacilli,other microorganism cell and extracellular polysaccharides matrix. All kinds of bacteria exist in the three-dimensional structure which is surrounded by extracellular polymer substances matrix.They conglutinate,adhere and fix on the surface of teeth and other interfaces. As the preponderant bacteria of biofilm,S.mutans play important part in the formation、 development and muture of plaque.The enzyme of S.mutans has ruling action in the sugar metabolizing.It can produce acid and can live in acid environment, which have important impact in the acidification of plaque and the enamel demineralization. A cell surface protein antigen (PAc) mediate sucrose-independent adherence of S.mutans to tooth surface. PAc contribute to the adherence and accumulation of organism in dental plaque,so it is considered to be one of the important virulence factor of S.mutans. Another important virulence factor of it is GTFs,one region of which is glucan-binding domain((GLU).GLU is responsible for the composition of glucan. Glucans mediate sucrose-dependent adherence of S.mutans,making S.mutans adhere on tooth surface tightly and form compact dental plaque.An important approach to prevent dental caries would be consider PAc and GLU as the candidate antigen to control the infection of S.mutans by immune method.
     Our group have build the DNA plasmid pGJA-P which encode the signal peptide and extracellular regions of human CTLA4, CH2and CH3regions of IgA1,the GLU gene and A-P fragment of S.mutanspac gene. A new targeted anti-caries DNA plasmid pGJA-P/VAXl was successfully constructed join the pGJA-P with the pVAXl,the only vector authorized by Food and Drug Administration in clinical trials. It is proved that the vaccine can stimulate the secretion of IgA (secretory IgA,S-IgA) in saliva and the results of caries scores also prove the truth the DNA vaccine has the effect of anti-caries.
     The purpose of this study is to detect whether the immunity effect of pGJA-P/VAXl is that the S-IgA antibody interfere the formation of dental plaque. Study the kinetics of the antibody responses generated following targeted anti-caries DNA plasmid immunization.Use the S-IgA to influence the biofilm cultivated by UA140:: Φ(mutAp-rfpI),then use the CLSM to determine the depth of biofilm and CFU to determine the effect of S-IgA on the adherence ratio of S.mutans and the possible mechanism of the effect at the same time;the effect of S-IgA antibodies on the adhesion of S. mutas MT8148onto S-HA beads was examined;in additional,we study inhibition of Streptococcus mutans biofilm formation by S-IgA antibodies induced by DNA vaccine in vivo through measure the depth of biofilm, calculating the adherence bacterial number by CFU and observing the growth condition of S.mutans on tooth of rats by CLSM.
     The present study consists of three parts:
     Part one: Inhibition of Streptococcus mutans biofilm formation by secretory immunoglobulin A (S-IgA) antibodies induced by targeted fusion anti-caries DNA vaccine in vitro.
     Experiment Ⅰ: Kinetics of the antibody responses generated following targeted anti-caries DNA plasmid immunization.
     Method:Four-to-six-week-old female Wistar rats,8per group, were immunized with pGJA-P/VAX (Group A) or pVAXl (Group B) by the intranasal route at week0and week2, respectively.Bupivacaine:DNA complexes were prepared by adding bupivacaine hydrochloride to the aqueous DNA solution using a fast mixing method. SD rats were immunized with Bupivacaine:pGJA-P/VAX1complex or Bupivacaine:pVAXl complex intranasally. Saliva samples were collected for ELISA.
