不同致龋性变形链球菌临床分离株差异ssDNA配基的筛选和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龋病是最常见的人类口腔疾病,变形链球菌是引起人类龋病最主要的致病菌。变形链球菌致龋是一个多因素综合作用的结果,既包括已知的各种致龋因子,也可能还有目前仍不了解的其它因子或各种因子间的相互作用。因此,为了揭示变形链球菌致龋的机理,从细菌的整体水平研究变形链球菌是十分必要的,而SELEX技术为这一研究设想提供了实用工具。
     指数式富集的配体系统进化技术(SELEX)是近年发展起来的研究核酸结构、功能及进化的一种组合化学技术,在基础医学、临床诊断和疾病治疗中都显现了广阔的应用前景。尤其是以完整细胞为靶子的消减SELEX技术的建立,使得研究不同细胞靶子上存在的未知差异靶分子成为可能。
     本研究的目的是利用以完整细胞为靶子的消减SELEX技术筛选不同致龋性变形链球菌临床分离株差异ssDNA配基。
     为了达到研究目的,我们首先利用细菌形态学、生化反应、自动微生物分析系统及分子生物学方法从11名受试者口腔牙菌斑中鉴定获得了性质确实可靠的5株变形链球菌临床分离株,其中3株来源于高龋患者,2株来源于无龋健康人;然后通过经典的体外致龋实验,即唾液包被羟基磷灰石粘附实验、合成胞外多糖实验、产酸及耐酸实验对筛选获得的变形链球菌临床分离株的致龋特性进行检测。综合考虑各实验结果并辅以统计学分析后,确定了临床分离株5为高致龋性变形链球菌,临床分离株4为低致龋性变形链球菌;采用全长为88nt、随机区由45个碱基构成的ssDNA文库,以变形链球菌临床分离株5为筛选靶子,变形链球菌临床分离株4为消减靶子,进行了9轮以完整细胞为靶子的消减SELEX筛选,获得了不同致龋性变形链球菌临床分离株差异ssDNA配基H19。H19与筛选靶子-变形链球菌临床分离株5的亲和力较高,解离常数为69.45±38.53nM。
     本课题研究中筛选获得的不同致龋性变形链球菌临床分离株差异ssDNA配基有可能用于临床龋病易感性的预测,并且有可能发展成为抑制或阻断变形链球菌致龋的防龋制剂,为龋病防治提供新思路。
Streptococcus mutans is generally considered to be the principal aetiological agent for dental caries, which is the most prevalent bacterial infectious disease in oral cavity. Varieties of risk factors interact in this disease, not only including the cariogenic agents that have been known, but also including the unknown ones. In this regard, it is necessary to study on Streptococcus mutans as a whole to reveal the cariogenic mechanism of it. And SELEX can be a useful tool for this purpose.
     SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a combinatorial chemistry technology for studying structure, function and molecular evolution of nucleic acid. The aptamers evolved from this in vitro selection process have a promising application in basic research, chlinical diagnosis and therapy. The recently establishment of subtractive SELEX method, which targets the whole intact cells, can even generate aptamers that differentiate target cells from counter-selected partners without the prior knowledge of the molecular differences.
     The objective of this research is to select and identify different ssDNA aptamers specific to Streptococcus mutans isolated from caries-free and caries-active individuals by the subtractive SELEX.
     Before the selection, we identified and obtained 5 clinical isolates of Streptococcus mutans from dental plaques of 11 subjects by morphology, biochemical events, automated microbiology system, and molecular biological methods. Among the isolates, there were 3 ones from caries-active individuals, while 2 from caries-free individuals. Then, we detected the cariogenic virulence characteristics of the isolates above by four classical in vitro cariogenic experiments, which were adherence analysis, extracellular polysaccharide synthesis assay, aciduricity and acidogenicity assays. Combination with statistics analysis, the results revealed that No.5 isolate was the high virulent strain, while No.4 isolate was the low one.
     The subtractive SELEX selection against No.5 Streptococcus mutans isolate with an 88 nucleotides ssDNA library containing 45 random nucleotides flanked by invariant primer was done, followed by counter selection to No.4 Streptococcus mutans isolate. After 9 rounds selection, that targeted the whole intact cells, one aptamer named H19, which showed high specificity and affinity to No.5 Streptococcus mutans isolate, was identified with a Kd of 69.45±38.53nM.
