功能高分子在茶叶深加工中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球咖啡碱年销量约为12万吨,20%~25%用于工业,其余大部分用于医药和食品。近些年来,人工合成咖啡碱对人体和环境的毒副作用使得大部分发达国家明文禁止“合成咖啡碱不得加入食品饮料中”,从而为天然咖啡碱的开发带来无限商机。在国外,天然咖啡碱主要是来源于生产咖啡过程中的一种副产品。我国是产茶大国,各种制茶废弃物非常丰富,因而充分利用制茶废料提取咖啡碱,具有原料易得,工艺简便等特点。但由于天然咖啡碱的生产成本比人工合成咖啡碱要高很多,从而限制了天然咖啡碱的大规模生产和应用。因此,如何降天然咖啡碱的生产成本就显得十分重要。本论文首次采用微生物发酵技术来提高茶叶中咖啡碱含量,从而降低其生产成本。试验结果表明,微生物发酵确实能够较大幅度地增加茶叶中咖啡碱的含量,对发酵体系中的微生物进行跟踪检测,并与咖啡碱的含量变化进行综合分析,发现与咖啡碱含量变化相关的微生物主要是真菌和酵母,细菌几乎不起作用;进一步的单一微生物发酵试验表明,选用的霉菌能够提高茶叶中咖啡碱含量,而所选用的两种假丝酵母却使茶叶中咖啡碱含量降低。试验结果表明,黑曲霉发酵使茶叶中咖啡碱含量增加的幅度最大,在第16天,绿茶咖啡碱含量增加到9.63%,与最初的3.47%相比,增幅为177.5%;对试验结果进行综合分析,可以推断:微生物受茶叶中一些物质的诱导,产生了新的代谢途径,利用茶叶中的一些化合物合成咖啡碱,这些化合物大部分不溶于水,它们在绿茶中的含量远高于红茶;而且微生物代谢合成咖啡碱的最直接前提物可能是茶叶碱,而在茶树体中合成咖啡碱的最直接前提物是可可碱。
     然而,对于茶多酚制品而言,过多的咖啡碱残留会影响它在一些领域的应用,因此有必要降低茶多酚中的咖啡碱含量。现在常用的方法是用氯仿等有机溶剂脱除咖啡碱,也有用超临界CO_2来分离的,尽管很有成效,但都存在很多问题,比如有机溶剂的毒害与残留,超临界CO_2的一次性投资很大等。因此,有人用柱层析等色谱的方法来分离茶多酚和咖啡碱,取得了一些成果,比如用C_(18)色谱柱、凝胶色谱柱、高速逆流色谱等分离茶多酚和咖啡碱,但C_(18)色谱柱和凝胶色谱柱成本很高,高速逆流色谱制备规模太小,因此寻找合适的价格低廉的固定相十分重要。本论文根据已有文献的报道,采用分子印迹技术合成以咖啡碱为模板的分子印迹聚合物,通过它对分子大小和结构的特殊选择性来分离咖啡碱。结果表明,以咖啡碱为模板,甲基丙烯酸为功能单体,采用水溶液微悬浮聚合合成分子印迹聚合物是可行的,模板分子和功能单体的最佳摩尔比为1∶12,流动相宜采用甲醇的醋酸水溶液;咖啡碱分子印迹色谱柱分离没食子儿茶素没食子酸酯(EGCG)和咖啡碱以及分离茶多酚各组分的实验结果证明,用分子印迹聚合物脱除茶多酚中的咖啡碱是可以实现的,EGCG和咖啡碱之间的分离度高达2.39,但分离过程会造成一些组分的损失。
     表没食子儿茶素没食子酸酯(EGCG)是儿茶素的主体成分,具有很强的药理功能,因此它的分离提取一直受到各界的重视。目前常用的方法是用葡聚糖凝胶的方法分离制备EGCG,也有用高速逆流色谱来分离制备的,还有将两种方法结合起来应用,都取得了很好的效果。但制备的规模很小,且成本很高。在本论文中,分子印迹技术被应用于分离EGCG。试验结果表明,以EGCG为模板,4-乙烯基吡啶为功能单体,采用水溶液微悬浮聚合制备分子印迹聚合物是可行的,模板分子和功能单体的最佳摩尔比为1∶16:EGCG分子印迹色谱柱分离EC、ECG和GCG实验结果证明,用分子印迹聚合物分离旋光异构体具有较好的效果,EGCG和GCG的分离度为1.52,但对于空间结构相同、分子上官能团差异较小如EGCG和ECG时,分离度较小,仅为0.60;应用儿茶素分子印迹柱分离咖啡碱和EGCG具有很好的效果,它们之间的分离度高达2.30;对茶多酚的分离试验表明,可以应用EGCG分子印迹色谱柱从茶多酚中分离制备高纯度EGCG。
     茶色素是儿茶素的氧化产物,它对心血管和肿瘤等具有很好的防治效果,其主体成分是茶黄素和茶红素以及茶褐素。茶色素的制备方法有两种,一种是通过多酚氧化酶或过氧化物酶来氧化获得,另一种是通过铁氰化钾等化学氧化剂的氧化获得。多酚氧化酶和过氧化物酶有很好的选择性、专一性和较强的催化活性,但是很难获得,也不易回收再利用,因此成本很高。而人工模拟酶可以批量生产,既具有酶的催化能力,同时它的稳定性又大大优于天然酶蛋白,在有机相和水相中都不溶解,这样便于分离回收再利用。本论文以低分子量的壳聚糖为载体,通过与水杨醛反应合成壳聚糖希夫碱,然后与铜离子进行配位络合,最后用环氧氯丙烷进行交联,得到壳聚糖铜络合物。试验结果表明,形成的铜络合物具有与辣根过氧化物酶类似的催化能力,其活性较天然的过氧化物酶弱,如以焦性没食子酸为底物,壳聚糖希夫碱铜络合物的催化能力约为辣根过氧化物酶的28.28%。但它能够回收再利用,试验数据表明,重复使用4次后,模拟酶的活性几乎未发生变化,第四次催化形成的产物是第一次的86.18%,其损失可能是因为有一部分模拟酶在搅拌过程中发生粉碎,同时模拟酶对儿茶素还是有少量的吸附,这都会影响到模拟酶的活性。试验结果表明,用壳聚糖希夫碱铜络合物作为辣根过氧化物酶的模拟酶催化儿茶素的氧化制备茶黄素和茶红素是可行的。
     茶色素的另一种制备方法是用化学氧化剂氧化儿茶素,最常用的氧化剂是铁氰化钾,它的氧化产率较高,但氧化剂的分离回收困难,而且氧化反应后需通过酸化来终止反应,这一过程中易产生氢氰酸,对人体和环境具有潜在的危险;而且,铁氰化钾氧化还原后形成的亚铁氰化钾在有酸或酸性盐存在时,特别是加热时,也会分解而放出剧毒的氢氰酸。此外,铁氰化钾氧化后从体系中分离困难,既不利于反应的终止,也不利于产品安全。为了提高铁氰化钾的稳定性,减轻它对人体和环境的潜在危害,实现与产品的完全分离,我们尝试以离子交换树脂为载体,将铁氰根离子吸附固定在树脂上,用它作为高分子氧化剂,去氧化儿茶素制备茶色素。试验结果表明,强碱性阴离子交换树脂717固载的铁氰化钾能氧化儿茶素形成茶黄素,但它的氧化活性较游离的铁氰化钾弱很多,若以D,L-C和EGCG为反应底物,固载氧化剂主产物茶黄素单没食子酸酯的峰面积(510351.9)是游离铁氰化钾氧化的主产物峰面积(1026658.0)的49.71%。反应后的树脂固载氧化剂可以通过过氧化氢的氧化有效再生,这对于降低生产成本,解决环境污染等是十分有利的。