     Result:The salivary IgA response of pGJA-P/VAX1i.n. immunized group were significantly higher than those of the pVAXl i.n. immunized group (p<0.01) and the level of SIgA arrived climax in10weeks after first immunization. Conclusion: The targeted fusion DNA vaccine pGJA-P/VAX1markedly enhance the magnitude of mucosal specific antibody response via the intranasal route. Expriment II:Preparation of S. mutans bio films
     Method:HA discs were placed in the wells of24-well polystyrene cell culture plate and incubated under agitation for4hours at37℃with0.5ml of sterile saliva. After that,the saliva were removed and replaced with0.8ml of TSB+0.15%(w/v) sucrose and0.8ml of sterile saliva.Each well was inoculated at37℃with S.mutans UA140::Φ(mufAp-rfp1)0.2ml and culture plates were incubated aerobically at37℃for16h,the HA discs were dip-washed twice in the PBS and swirled gently to remove loosely adherent bacteria to harvest the adherent cells.each disc were transferred to a sterile50-ml polypropylene tube containing1ml of PBS and vortexed vigorously for2min.Viable counts were carried by this dilusion.SEM was used to determine(ⅰ) the surface of HA disc,(ⅱ)the formation of bacterial biofilms,(ⅲ)the efficacy of the resuspension of protocol.Result:saliva pellicle was formed evenly on the HA disc bacterial biofilms can be easily observed under the SEM,the resuspension of protocol was satisfactory because few bacterial can be seen on the HA disc and can be used for CFU.ConclusioniThis method can be used in our experiment. Experiment Ⅲ:The mechanism of the effect of S-IgA on the adherence of S.mutans onto HA disk
     Method:Use different designs to find out the mechanism of the effect of S-IgA on S.mutans biofilm. group Ⅰ:acquired pellicle was formed by saliva from groups A and B under agitation, replaced with BHI, sucrose, S. mutans and sterile blank saliva,biofilms were grown for16h before the cells were harvested and enumerated, and the depth of the biofilms was measured by confocal; group II:acquired pellicles were formed on HA disks with blank saliva,then the saliva was replaced with BHI, sucrose, S. mutans and sterile saliva from experimental or control groups.S.mutans biofilms were cultivated for16h, cells were recovered and enumerate;groupIII:S. mutans biofilms were cultivated with blank saliva for16h transferred to new wells containing sterile saliva from experimental or control groups, viable bacteria counts and biofilm measurement were carried out. Result:More S-IgA could be seen from the pellicle formed by saliva from group A compared with the pellicle formed by saliva from group B, there were significant differences in the number of cells recovered from the biofilm(41.79%lesser) and the depth of the biofilm (41.02%lesser)(P<0.01); bacteria count obtained from HA disks (27.4%less) and measured in the experimental group (22.81%less) were less than biofilms obtained in the control group (P<0.01); S-IgA could assemble S. mutans together or cover the surface of S.mutans; while there is no significant differences between treatment on mature biofilm(P>0.05). Conclusion:the mechanism of effect of S-IgA on biofilm is to effect the early adherence of S.mutans by forming plaque;and prevent the adherence of S.mutans later by joining with protein on the surface of S.mutans,while have no effect on mature bioflim
     Part Two:The effect of S-IgA antibodies on the adhesion of S. mutans MT8148onto HA beads
     Experiment Ⅳ:The effect of S-IgA antibodies on the adhesion of S. mutans MT8148onto S-HA beads
     Method:Four-to-six-week-old female Wistar rats,8per group, were immunized with pGJA-P/VAX (Group A) or pVAX1(Group B) by the intranasal route at week0and week2, respectively.Bupivacaine:DNA complexes were prepared by adding bupivacaine hydrochloride to the aqueous DNA solution using a fast mixing method. Saliva samples were collected at2,4,6,8,10,12,14, and16weeks after the first immunization and ELISA to measure SIgA/total TgA.5mg of HA beads were equilibrated in buffered KC1and cultivated with4-week,10-week, and16-week saliva, and serial dilutions (1:2;1:4;1:8;1:16;1:32) of10-week saliva of immunized mouse and unimmunized mouse and PBS was used as control. Result:The IgA anti-Pac and anti-Glu responses in rats peaked at10weeks, The adherence of S. mutans in saliva of experiment rats was significantly lower than that in the control group (p<0.001). The S-IgA antibodies in10week has the strongest inhibition of the adhesion of S. mutans cells, but there were no significant differences between the4th,10th, and16th weeks, the lowest dilution of saliva with effect was1:16, and reduced the adherence activity of S. mutans to approximately8.7%.Conchision:the salivary sample containing specific S-IgA has the consistent effect through out the experiment and also shown to inhibit the binding of S. mutansin a dose-dependent manner.