     Overall, it was possible that the ssDNA aptamers specific to Streptococcus mutans isolated from caries-free and caries-active individuals of our work might be used for clinical prediction to the susceptibility of dental caries, and might be a new idea for the prevention of dental caries.
引文
[1]Petersen PE. The World Oral Health Report 2003:continuous improvement of oral health in the 21st century-the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol,2003,31(Suppl 1):3-23
    [2]樊明文.龋病病因及免疫预防.中国实用口腔科杂志,2008,1(10):583-586
    [3]Fejerskov O. Changing paradigms in concepts on dental caries:consequences for oral health care. Caries Res,2004,38(3):182-191
    [4]Marsh PD. Dental plaque as a microbial biofilm. Caries Res,2004,38(3):204-211
    [5]岳松龄.变异链球菌的致龋特异性与龋病的免疫学预防.口腔生物医学,2010,1(3):113-115
    [6]高学军.龋病研究和防治领域值得深刻思考的问题.中华口腔医学杂志,2006,41(5):257-259
    [7]凌均棨.牙菌斑生物膜的研究进展.中华口腔医学研究杂志(电子版),2008,2(2):103-108
    [8]Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev,1980,44(2):331-384
    [9]Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev, 1986,50(4):353-380
    [10]樊明文.龋病病因及免疫预防.中国实用口腔科杂志,2008,1(10):583-586
    [11]施文元,周学东.人体口腔微生物群的相互作用.华西口腔医学杂志,2010,28(1):1-4
    [12]樊明文.龋病预防学研究回顾.中国口腔医学年鉴,2004:1-5
    [13]Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature,1990,344(6265):467-468
    [14]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science,1990,249(4968):505-510
    [15]Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature,1990,346(6287):818-822
    [16]邵宁生,李少华,黄燕苹.SELEX技术及Aptamer研究的新进展.生物化学与生物物理进展,2006,33(4):329-335
    [17]Breaker RR. Natural and engineered nucleic acids as tools to explore biology. Nature, 2004,432(7019):838-845
    [18]Shamah SM, Healy JM, Cload ST. Complex target SELEX. Acc Chem Res,2008, 41(1):130-138
    [19]Wang C, Zhang M, Yang G, et al. Single-stranded DNA aptamers that bind differentiated but not parental cells:subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol,2003,102(1):15-22
    [20]Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A,2006,103(32): 11838-11843
    [21]Meng L, Sefah K, Colon DL, et al. Using live cells to generate aptamers for cancer study. Methods Mol Biol,2010,629:355-367
    [22]Shangguan D, Meng L, Cao ZC, et al. Identification of liver cancer-specific aptamers using whole live cells. Anal Chem,2008,80(3):721-728
    [23]Chen F, Zhou J, Luo F, et al. Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem Biophys Res Commun,2007,357(3):743-748
    [24]Cao X, Li S, Chen L, et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res,2009,37(14):4621-4628
    [25]Morris KN, Jensen KB, Julin CM, et al. High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci U S A,1998,95(6):2902-2907
    [26]Blank M, Weinschenk T, Priemer M, et al. Systematic evolution of a DNA aptamer binding to rat brain tumer microvessels. Selective targeting of endothelial regulatory protein pigpen. J Biol Chem,2001,276(19):16464-16468
    [27]Hicke BJ, Marion C, Chang YF, et al. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem,2001,276(52):48644-48654
    [28]Li S, Xu H, Ding H, et al. Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX. J Pathol,2009,218(3):327-336
    [1]Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev,1980,44(2):331-384
    [2]Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev, 1986,50(4):353-380