Global consumption of caffeine has been estimated at 120000 tons per annum, 20%~25% of it is used in industry and the rest of it is used in food and medicine. In recent yeas, the synthetic caffeine is prohibited in the fields of food and drink in most of developed countries due to its harm on human health and environment. It brings limitless business opportunity to natural caffeine. In foreign countries, natural caffeine is mainly from the by-product which is produced during the processing of coffee. Our country is the biggest tea manufacturing country in the world, and is rich in all kinds of tea wastes which are produced during the manufacturing of tea. Therefore, extra-cting caffeine from the tea wastes features the advantages of ready availability of raw material and simplicity of procedure. But the cost of natural caffeine extracted from tea or coffee is much higher than that of the synthetic caffeine, which limits the pro-duction and application of natural caffeine in large scope. So it is necessary to lower the cost of natural caffeine. Microbial fermentation was applied in the paper to increase the caffeine content in tea, which would decrease the cost of natural caffeine. The results demonstrated that the microbial fermentation did increase the caffeine content of tea. The analysis of microorganisms and caffeine showed that the fungi and yeast had effects on the change of caffeine content, while the bacteria had no effect on the change of caffeine. The single microorganism was further used in the fermentation of black and green teas in order to find which microorganism has the biggest effect on the caffeine content increase. The results illustrated that the three molds applied in this study could enhance the caffeine content in green tea through fermentation, whereas the two yeasts had no this effect. Among the three moulds, Aspergillus niger van Tiegh em had the most positive effect on the increase of caffeine content. On the 16th day of fermentation with Aspergillus niger van Tieghem, the caffeine content reachs a maximum value of 9.63%. In comparison with an initial 3.47% in starting tea, the caffeine content increased by 177.5%. A conclusion can be drawn from the compre hensive analysis of the results: The microorganisms are stimulated to establish a new secondary metabolism route to biosynthesize caffeine in vivo after taking up the essential and especial components such as xanthosine from teas. These components are poorly soluble in water and the contents of them in black tea are much lower than that in green tea. The biosynthesis of caffeine in the microbial metabolism may be via the methylation of the theophylline, while the biosynthetic route of caffeine in the tea plant is via methylation of theobromine.