     Part Three:Inhibition of Streptococcus mutans biofilm formation by secretory immunoglobulin A (S-IgA) antibodies induced by targeted fusion anti-caries DNA vaccine in vivo
     Experiment V:Inhibition of Streptococcus mutans biofilm formation by secretory immunoglobulin A (S-IgA) antibodies induced by targeted fusion anti-caries DNA vaccine in vivo.
     Method:At the9th week after immunization, remove the biofilm on the surfaces of tooth of rats by mechanism methods, broken neck death after4h behind the last cleaing, removed the mandibular molars of rats,observe the fluorescence intensity on the tooth after co-cultivated the tooth with anti-RAT IgA antibody (Rhodamine Conjugated) by confocal laser microscope to observe whether SIgA is involved in the formation of the acquired membrane.48h after putting S.mutans onti mouth of rats,saliva and mandibular molar were collected;S. mutans adhesion amount were observes on the left maxillary molar using scanning electron microscopy; the comparison of the amount of S. mutans adhesion on tooth surface were taken from the left mandibular molars by confocal laser microscope; bacterial count were carried out by right maxillary molar oscillation surface; S-IgA in saliva and S. mutans adhesion were observed by confocal; and testing UA140::Φ(mutAp-gfp1)/total Streptococcus in saliva Results:fluorescence intensity in the experimental group is higher than control group,showing SlgA involved in the formation of the acquired membrane; scanning electron microscopy (SEM)showed experimental tooth surface had more S. mutans bacteria than the control group; there is significant differences between the biofilm thickness and bacterial amount in the control group and experimental group (P<0.01); and S. mutans clouds grow more in the saliva in the experimental group whereas the S. mutans in saliva of control group grown as scattered distribution; S-IgA can closely combine with S. mutans,wrapped in the surface of the bacteria; During the experiment the experimental group significantly reduced the percentage of UA140::Φ(mutAp-gfpI)/total Streptococcus (P<0.01),and the trend has been maintained to the end of the experiment.Conclusion: targeted fusion anti-caries DNA vaccine could induce the production of S-IgA and can be significantly reduced adhesion of Streptococcus mutans on the tooth surface in vIvo.
引文
1. Abd-Alla MD, Jackson TF, Rogers T, Reddy S,Ravdin JI. Mucosal immunity to asymptomatic Entamoeba histolytica and Entamoeba dispar infection is associated with a peak intestinal anti-lectin immunoglobulin A antibody response. Infect Immun 2006; 74(7):3897-3903
    2. Anderson JR, Wilcox MJ, Wade PR.Segmentation and 3D reconstruction of biological cells from serial slice images.Biomed Scilnst rum 2003;39:1172-1221.
    3. A1-AhmadA,WunderA,Auschill TM.The involve dynamics of Streptococcus spp,Actinomyces naeslundii,Fusobacterium nucleatum and Veillonella spp.in dental plaque biofilm as analysed by five-colour multiplex fluorescence insiti hybridization J Med Mircobiol 2007;56(5):681-687.
    4. Al-Hashimi I, Levine MJ. Characterization of in vivo salivary-derived enamel pellicle. Arch Oral Biol 1989; 34(4):289-295.
    5. Auschill TM,Hein N,Hellwig E.Effect of two antimicrobial agents on early instu biofilm formation.J Chin Periodontol 2005;32(2):147-152
    6. Auschill TM,A rweiler NB,Netuschil L.Spatial distribution of vital and dead m icroorganisms in dental biofilms.Arch Oral Biol 2001;46 (5):4712-4761.
    7. Bastian A,Kratzin H,Fallgnen-Gebaner E.Intra-and inter-chain disulfide bridges of J chain in human S-IgA.Adv ExpMed Bid 1995;371A:581-583.
    8. Baylor AE, Diebel LN, Liberati DM. Immnnoglobulina profile in breast milk from mothers delivering full term and preterm infants.J Immunopathol Pharmaeol 2007;20(1):119-128.