    [3]Kuramitsu HK. Molecular genetic analysis of the virulence of oral bacterial pathogens: an historical perspective. Crit Rev Oral Biol Med,2003,14(5):331-344
    [4]Carlsson P, Olsson B, Bratthall D. The relationship between the bacterium Streptococcus mutans in the saliva and dental caries in children in Mozambique. Arch Oral Biol,1985,30(3):265-268
    [5]Matee MI, Mikx FH, de Soet JS, et al. Mutans streptococci in caries-active and caries-free infants in Tanzania. Oral Microbiol Immunol,1993,8(5):322-324
    [6]Yamashita Y, Tsukioka Y, Nakano Y, et al. Molecular and genetic analysis of multiple changes in the levels of production of vilurence factors in a substructured variant of Streptococcus mutans. FEMS Microbiol Lett,1996,144(1):81
    [7]郭丽宏,史俊南,朱株,等.同一口腔中c血清型变形链球菌高、低毒力株的筛选.牙体牙髓牙周病学杂志,2003,13(10):543-547
    [8]Kawamura Y, Hou XQ Sultana F, et al. Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol,1995,45(2):406-408
    [9]Nakano K, Ooshima T. Serotype classification of Streptococcus mutans and its detection outside the oral cavity. Future Microbiol,2009,4(7):891-902
    [10]Nakano K, Nomura R, Nakagawa I, et al. Demonstration of Streptococcus mutans with a cell wall polysaccharide specific to a new serotype, k, in the human oral cavity. J Clin Microbiol,2004,42(1):198-202
    [11]Shibata Y, Ozaki K, Seki M, et al. Analysis of loci required for determination of serotype antigenicity in Streptococcus mutans and its clinical utilization. J Clin Microbiol,2003,41(9):4107-4112
    [12]岳松龄.微生物与龋病(二)龋病学研究百年回顾与展望之二.牙体牙髓牙周病学杂志,2006,16(3):121-128
    [13]Wan AK, Seow WK, Walsh LJ, et al. Comparison of five selective media for the growth and enumeration of Streptococcus mutans. Aust Dent J,2002,47(1):21-26
    [14]肖晓蓉.口腔微生物学及实用技术.北京医科大学/中国协和医科大学联合出版社出版.1993,1:95
    [15]Ono T, Hirota K, Nemoto K, et al. Detection of Streptococcus mutans by PCR amplification of spaP gene. J Med Microbiol,1994,41(4):231-235
    [16]OhoT, Yamashita Y, Shimazaki Y, et al. Simple and rapid detection of Streptococcus mutans and Streptococcus sobrinus in human saliva by polymerase chain reation. Oral Microbiol Immunol,2000,15(4):258-262
    [17]Igarashi T, Yamamoto A, Goto N. Direct detection of Streptococcus mutans in human dental plaque by polymerase chain reation. Oral Microbiol Immunol,1996,11(5): 294-298
    [18]樊明文,边专.龋病学.人民卫生出版社.2003,1:5
    [19]陈舟,刘天佳,刘建国,等.不同龋敏感人群牙菌斑中变形链球菌的检测.口腔医学研究,2003,19(4):241-243
    [20]宋衍芹,郭青玉,吴文,等.gtfB寡核苷酸探针对高龋及无龋者唾液变形链球菌的检测.华西口腔医学杂志,2006,24(1):91-92
    [21]Dasanayake AP, Caufield PW, Cutter GR, et al. Differences in the detection and enumeration of mutans streptococci due to differences in methods. Arch Oral Biol, 1995,40(4):345-351
    [22]Gronroos L, Alaluusua S. Site-specific oral colonization of mutans streptococci detected by arbitrarily primed PCR fingerprinting. Caries Res,2000,34(6):474-480
    [23]Lembo FL, Longo PL, Ota-Tsuzuki C, et al. Genotypic and phenotypic analysis of Streptococcus mutans from different oral cavity sites of caries-free and caries-active children. Oral Microbiol Immunol,2007,22(5):313-319
    [24]Chen Z, Saxena D, Caufield PW, et al. Development of species-specific primers for detection of Streptococcus mutans in mixed bacterial samples. FEMS Microbiol Lett, 2007,272(2):154-162