     However, more residue of caffeine in tea polyphenols has a negative influence on the application of tea polyphenols in some fields. So it is necessary to reduce the caffeine content in tea polyphenols. Now, the common method for the removal of caffeine from tea polphynols is the extraction by chloroform. The Supercritical carbon dioxide is also used for extraction of caffeine. Although they are effective in the removal of caffeine, there are many problems in these two methods such as the residue and harm of organic solvent and the big one-off investment of the equipments for supercritical carbon dioxide extraction of caffeine. Therefore, somebody separates caffeine from tea polyphenols with column chromatography and makes achievements. The C_(18) column and Gel column and High-speed countercurrent chromatography are used for the separation of tea polyphenols and caffeine. But the costs of C_(18) and gel column are high, while the High-speed countercurrent chromatography cannot reach a preparation scale. So it is important for us to find a kind of suitable and cheap solid phase for the separation. According to the relevant research, a molecularly imprinted polymer(MIP) is prepared with caffeine as the template molecule by the molecularly imprinting technique in the paper to separate caffeine from tea polyphenols with the selectivity of molecular weight and structure. The results indicate that the preparation of MIP using methacrylic acid(MAA) as the functional monomer, caffeine as the template is perfect by aqueous micro-suspension polymerization. The best ratio of template to functional monomer is 1:12, methanol to acetic acid to water as mobile phase. The results demonstrate that the MIP with caffeine as the template can separate caffeine from tea polphenols, the separation degree of caffeine and epigallocatechin gallate(EGCG) is 2.39. Of course the separation by MIP leads to the loss of some components of tea polyphenols.
     Epigallocatechin gallate(EGCG) which is the dominant component of catechins is gotten attention from all circles because of its stronger pharmacological function. The sephadex gels are used in the common method for preparation of EGCG. The high-speed countercurrent chromatography is also adopted to prepare EGCG. In addition, these two methods are combined into the procedure of preparing EGCG. All of them make good results. But the preparation scale is small and the cost is very high. In this paper, a molecularly imprinted polymer(MIP) was prepared with EGCG as the template molecule by the molecularly imprinting technique to separate EGCG from tea polyphenols. The results indicate that the preparation of MIP using 4-vinylpyridine as the functional monomer, EGCG as the template is perfect by aqueous microsuspension polymerization. The best ratio of template to functional monomer is 1:16. The results demonstrate that the MIP of EGCG can realize the chiral separation of enantiomers, the separation degree of EGCG and GCG is 1.52. The separation degree of EGCG and epicatechin gallate(ECG) on the MIP of EGCG is only 0.60 because they have more similar structure. The separation degree of caffeine and EGCG is 2.30. The result of separation of tea polyphenols with MIP of EGCG indicates that the preparation of EGCG through the MIP column is reliable.