    9. Bowen WH, Pearson SK, Young DA.The effect of desalivation on coronal and root surface caries in rates.J Dent Res 1988;67(I):21-23.
    10. Boyle JS,Brady JL, Lew AM.Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction.Nature 1998;392(6674):408-411.
    11. Bradshaw DJ, Marsh PD.Schilling KM. A modified chemostat system to study the ecology of oral biofilms.J Appl Bacteriol 1996;82 (2):124-130.
    12. Bradshaw DJ, Marsh PD. Effect of sugar alcohols on the composition and metabolism of a mixed culture of oral bacteria grown in a chemostat.Caries Res 1994;28(4):251-256.
    13. Bradshaw DJ, Mckee AS,Marsh PD. Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro.J Dent Res 1989;68(9):1298-1302.
    14. Brandtzaeg P. Role of secretory antibodies in the defence against infections. Int J Med Microbiol 2003; 293(1):3-15.
    15. Carbonate CB,Carbonare SB,Carneim-Sampaio MMS.Secretory immunoglobulin A obtained from pooled human colestmm and milk for oral passive immunization.Pediatr Mlergy Immunol 2005; 16(7):574-581.
    16. Carnliny E,Gahnbery L,Krass B.The relationship between IgA antibodies to streptococcus mutans antigens in human saliva and breast milk and the numbers of indigenous oral streptococcusmutans.Archs Oral Biol 1987;32(1):21-25.
    17. Cann GM,Zaritsky A,Koshland ME.Primary structure of the immunoglobulin J chan from the mouse.Proc Natl Acad Sci USA 1982;79(21):6656-6660.
    18. Chang Liu, Mingwen Fan.Effects of targeted fusion anti-caries DNA vaccine pGJA-P/VAX in rats with caries.Vaccine 2008;(26):6685-6689.
    19.陈永福,主编.转基因动物M1.第1版.北京:科学技术出版社,2002;86-97.
    20. Chung WO,Park Y. Signaling system in Porphyromonas gingivalis based on a LuxS protein.J Bacteriol 2001; 183(13):3903-3909.
    21. Chintalacharuvu K R,Raines M, Morrison S L. Divergence of human alpha-chain constant region gene sequences.A novel recombinant alpha 2 gene. J Immunol 1994;152(11):5299-5304.
    22. Crottet P,Corthesy B.Secretory component delays the conversion of secretory IgA intoantigen-binding competent F(ab)2:a possible implication for mucosal defense.J Immunol 1998;161(10):5445-5453.
    23. Danielsson NL, Hernell O, Johansson I. Human milk compounds inhibiting adhesion of mutans streptococci to host ligand-coated hydroxyapatite in vitro. Caries Res 2009; 43(3):171-178.
    24. Davey ME,O'toole GA.Microbial Biofilms:from Ecology to Molecular Genetics.M icrobiol Mole Biol Revi 2000;64 (4):8472-8671.
    25. Davids BJ,Palm JE, Housley MP, Smith JR, Andersen YS,Martin MG.Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia. J Immunol 2006; 177(9):6281-6290.
    26. Dixon MF,Wyatt JI,Burka DA.Lymphocytic gastritis-relationship to campylobacter pylori infection.J Pathalogy 1988; 154(2):125-132.
    27. Douglas CW,Russell RR.The absorption of human salivary components to strains of the bacterium Streptococcuc mutans.Arche Oral Biol 1984;29(10):751.
    28. Kara D,Luppens SB.Microstructural differences between single-species biofilm of streptococcus mutans and Veillonella parvula,before and after exposure to chlorhexidine.FEMS Microbiol Lett 2007;271(1):90-97.
    29. Ehrhardt R O,Strober W,Harriman G R.Effect of transforming growth factor(GTF)-beta 1 on IgA isotype expression. TGF-beta 1 induces a small increase in SIg A+B cells regardless of the method of B celt activation.J Immunol 1992;148(12):3830-3836.