    [25]Van Palenstein Helderman WH, Ijsseldijk M, Huis in't Veld JH. A selective medium for the two major subgroups of the bacterium Streptococcus mutans isolated from human dental plaque and saliva. Arch Oral Biol,1983,28(7):599-603
    [26]薛晶,刘学军.不同龋敏感人群牙菌斑中变形链球菌群得分布.郑州大学学报(医 学版),2010,45(4):626-628
    [27]Nascimento MM, Hofling JF, Goncalves RB. Streptococcus mutans genotypes isolated from root and coronal caries. Caries Res,2004,38(5):454-463
    [28]Redmo Emanuelsson IM, Carlsson P, Hamberg K, et al. Tracing genotype of mutans streptococci on tooth sites by random amplified polymorphic DNA(RAPD) analysis. Oral Microbiol Immunol,2003,18(1):24-29
    [29]Sato T, Hu JP, Ohki K, et al. Identification of mutans streptococci by restriction fragment length polymorphism analysis of polymerase chain reaction-amplified 16S ribosomal RNA genes. Oral Microbiol Immunol,2003,18(5):323-326
    [1]Cvitkovitch DG, Li YH, Ellen RP. Quorum sensing and biofilm formation in Streptococcal infections. J Clin Invest,2003,112(11):1626-1632
    [2]Napimoga MH, Kamiya RU, Rosa RT, et al. Genotypic diversity and virulence traits of Streptococcus mutans in caries-free and caries-active individuals. J Med Microbiol. 2004,53(Pt 7):697-703
    [3]Yamashita Y, Tsukioka Y, Nakano Y, et al. Molecular and genetic analysis of multiple changes in the levels of production of virulence factors in a subcultured variant of Streptococcus mutans. FEMS Microbiol Lett,1996,144(1):81-87
    [4]周学东.口腔生物化学.四川大学出版社.2002,1:253-255
    [5]Clark WB, Bammann LL, Gibbons RJ. Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect Immun,1978,19(3):846-853
    [6]Appelbaum B, Golub E, Holt SC, et al. In vitro studies of dental plaque formation: adsorption of oral streptococci to hydroxyaptite. Infect Immun,1979,25(2):717-728
    [7]Takatsuka T, Konishi N, Nakabo S, et al. Adhesion in vitro of oral streptococci to porcelain, composite resin cement and human enamel. Dent Mater J,2000,19(4): 363-372
    [8]Montanaro L, Campoccia D, Rizzi S, et al. Evaluation of bacterial adhesion of streptococcus mutans on dental restorative materials. Biomaterials,2004,25(18): 4457-4463
    [9]Kantorski KZ, Scotti R, Valandro LF, et al. Adherence of Streptococcus mutans to uncoated and saliva-coated glass-ceramics and composites. Gen Dent,2008,56(7): 740-747
    [10]Shimotoyodome A, Kobayashi H, Tokimitsu I, et al. Saliva-promoted adhesion of Streptococcus mutans MT8148 associates with dental plaque and caries experience. Caries Res,2007,41(3):212-218
    [11]黄晓晶,刘天佳,陈舟,等.高龋及无龋者变形链球菌临床分离株致龋性研究Ⅰ对唾液包被羟磷灰石的粘附实验.华西口腔医学杂志,2000,18(6):416-418
    [12]黄晓晶,刘天佳,杨锦波,等.高龋及无龋者变形链球菌临床分离株致龋性研究Ⅱ合成胞外多糖能力的实验研究.华西口腔医学杂志,2000,18(6):419-421
    [13]刘琪,罗宗莲,杨继虞.变形链球菌遗传Ⅰ型和Ⅲ型利用不同糖类合成葡聚糖的研究.口腔医学纵横杂志,1996,12(1):15-16
    [14]支清蕙,林焕彩,廖义东.变形链球菌胞外多糖合成与乳牙高龋的关系研究.实用口腔医学杂志,2007,23(4):492-494
    [15]Khoo G, Zhan L, Hoover C, et al. Cariogenic virulence characteristics of mutans streptococci isolated from caries-active and caries-free adults. J Calif Dent Assoc, 2005,33(12):973-980
    [16]黄晓晶,刘天佳,蔡志宇,等.不同龋敏感者变形链球菌临床分离株产酸能力的研究.四川大学学报(医学版),2004,35(4):520-521
    [17]郭丽宏,史俊南,朱株,等.同一口腔中c血清型变形链球菌高、低毒力株的筛选.牙体牙髓牙周病学杂志,2003,13(10):543-547
    [18]曹元书,刘兴容.不同龋敏感儿童变形链球菌临床分离株产酸、耐酸能力的实验研究.实用口腔医学杂志,2009,25(1):103-106
    [19]黄晓晶,刘天佳,蔡志宇,等.变形链球菌体外耐酸能力的实验研究.牙体牙髓牙周病学杂志,2004,14(8):427-429