     Tea pigments which include theaflavins, thearubigins and theabrownin are the oxidation products of catechins. They have good effects on cardiovascular diseases and tumor. The pigments could be obtained by two ways: oxidation of catechins by the catalysis of polyphenol oxidase and peroxidase or by the chemical oxidant such as potassium hexacyanoferrate(Ⅲ). Although polyphenol oxidase and peroxidase have the specific oxidative ability for catechins, the cost of enzymatic reaction is very high because it is difficult to get and reuse the enzymes. Artificial enzyme mimics which not only have the ability of enzymatic catalysis but also have more stability than natureal enzymes could be prepared in batch. The enzyme mimics don't dissolve in water and organic solvent, which is convenient for its recovery. In this paper, low-molecular weight chitosan was used to synthesize the chitosan schiff base via the reaction of chitosan with salicylaldehyde. And then chitosan schiff base copper complex was obtained by reaction of chitosan schiff base with copper(Ⅱ) salt. Crosslinked chitosan schiff base copper complex was prepared using epichlorohydrin(ECH) as cross linker. The results indicates that the copper complex has the same but low catalytic property as horseradish peroxidase, only 28.28% of the activity of horseradish peroxidase using pyrogallic acid as substrate. But the copper complex can be used again after filtration from the reaction system. The experimental data show that the activity of enzyme mimic(chitosan schiff base copper complex) decrease little and is 86.18% of the activity of the first time after four repeat. The loss of activity may be caused by the crush of enzyme mimic during the stirring and the adsorption of catechins by enzyme mimic. However, it is no problem for chitosan schiff base copper complex using as the mimetic enzyme of horseradish peroxidase to catalyze the oxidation of catechins to form theaflavins and thearubigins.
     The other method for preparation of tea pigments is through the oxidation of catechins by chemical oxidants. The common oxidant is potassium hexacyanoferrate(Ⅲ) which can yield more products. But it is difficult to recover it from the reaction system, which is not good for the timely stop of oxidation reaction and the safety of product. Meanwhile, the using of potassium hexacyanoferrate(Ⅲ) which can produce hydrocyanic acid after being treated with acids may harm the environment and the body. And then the potassium ferrocyanide which is the reduction product of potassium hexacyanoferrate(Ⅲ) also produce virulent hydrocyanic acid when meeting the acids or acidic salts especially at high temperature. In order to increase the stability of potassium hexacyanoferrate(Ⅲ) and reduce the harm of it and realize the complete separation from the product, the ion-exchange resin is used to adsorb ferricyanide by exchange and then to oxidize the catechins to form tea pigments. The results demonstrated that the theaflavins could be prepared by the oxidation of catechins using the ferricyanide supported by 717 strong base anion exchange resin as oxidant. The activity of polymer-supported oxidizer is much lower than the free potassium hexacyanoferrate(Ⅲ). The peak area of main product by oxidation of DL-C and EGCG using polymer-supported oxidizer is 510351.9,49.71% relative to the peak area of the same product using free potassium hexacyanoferrate(Ⅲ) as oxidizer. The resin-supported oxidizer will be regenerated by oxidation of it with H_2O_2, which must be helpful for us to reduce the production cost and reduce the environmental pollution.
引文
[1] 宛晓春主编.茶叶生物化学(第三版)[M].北京:中国农业出版社,8.
    [2] 中国食品添加剂生产应用工业协会.食品添加剂手册[M].北京:中国轻工业出版社,1996,12:4e-48.
    [3] Young DJ, Lee ME. Inhibition of tumour invasion and a ngiogenesis by epigallicatechin gal late(EGCG),a major component of green tea [J].Int.J.Exp. Patho 1.2001;82:309-316.