    30. Fan MW, Bian Z, Peng ZX, Zhong Y, Chen Z, Peng B. A DNA vaccine encoding a cell-surface protein antigen of Streptococcus mutans protects gnotobiotic rats from caries. J Dent Res 2002; 81(11):784-787.
    31. Fraud S,Maillard,J-Y,Denyer SP,Kaminski MA,HanlonGW.A simulated oral hygiene model to determine the efficacy of repeated exposure of amine oxide on the viability of Stretococcus mutans bio fWm.Eur J Oral Sci 2007;115(1):71-76.
    32.傅骁勇,谭璐,徐敬.牛初乳免疫球蛋白A纯化与原子力显微镜观测.第二军医大学学报.2004;25(1):108-110.
    33.高进东,胡长敏,丁明星.猪初乳中的提纯与鉴定.动物医学进展.2006;27(5):81-83.
    34. Gregory RL,Kindle JC.Function of anti-Streptococcus mutans antibodies; inhibition of virulence factors and enzyme neutralization.Oral Microbiol Immunol 1990; 5 (4):181.
    35. Garcia-Nieto RM, Rico-Mata R, Arias-Negrete S Avila EE. Degradation of human secretory IgA 1 and IgA2 by Entamoeba histolytica surface-associated proteolytic activity. Parasitol Int 2008;57(4):417-423.
    36. Guggenheim M, Shapiro S, Gmu r R. Spatial Arrangements and Associative Behavior of Species in an In Vitro Oral Biofilm Model.Appl Envir Microviol, 2001;67(3):13432-13501.
    37. Guggenheim B,Giertsen E,Schupbach P. Validation of an in vitro biofilm model of supragingival plaque.J Dent Res 2001;80(1):363-370.
    38. Hajek AR, Lindley AR, Favoreto S Jr, Carter R, Schleimer RP, Kuperman DA. 12/15-Lipoxygenase deficiency protects mice from allergic airways infammation and increases secretory IgA levels. J Allergy Clin Immunol 2008; 122(3): 633-639.
    39. Hajishengallis G,Nikalova E,Russell MW.Inhibition of Stretococcus mutans adherence to saliva-coated hydraxyapatite by human secretory immunoglobulin A(SIgA)antibodies to cell surface protein antigen Ⅰ/Ⅱ:reversal by IgAlpretease cleavage.Infect Immun 1992;60(12):5057-5064.
    40. Hajishengallis G.,Koga T, Russell MW. Affinity and specificity of the interactions between Streptococcus mutans antigen Ⅰ/Ⅱ and salivary components. J Dent Res 1994;73(9):1493-1502.
    41. Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 1980; 44(2):331-384.
    42. Hendrickson BA,Conner DA,Ladd DJ.Altered hepatic transport of immunoglobulin A in mice lacking tile J chain.J Exp Med 1995; 182(6):1905-1911.
    43. Hanson LA, Korotkova M. The role of breastfeeding in prevention of neonatal infection.Semin Neonatol 2002;7(4):75-281.
    44. Herles S,Olsen S,Afflitto J. Chemostat flow cell system:an in vitro model for the evaluation of antiplaque agents.J Dent Res 1994;73(11):1748-1755.
    45. Hohman VS,Swewart SE,Rumfelt LL.J Chain in the nurse shark:implications for function in a lower vertebrate.J Immunol 2003; 170(12):6016-6023.
    46. Hope Ck, Clements D,Wilson MJ.Determining the spatial distribution of viable and nonviable bacteria in hydrated microcosm dental plaques by viability profiling.Appl Microbiol 2002;93 (3):4482-4551.
    47. Hope CK,Wilson M.Biofilm structure and cell vitality in a laboratory model of subgingival plaque.J Microbiol methods 2006;66(3):390-398
    48. Idone V, Brendtro S, Gillespie R. Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis.Infect Tmmun 2003;71(8):4351-4360.
    49. Jakubovics NS, Stromberg N, van Dolleweerd CJ, Kelly CG. Differential binding specificities of oral streptococcal antigen Ⅰ/Ⅱ family adhesins for human or bacterial ligands. Mol Microbiol 2005; 55(5):1591-605.