    [20]Gamboa F, Chaves M, Valdivieso C. Genotypic profiles by AP-PCR of streptococcus mutans in caries-active and caries-free preschoolers. Acta Odontol Latinoam,2010, 23(2):143-149
    [21]Powell LV. Caries risk assessment:relevance to the practitioner. J Am Dent Assoc, 1998,129(3):349-353
    [22]Caufield PW, Walker TM. Genetic diversity within Streptococcus mutans evident from chromosomal DNA restriction fragment polymorphisms. J Clin Microbiol,1989,27(2): 274-278
    [23]黄晓晶,刘天佳,陈国弟,等.变形链球菌(血清型c)临床分离株AP-PCR基因分型.中华口腔医学杂志,2001,36(4):281-284
    [24]陈舟,刘天佳,刘建国,等.不同龋敏感人群牙菌斑中变形链球菌的检测.口腔医学研究,2003,19(4):241-243
    [25]Nascimento MM, Hofling JF, Goncalves RB. Streptococcus mutans genotypes isolated from root and coronal caries. Caries Res,2004,38(5):454-463
    [26]郭丽宏,史俊南,肖晓蓉,等.高龋者口腔中c血清型变形链球菌的基因组指纹分析.牙体牙髓牙周病学杂志,2003,13(11):609-613
    [27]Alaluusua S, Matto J, Gronroos L, et al. Oral colonization by more than one clonal type of mutnas streptococcus in children with nursing-bottle dental caries. Arch Oral Biol 1996,41(2):167-173
    [28]Lembo FL, Longo PL, Ota-Tsuzuki C, et al. Genotypic and phenotypic analysis of Streptococcus mutans from different oral cavity sites of caries-free and caries-active children. Oral Microbiol Immunol,2007,22(5):313-319
    [29]Gibbons RJ. Role of adhesion in microbial colonization of host tissues:a contribution of oral microbiology. J Dent Res,1996,75(3):866-870
    [30]Jenkinson HF. Adherence and accumulation of oral streptococci. Trends Microbiol, 1994,2(6):209-212
    [31]Gaines S, James TC, Folan M, et al. A novel spectrofluorometric microassay for Streptococcus mutans adherence to hydroxylapatite. J Microbiol Methods,2003,54(3): 315-323
    [32]Igarashi T. Deletion in sortase gene of Streptococcus mutans Ingbritt. Oral Microbiol Immunol,2004,19(3):210-213
    [33]樊明文,边专,陈智,等.龋病牙髓病学研究.湖北科学技术出版社.2004,1:28-32
    [34]刘正.口腔生物学.人民卫生出版社.2003,1:115-118
    [35]Tamesada M, Kawabata S, Fujiwara T, et al. Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation. J Dent Res,2004,83(11):874-879
    [36]Mattos-Graner RO, Smith DJ, King WF, et al. Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12-to 30-month-old children. J Dent Res,2000,79(6):1371-1377
    [37]马善奋,马瑞,姜云涛,等.高龋及无龋儿童变形链球菌分离株的蔗糖粘附能力比较.上海口腔医学,2007,16(3):282-284
    [38]Chia JS, Hsu TY, Teng LJ, et al.Glucosyltransferase gene polymorphism among Streptococcus mutans strains. Infect Immun,1991,59(5):1656-1660
    [39]Concha ML, Castillo A, Liebana J, et al. Initial pH as a determining factor of glucose consumption and lactic and acetic acid production in oral streptococci. Microbios, 1996,87(353):207-216
    [40]Kohler B, Birkhed D, Olsson S. Acid production by human strains of Streptococcus mutans and Streptococcus sobrinus. Caries Res,1995,29(5):402-406
    [1]Cao X, Li S, Chen L, et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res,2009,37(14):4621-4628
    [2]Huizenga DE, Szostak JW. A DNA aptamer that binds adenosine and ATP. Biochmistry, 1995,34(2):656-665
    [3]Jenison RD, Gill SC, Pardi A, et al. High-resolution molecular discrimination by RNA. Sciences,1994,263(5152):1425-1429
    [4]Bruno JG, Kiel JL. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron,1999,14(5):457-464
    [5]Chen CK, Kuo TL, Chan PC, et al. Subtractive SELEX against two heterogeneous target samples:Numerical simulations and analysis. Comput Biol Med,2007,37(6): 750-759