    [4] Blache D, Durand P, Prost M, Loreau N.(+)-Catechin inhibits platelet hyperactivity induced by an acute iron load in vivo[J].Free radical biology and medicine,2002,33(12):1670-1680.
    [5] Sanae F, Miyaichi Y, Kizu H, Hayashi H. Effects of catechins on vascular tone in rat thoracic aorta with endothelium [J].Life Sci., 2002,71(21):2553-2562.
    [6] 张星海.茶多酚对心脑血管疾病防治作用的研究进展[J].福建茶叶,2001,4:16-18
    [7] Valsa AK, Sudheesh S, Vijayalakshmi NR. Effect ofcatechin on carbohydrate metabolism [J]. Indian J Biochem Biophys. 1997,34(4): 406-408.
    [8] Gerhuser C, Klimo K. Mechanism-based in vitro screening of potential cancer chemopreventive agents [J]. Mutation research,2003,523 (1):163-172.
    [9] Lambert JD, Yang C S. Cancer chemopreverntive activity and bioavailability of tea and tea polyphenols[J].Mutation research,2003,523(1): 201-208.
    [10] Narisasa T, Fukaru Y. A very low dose of green tea polyphenols in drinking water prevents N-methyl-N-nitrosourea-induced colon carcinogenesis in F344 rats [J]. Jpn J Cancer Res, 1993, 94: 1007-1009.
    [11] Gong YY, Chen JS. Effect of tea polyphenols and tea pigments on the inhibition of precancerous liver lesions, in rats [J]. Nutr Cancer, 2000, 39(1): 81-86.
    [12] Jia XD, Han C. Chemoprevention of tea on colorectal cancer induced by dimethylhydrazine in Wistar rats [J]. World J Gastroentero, 2000, 6(5): 695-703.
    [13] Li N, Sun Z, Han C, Chen J. The chemopreventive effects of tea on human oral precancerous mucosa lesions [J]. PSEBM, 1999, 220: 218-224.
    [14] 凌敏,刘丽,袁华等.茶多酚化学及其在医药保健中的应用[J].湖北化工,2001,3: 29-31.
    [15] 张力群.云南大叶种茶的抗癌作用[J].茶叶科学,1989,9(2):173-174.
    [16] 张国营.茶多酚抗人癌作用的实验研究[J].茶叶通报,1994,16(3):13.
    [17] Katiya SK, Agarwal R, Mukhtar H. Inhibition of spontaneous and photo- enhanced lipid peroxidation on mouse epidermal microsomes by epicatechin derivatives from green tea [J]. Cancer Letter, 1994, 79:61-66.
    [18] Wang ZY, Das M, Bickers Dr. Interaction of epicatechins derived from green tea with rat hepatic cytochrome P-450 [J]. Drug Metab Dispos, 1988, 16:98-103.
    [19] Agarwal R, Katiyar SK, Zaidi SEA, et al. Inhibition of tumor promoter-caused induction of ornithine decarboxylase activity in SENCAR mice by polyphenolic fraction isolated from green tea and its individual epicatechin derivatives [J]. Cancer Res, 1992, 52:3582-3588.
    [20] Ahmad N, Deyes DK, Nieminen AL, et al. Green tea epigallocatechin- 3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells [J]. J Natl Cancer Inst, 1997, 89:1881-1886.
    [21] Lung HL, Ip WK, Wong Mak CK, et al. Anti-proliferative and differentiation-inducing activities of the green tea catechin epigallocatechin-3-gallate(EGCG)on the human eosinophilic leukemia Eol-1 cell line[J].Life Sci, 2002,72(3):257-268.
    [22] Hippeli S, Elstner EF. Transition metal ion-catalyzed oxygen activation during pathogenic processes[J].FEBS letter, 1999,443(1):1-7.
    [23] Lin YL, Juan IM, Chert YL, Liang YC, Lin JK. Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity, with antiproliferative actions in fibroblast cells [J]. J Agric Food Chem, 1996, 44(6): 1387-1394.
    [24] Maccaglia A, Mallozzi C, Minetti M. Differential effects of quercetin and resveratrol on Band 3 tyrosine phosphorylation signaling of red blood cells[J]. Biochem Biophys Res Commun, 2003,305(3):541-547.