    50. Jefferson KK. What drives bacteria to produce a biofilm? FEMS Microbiol Lett 2004; 236(2):163-173.
    51. Jia R, Guo JH, Fan MW, Bian Z, Chen Z, Fan B. Immunogenicity of CTLA4 fusion anti-caries DNA vaccine in rabbits and monkeys. Vaccine 2006; 24(24): 5192-5200.
    52. Johansen F E, Braathen R,Brandtzaeg P.The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA.Immunol 2001;167(9):5185-5192.
    53. Johansen FE,Bruathen R,Brandtzaeg P.Role of J chain in secretory immunoglobulin formation.Scand J Immunol 2000;52(3):240-248.
    54. Kinniment SL, Wimpenny JWT, Adams D. Measurements of the distribution of adenylate concentrations and adenylate energy charge across Pseudomonas aeruginosa biofilms.Microbiology 1992;58(8):1629-1635.
    55. Krech J,Zhu L.Merritt J,Shi W,Qi F.Role of sucrose in the fitness of Streptococcus mutans.Oral Microbiol Immunol 2008;23(3):213-219.
    56. Krech J,Merrritt J,Bordador C,Shi W.Transcriptional analysis of mutacin I(mutA)gene expression in planktonic and biofilm cells of Streptococcus mutans using fluorescent protein and glucuronidase reporters.Oral Microbiol Immunol 2004;19(4):252-256.
    57. Krsehenbuhl J P.Nentra M R.Molecular and cellular basis of immune protection of mucosal surfaces. Physiol Rev 1992;72(4):853-879.
    58. Kolenbrander PE,Andersen RN,Blehert DS.Communication among oral bacteria.Microbiol Mol Biol Rev 2002;66(3):486-505.
    59. Lamm ME.Interaction of antigens and antibodies at mucosal surfaces.Annu Rev Microbiol 1997;51:311-340.
    60. Laudin Wallengren ML, Hamberg K. Cell-surface antigens of oral streptococci. Oral Microbiol Immunol 2004; 19(3):188-195.
    61. Lee M S, Morrison DA.Identification of a new regulator in Streptocoocus pneumoniae linking quorum sensing to competence for Genetic transformation J Bacteriol 1999; 181(16):5004-5016.
    62. Liljemark WF, Bloomquist C. Human oral microbial ecology and dental caries and periodontal diseases. Crit Rev Oral Biol Med 1996;7(2):180-198.
    63. Li YH,Tang N, Aspiras MB. A quorum-sensing sigualing system essential for genetic competence in Streptococcus mutans is involved in biofilm formation 2002;184(10):2699-2708.
    64. Li YH, Huang S, Du M, Bian Z, Chen Z, Fan MW. Immunogenic characterization and protection against Streptococcus mutans infection induced by intranasal DNA prime-protein boost immunization. Vaccine 2010; 28(32):5370-5376.
    65. Lis JT.Fractionation of DNA fragment by polyethylene glycol induced precipitation.Methods Enzymol 1980;65(1):347-353.
    66.陆东林,牛霞.免疫乳和免疫初乳叨.新疆畜牧业.2004;(2):23-25.
    67. Ma JK,Hikmat B Y,Wycoff K.Characterization of a recombineant plant monoclonal secretory antibody and preventive immunotherapy in humans.Nat Med 1998;4(5):601-606.
    68. Ma JK,Hian A,Hein M. Generation and assembly of secretory antibodies in plants.Science 1995;268(5211):716-719.
    69. Marsh PD.Dental Plaque as a Microbial Biofilm.Caries Res 2004;38(3):204-211.
    70. Marshall LJ,Perks B,Bodey K, Suri R, Bush A, Shute JK.Free secretory component from cystic fibrosis sputa displays the cystic fibrosis glycosylation phenotype. Am J Respir Crit Care Med 2004; 169(3):399-406.
    71. Max E E, Korsmeyer S J. Human J chain gene.Structure and expression in B lymphoid cells.J Exp Med 1985;161(4):832-849.