    [6]Irvine D, Tuerk C, Gold L. SELEXION. Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J Mol Biol, 1991,222(3):739-761
    [7]Vant-Hull B, Payano-Baez A, Davis RH, et al. The mathematics of SELEX against complex targets. J Mol Biol,1998,278(3):579-597
    [8]杨光,邵宁生,柳川.随机RNA文库的构建.军事医学科学院院刊.2000,24(3):221-224
    [9]Williams KP, Bartel DP. PCR product with strands of unequal length. Nucleic Acids Res,1995,23(20):4220-4221
    [10]Homann M, Goringer HU. Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res,1999,27(9):2006-2014
    [11]Lorger M, Engstler M, Homann M, et al. Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers. Eukaryot Cell,2003,2(1):84-94
    [12]Ulrich H, Magdesian MH, Alves M J, et al. In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J Biol Chem,2002,277(23):20756-20762
    [13]Gopinath SC, Misono TS, Kawasaki K, et al. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J Gen Virol,2006,87(Pt 3):479-487
    [14]Jeon SH, Kayhan B, Ben-Yedidia T, et al. A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J Biol Chem,2004, 279(46):48410-48419
    [15]Wang C, Zhang M, Yang G, et al. Single-stranded DNA aptamers that bind differentiated but not parental cells:subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol.2003,102(1):15-22
    [16]Shangguan D, Cao ZC, Li Y, et al. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem.2007, 53(6):1153-1155
    [17]Liu X, Cao G, Ding H, et al. Screening of functional antidotes of RNA aptamers against bovine thrombin. FEBS Lett,2004,562(1-3):125-128
    [18]Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol,1994,2:28-36
    [19]Dementhon K, Saupe SJ. DNA-binding specificity of the IDI-4 basic leucine zipper factor of Podospora anserine defined by systematic evolution of ligands by exponential enrichment (SELEX). Eukaryot Cell,2005,4(2):476-483
    [20]Morris KN, Jensen KB, Julin CM, et al. High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci USA,1998,95(6):2902-2907
    [21]Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA,2006,103(32): 11838-11843
    [1]岳松龄.微生物与龋病(二):龋病学研究百年回顾与展望之二.牙体牙髓牙周病学杂志,2006,16(3):121-128
    [2]Okahashi N, Sasakawa C, Yoshikawa M, et al. Cloning of a surface protein antigen gene from serotype c Streptococcus mutans. Mol Microbiol,1989,3(2):221-228
    [3]Forester H, Hunter N, Knox KW. Characteristics of a high molecular weight extracellular protein of Streptococcus mutans. J Gen Microbiol,1983,129(9):2779-2788
    [4]Russell MW, Lehner T. Characterisation of antigens extracted from cells and culture fluids of Streptococcus mutans serotype c. Arch Oral Biol,1978,23(1):7-15
    [5]Hughes M, Machardy SM, Sheppard AJ, et al. Evidence for an immunological relationship between Streptococcus mutans and human cardiac tissue. Infect Immun,1980, 27(2):576-588
    [6]Russell RR. Wall-associated protein antigens of Streptococcus mutans. J Gen Microbiol, 1979,114(1):109-115
    [7]Ogier JA, Scholler M, Leproivre Y, et al. Complete nucleotide sequence of the sr gene from Streptococcus mutans OMZ 175. FEMS Microbiol Lett,1990,56(1/2):223-227
    [8]Demuth DR, Lammey MS, Huck M, et al. Comparison of Streptococcus mutans and Streptococcus sanguis receptors for human salivary agglutinin. Microb Pathog,1990,9(3): 199-211
    [9]储冰峰,赵皿,史俊南,等.变形链球菌表面抗原Ⅰ/Ⅱ基因体外扩增片段的Southern杂交.牙体牙髓牙周病学杂志,1996,6(2):82-84