    [25] Yamada H, Ohashi K, Atsumi T, Okabe H, et al. Effects of tea catechin in halation on methicillin-resistant Staphylococcus aureus in elderly patients in a hospital ward [J].Journal of Hospital infection,2003,53(3): 229-231.
    [26] Sadik G, Islam R, Rahman MM, Khondkar P, et al.Antimicrobial and cytotoxic constituents of Loranthus globosus [J]. Fitoterapia,2003, 74(3): 308-311.
    [27] Asfar S, Abdeen S, Dashti H, Khoursheed M, et al. Effect of green tea in the prevention and reversal of fasting-induced intestinal mucosal damage[J].Nutrition,2003,19(6):536-540.
    [28] 陶荣达.茶多酚的制备和应用研究的进展[J].化学世界,1997,38(2):64-67.
    [29] 曾振宇,郑为完.从茶叶中提取茶多酚和咖啡碱的工艺研究[J].南昌大学学报,1997,19(4):31-33.
    [30] 潘丽军,姜绍通,江国庭,郑志.果胶酶对茶多酚萃取体系传质效果的影响[J].食品科学,1999,12:25-28.
    [31] 赵元鸿,杨富佑,谢冰,李瑞英.茶多酚的制备及沉淀机理探讨[J].云南大学学报(自然科学版),1999,21(4):317-318.
    [32] 葛宜掌,金红.茶多酚提取新方法[J].中草药,1994,25(3):124-125
    [33] 徐向群,陈瑞锋,王华夫.吸附茶多酚树脂的筛选[J].茶叶科学,1995,15(2):137-140.
    [34] 王梅,张笠,李慕玲,周占明,等.树脂法提取茶多酚的研究[J].离子交换与吸附,1998,14(5):428-433.
    [35] 陈海霞,谢笔钧.树脂法从茶叶中综合提取有效成分的研究[J].精细化工,2000,17(8):493-495.
    [36] 冯耀声,李军.茶多酚的超临界萃取法研究[J].浙江化工,1995,26(4):10-13.
    [37] 王小梅,黄少烈,李俊华.茶多酚的提取工艺研究[J].广州化工,2001,29(4):27-29.
    [38] 孙传经.起临界CO_2反向萃取法从茶叶提取物中提取儿茶素的工艺[P].CN1304919A,2001-07-25。
    [39] 潘丽军,郑志,庞思平,姜绍通.茶多酚对色拉油的抗氧化作用[J].食品工业科技,1999,20(6):27-28.
    [40] Wanasunder UN, Shahidi E Stabilization of seal blubber and menhahen oils with green tea catechins [J]. Journal of the American Oil Chemists: Society. 1996, 73(9): 1183-1190.
    [41] Udaya NW, Fereidoon S, John St. Antioxidant and pro-oxidant activity of green tea extracts in marine oils [J]. Food Chemistry, 1998, 83(3): 335-342.
    [42] 傅冬和,刘仲华,黄建安,儿茶素在食用植物油中的抗氧化作用效果[J].茶叶科学,1999,19(1):61-66.
    [43] 周才琼,程道梅,谢静.茶多酚对菜籽色拉油的抗氧化作用研究[J].西南农业大学学报,2000,22(4):350-352.
    [44] 苏晔,丁晓雯,敬璞,蒋作明.浅谈茶多酚的保健功能[J].福建茶叶,2000,2:42-44.
    [45] 姜爱芹.茶多酚在食品及日用品上的应用[J].中国茶叶,1994,16(2):30-31
    [46] 徐向群.茶叶提取物在化妆品上的应用[J].中国茶叶,1993,15(3):31-32.
    [47] 胡秀芳,杨贤强,陈留记.茶多酚对皮肤的保护与治疗作用[J].福建茶叶,2000,2:44-47.
    [48] Masaaki A, Nobuyuki F, Tomoko K. Anti-allergic effect of tea-leaf saponin from tea leaves [J].Biol Pharm Bull, 1997,20(5): 565-567.
    [49] 傅锦坤,于腊佳.茶多酚对自由基抑制效应[J].厦门大学学报(自然科学版),1998,37(5):727-731.