    72. Mestecky J, Preud homme JL, Crago SS. Presence of J chain in human lymphoid cells. Clin Exp Immunol 1980;9(2):371-385.
    73. Mestecky J. Tomana M, Czerkinsky C.IgA-associated renal diseases: inanunochemical studies of IgA1 proteins,circulating imune complexes,and cellular interactions. Semin Nephrol 1987;7(4):332-335.
    74. Motegi Y, Kita H, Kato M, Morikawa A.Role of secretory IgA, secretory component,and eosinophils in mucosal inflammation.Int Arch Allergy Immunol 2000; 122 Suppl 1:25-27
    75. Moldoveanu Z, Huang WQ, Kulhavy R,Pate MS,Mestecky J.Human male genital tract secretions:both mucosal and systemicimmune compartments contribute to the humoral immunity. J Immunol 2005; 175(6):4127-4136.
    76.卢占军,陈眷华,刘敏跃.转基因技术及其应用.饲料工业2004;25(12):58-63.
    77. Nagler-Anderson C, Terhoust C,Bhan AK.Mucosal antigens presentation and the control of tolerance and immunity. Trends Immunl 2001;22(3):120-122.
    78. Netuschil L,Reich E,UntereggerG. A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque vitality and topography.Arch oral Biol 1998;43 (3):277-285.
    79. Norderhaug I N,Johansen F E,Schjerven H.Regulation of the formation and external transport of secretory immunoglobulins.Crit Rev Immunol 1999;19(5-6):481-508.
    80. Palmeira P,Carbonare SB,Amaral JA.Colostrum from healthy Brazilian women inhibits adhesion and presents IgA antibodies reactive with Shiga toxin-producing Escherichia coli(STEC).Eur J Pediatrics 2004;164(1):37-93.
    81. Pelletier G, Briantais MJ, Buffet C, Pillot J, Etienne JP. Serum and intestinal secretory IgA in alcoholic cirrhosis of the liver. Gut 1982;23(6):475-480.
    82. Perrier C, Sprenger N, Corthesy B. Glycans on secretory component participate in innate protection against mucosal pathogens. J Biol Chem 2006; 281(20): 14280-14287
    83. Phalipon A, Corthesy B.Novel functions of the polymeric Ig receptor:well beyond transport of immunoglobulins.Trends Immunol 2003;24(2):55-58.
    84. Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. Secretory component:a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 2002; 17(1):107-115.
    85. Pratten J, Andrews CS, Craig DQ. Structural studies of microcosm dental plaques grown under different nutritional conditions.FEMS Microbiol Lett 2000; 189 (2):2152-2181.
    86. Sait LC, Galic M, Price JD, Simpfendorfer KR, Diavatopoulos DA. Secretory antibodies reduce systemic antibody responses against the gastrointestinal commensal fora. Int Immunol 2007; 19(3):257-265.
    87. Shu M,Wong L,Miller JH.Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system.Arch Oral Biol 2000;45(1):27-40.
    88. Sissions CH. Artificial dental plaque biofilm model systems.Adv Dent Res 1997; 11(1):110-126.
    89. Smith DJ,Mattos-Graner RO.Secretory immunity following mutans streptococcal infection or immunization. Curr Top Microbiol Immunol 2008; 319:131-156.
    90. Snoeck V, Peters JR, Cox E.The IgA system:a comparison of structure and function in different species.Vet Res 2006;37(3):455-467.
    91. Sissons CH, Wang L, Cuiress TW. Patterns and rates of growth of microcosm dental plaque biofilms.Oral Microbiol Immunol 1995; 10 (3):160-167.
    92. Sutton NA,Hughes N,Handly PS.A comparison of conventional SEM techniques, low temperature SEM and the electroscan wet scanning electron microscope to study the structure of a biofilm of Streptococcus crista CR3.J Appl Bacteriol 1994;76(5):448-454.
    93.唐子圣,朱敏,刘正.变异链球菌生物膜结构观察.中华微生物学和免疫学杂志.2004;24(2):103-106.