    [10]Okahashi N, Sasakawa C, Yoshikawa M, et al. Molecular characterization of a surface protein antigen gene from serotype c Streptococcus mutans, implicated in dental caries. Mol Microbiol,1989,3(5):673-678
    [11]Kelly C, Evans P, Ma JK, et al. Sequencing and characterization of the 185 kDa cell surface antigen of Streptococcus mutans. Arch Oral Biol,1990,35(Suppl):33S-38S
    [12]Trevor BS. Molecular interactions of the Streptococcus mutans surface protein P1: Contributions to protein structure, stability, and translocation. Florida:University of Florida,2005:15
    [13]Jenkinson HF, Demuth DR. Structure, function and immunogenicity of streptococcal antigen Ⅰ/Ⅱ polypeptides. Mol Microbiol,1997,23(2):183-190
    [14]Brady LJ, Piacentini DA, Crowley PJ, et al. Identification of monoclonal antibody-binding domains within antigen P1 of Streptococcus mutans and cross-reactivity with related surface antigens of oral streptococci. Infect Immun,1991,59(12):4425-4435
    [15]Brady LJ, Cvitkovitch DG, Geric CM, et al. Deletion of the central proline-rich repeat domain results in altered antigenicity and lack of surface expression of the Streptococcus mutans P1 adhesin molecule. Infect Immun,1998,66(9):4274-4282
    [16]Matsumoto-Nakano M, Tsuji M, Amano A, et al. Molecular interactions of alanine-rich and proline-rich regions of cell surface protein antigen c in Streptococcus mutans. Oral Microbiol Immunol,2008,23(4):265-270
    [17]Kelly CG, Todryk S, Kendal HL, et al. T-cell, adhesion, and B-cell epitopes of the cell surface Streptococcus mutans protein antigen Ⅰ/Ⅱ. Infect Immun,1995,63(9):3649-3658
    [18]甘晓榕,王小琴,Mchel-AngeloSciotti,等.变形链球菌表面蛋白可变区(V+)基因克隆与表达.中国公共卫生,2002,18(5):533-534
    [19]Nakai M, Okahashi N, Ohta H, et al. Saliva-binding region of Streptococcus mutans surface protein antigen. Infect Immun,1993,61(10):4344-4349
    [20]庄姮,刘天佳,杨德琴,等.变形链球菌表面蛋白遗传多态性与龋病发生关系的研究Ⅱ:表面蛋白V区、P区编码基因序列的测定.实用口腔医学杂志,2004,20(6):714-716
    [21]Chatenay-Rivauday C, Yamodo I, Sciotti MA, et al. The A and the extended V N-terminal regions of streptococcal protein Ⅰ/Ⅱ mediate the production of tumour necrosis factor alpha in the monocyte cell line THP-1. Mol Microbiol,1998,29(1):39-48
    [22]郭丽宏,刘建国.变链菌表面蛋白分子结构中T、B细胞表位的定位分布.牙体牙髓牙周病学杂志,1999,9(3):251-253
    [23]汪喻忠,刘建国.变链菌表面蛋白分子结构中T、B细胞表位的定位分布.牙体牙髓牙周病学杂志,2000,10(3):174-176
    [24]Murakami Y, Yamashita Y, Nakano Y, et al. Role of the charged tail in localization of a surface protein antigen of Streptococcus mutans. Infect Immun,1997,65(4):1531-1535
    [25]Osaki M, Takamatsu D, Shimoji Y, et al. Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria. J Bacteriol,2002, 184(4):971-982
    [26]Lee SG, Pancholi V, Fischetti VA. Characterization of a unique glycosylated anchor endopeptidase that cleaves the LPXTG sequence motif of cell surface proteins of Gram-positive bacteria. J Biol Chem,2002,277(49):46912-46922
    [27]Igarashi T, Asaga E, Goto N. The sortase of Streptococcus mutans mediates cell wall anchoring of a surface protein antigen. Oral Microbiol Immunol,2003,18(4):266-269
    [28]van Dolleweerd CJ, Chargelegue D, Ma JK. Characterization of the conformational epitope of Guy's 13, a monoclonal antibody that prevents Streptococcus mutans colonization in humans. Infect Immun,2003,71(2):754-765

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700