    [50] Nanjo F, Mori M, Goto K, Hara Y. Radical scavenging activity of tea catechins and their related compounds [J]. Biosci Biotech Biochem, 1999, 63(9): 1621-1623.
    [51] Senba Y, Nishita T, Saito K, Yoshioka H, Yoshioka H. Stopped-flow and spectrophotometric study on radical scavenging by tea catechin and the model compounds [J].Chem Pharm Bull, 1999,47(10): 1369-1374.
    [52] 高永贵,杨贤强,周树红.试论茶多酚清除生物自由基的高效性[J].天然产物研究与开发.1999,11(2):82-86.
    [53] 方若莹,方国明,俞越汉,胡天喜.茶多酚和槲皮素对全血吞噬细胞产生活性氧的抑制作用[J].浙江大学学报(自然科学版),1998,32(2):163-167.
    [54] 姜爱芹.儿茶素类物质与抗衰老[J].中国茶叶,1989,11(4):26-27.
    [55] 朱孝峰,刘宗潮,潘启超,谢冰芬,等。绿茶提取物对肿瘤细胞DNA引物酶-多聚酶α复合体活性的影响[J].癌症,1997,16(3):161-164.
    [56] 宋小鸽,唐照亮,候正明,袁静,等.茶多酚对高脂血症动物的预防作用[J].中国中药杂志,1999,24(9):562-564.
    [57] 董金甫,李瑶卿,洪绍梅.茶多酚(TPP)对8种致病菌最低抑制浓度的研究[J].食品科学,1995,16(1):6-12.
    [58] 李志光,谢文刚,张铭.茶多酚、灵芝提取物与细菌作用的研究[J].食品科学,1999,20(7):49-51.
    [59] 黄可泰,徐元,洪方耀,等.茶多酚对口腔变异链球菌抑制作用及其耐药性的研究[J].中国茶叶,1992,14(4):4-5.
    [60] 王岳飞.茶多酚对细菌的抑制作用[J].茶叶,1994,20(3):37-41.
    [61] 李小洁,晏良军,杨贤强,等.茶多酚清除自由基和抗氧化作用的研究[J].环境化学,1992,11(4):13-18.
    [62] 贾之慎.儿茶素对生物自由基的清除作用[J].中国茶叶,1990,12(4):17-18.
    [63] 曹明富,杨贤强,虞研原.茶多酚对试验性肿瘤的治疗作用[J].中国茶叶,1992,14(1):6-7.
    [64] Abroad N, Mukhtar H. Green tea polyphenols and cancer: Biologic mechanisms and practical implications [J].Nutrition Reviews, 1999, 57(3): 78-83.
    [65] Dreosti IE, Wargovich MJ, Yang CS. Inhibition of carcinogenesis by tea: The evidence from experimental studies [J].Critical Reveiws in Food Science and Nutrition, 1997, 37(8): 761-770.
    [66] Katiyar SK, Mukhtar H. Tea in chemo prevention of cancer: epidemiologic and experimental studies [J]. International Journal of Oncology, 1996, 8(2): 221-238
    [67] Santosh KK, Rajesh A, et al. Inhibition of 12-O-tetradecanoylphorb-ol-13-acetate-caused tumor promotion in 7,12-dimethylbenz[a]anthracene-initiated sencar mouse skin by a polyphenolic fraction isolated from green tea [J]. Cancer Research, 1992,52(12): 6890-6897.
    [68] Santosh KK, Rajesh A, et al. Projection against malignant conversion of chemically induced benign skin papillomas to squamous cell carcinmomas in sencar mice by a polyphenolic fraction isolated from green tea [J].Cancer Research, 1993,53(11): 5409-5412.
    [69] Yang CS, Wang ZY. Tea and cancer [J]. Journal of the National Cancer Institute, 1993, 85(13): 1038-1049
    [70] 陶荣达.茶多酚的制备和应用研究的进展[J].化学世界,1997,2:64-67
    [71] 黄惠华,高孔荣.茶多酚对菠萝蛋白酶的分离及特性的影响研究[J].食品科学,1996,17(4):6-11.