    94. Takenaka S, Iwaku M, Hoshino E.. Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis.J Infect Chemother 2001;7 (2): 872-931.
    95. Takeuchi H,Fukushima K,Senpuku H.Clinical study of mutans streptococciusing 3Ds andmonoclonal antibodies.JPN J Infect Dis 2001;54(1):34-36.
    96. Thurnheer T,Vander Ploeg JR.Effects of Streptococcus mutansgtfC deficiency on mixed oral biofilms in vitro.Caries Res 2006;40(2):163-171.
    97.李呜宇,刘正,朱彩莲.扫描同聚焦显微镜观察血链菌和黏性放线菌生物膜的形成实用口腔医学杂志.2001;17:425-427.
    98.马瑞.朱敏.刘正.血链菌生物膜中死菌/活菌的空间分布..上海第二医科大学学报2005;25(8):826-828.
    99. Thurnheer T,Gmilr R,Guggenheim B.Multiplex FISH analysis of a six-species bacterial biofilm J Microbiol Methods 2004; 56(1):37-47.
    100.Tjarnlund A, Rodriguez A, Cardona PJ, Guirado E. Polymeric IgR knockout mice are more susceptible to mycobacterial infections in the respiratory tract than wild-type mice. Int Immunol 2006; 18(5):807-816.
    101.van der Ploeg JR,Guggenheim B.Deletion of gtfC of streptococcus mutans has no influence on the composition of a mixed-species in vitro biofilm model of supragingival plaque.Eur Oral Sci 2004; 112(5):433-438.
    102.Wen ZT Burue RA.LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation J Bacteriol 2004; 186(9):2682-2691.
    103.刘正主编.《口腔生物学》.2003,第二版,北京:人民卫生出版17.
    104.J.萨姆布鲁克,D.W.拉塞尔.《分子克隆实验指南》.2003,第三版,科学出版社,32-35.
    105.孙树权主编.《核酸疫苗》.2000,第一版,上海:第二军医大学出版社,89-96.
    106.卢圣栋主编.《现代分子生物学实验技术》.1993,第一版,北京:高等教育出版社,95.
    107.肖悦,刘天佳.人工口腔模拟的口腔环境条件.国外医学口腔医学分册.2001,28(3):146-148.
    108.岳剑宁,孔繁元.共聚焦激光扫描显微镜技术及相关荧光探针在细胞器研究中 的应用.中华病理学杂志,2002,03.
    109.Wieland WH,Lammers A.Plant expression of chichen secretory antibodies derived from combinatorial libraries.J Biotechnol 2006;122(3):382-391.
    110.Wijburg OL, Uren TK, Simpfendorfer K,Johansen FE, Brandtzaeg P, Strugnell RA.Innate secretory antibodies protect against natural Salmonella typhimurium infection. J Exp Med 2006; 203(1):21-26.
    111.Wimpenny J,Manz W,Szewzyk U.Hterogeneity in biofilm.FEMS Microbiol.Rev 2000;24(5):661-667.
    112.Wood SR, Kirkham J, Marsh PD.Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 2000; 79 (1): 212-271.
    113.Woof J M, Kerr M A. The function of immunoglobulin A in immunity. J Pathol 2006;208(2):270-282
    114.Woof JM, Michael A.IgA function-variations on a theme. Immunology 2004; 1 13(2):175-177.
    115.Wycoff KL.Secretory IgA antibodies from plants.Curr Pharm Des 2005; 11(19):2429-2437.
    116.Yamanaka A,Kimizuka R,Kato T,Okuda K.Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation.Oral Mirco Immun 2004; 19(3):150-154.
    117.Yoshida A, Kuramitsu HK. Multiple Streptococcusmutansgene are involved in biofilm formation.Appl Environ Microbiol 2002;8(12):6283-6291.
    118.张和平,杜文,郭军.含24种乳抗体免疫乳的制备.中国乳品工业.2002;30(4):3-7.
    119.周泽渊,倪龙兴,吴补领.用激光共聚焦显微镜研究菌斑生物膜的结构.牙髓牙周病学杂志.2001;1(3):1522-1531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700