    [72] 沈生荣,杨贤强,区尹正.绿茶颗粒对水中Cr3+吸附行为的研究[J].茶叶,1991,17(1):42-44.
    [73] 国家药典委员会(编),中华人民共和国药典,2000年版(二部),北京:化学工业出版社,2000,387.
    [74] 杨巍.咖啡碱的药理作用与开发利用前景[J].茶叶科学技术,2006,4:9-11
    [75] Shi X, Dalai NS, Jain AC. Antioxidant behavior of 1,3,7 trimethylxanthine (caffeine): efficient scavenging of hydroxyl radicals [J]. Food and Chemical Toxicology, 1991, 29: 1-6.
    [76] 刘立军,韩驰,陈君石.茶叶防癌有效成分的短期细胞生物学筛选[J].卫生研究,1998,27(1):53-56.
    [77] 煤炭科学研究总院合肥研究所.从茶叶中提取咖啡因的方法[P].CN 1032753C,1996-09-11.
    [78] 李沿飞.提取茶叶中咖啡碱的方法[P].CN 1082332A,1994-02-23
    [79] 玉溪师范高等专科学校.废茶末中提取咖啡因的工艺[P].CN 1172112A,1998-02-24.
    [80] 陈友仁.从茶叶萃取物中提纯咖啡因的升华装置[P].CN 103308C,1996-11-20.
    [81] 毛小源.用升华法从茶叶下脚料中提取咖啡因的装置[P].CN 2169979Y,1994-06-29.
    [82] 张镜澄.超临界流体萃取[M].北京:化学工业出版社,2000,80-81.
    [83] SKW特罗斯特贝格股份公司.去除茶叶中咖啡因的方法[P].CN 86103112A,1986-10-29.
    [84] 通用食品公司.利用超临界流体脱除咖啡中咖啡因的方法[P].CN 1031549C,1996-04-17.
    [85] 王振锟.超临界多元流体加工茶叶的方法及产品[P].CN 1072446C,2001-10-10.
    [86] 张必桦,雍成树.茶叶综合利用及其产品开发途径[J].福建茶叶,2003,1:28-29.
    [87] 江西省绿色工业(集团)公司科研所专家组,茶色素(心脑健)实验研究和临床应用概述[J].现代诊断与治疗,1995,6:2~3
    [88] Roberts A. Effects of catechin concentration on the formation of black tea polyphenols during in vitro oxidation [J]. Phytochemistry, 1983, 22(4): 897-903
    [89] Opie S C, Robertson A, Clifford M N. Black Tea Thearubigin-their HPLC Separation and Preparation During In Vitro Oxidation [J]. J. Sci. Food Agric., 1990, 50:547-561
    [90] Opie S C, Clifford M N, Robertson A. The role of (-)-epicatechin and polyphenol oxidase in the coupled oxidative breakdown oftheaflavins [J]. J. Sci. Food Agic., 1993, 63(4): 435-438
    [91] 萧伟祥,钟瑾,胡耀武等.双液相系统酶化学技术制取茶色素[J].天然产物研究与开发,2001,13(5):49-52
    [92] 丁兆堂,王秀峰,于海宁等.茶多酚固定化酶体外氧化产物茶黄素组成及其化学发光分析[J].茶叶科学,2005,25(1):49-55
    [93] Roberts E.A.H., Cartwright R.A., Oldschool, M. The phenolic substances of manufactured tea. I.-fractionation and paper chromatogram- phy of water-soluble substances [J]. J. Sci. Food Agric. 1957, 8: 72-80.
    [94] Takino Y., Imagawa H., Horikawa H., Tanaka A. Studies on the mechanism of the oxidation of tea leaf catechins. Part Ⅲ. Formation of a reddish orange pigment and its spectral relationship to some benzotropolone derivatives [J]. Agricultural and Biological Chemistry, 1964, 28: 64-71.
    [95] Coxon D.T., Holmes A., Ollis W.D. Theaflavic and epitheaflavic acids [J]. Tetrah. Lett., 1970, 11: 5247-5250.
    [96] Collier P.D., Bryce T., Mallows R., Thomas P.E., Frost D.J., et al. The theaflavins of black tea [J]. Tetrah., 1973, 29: 125-142.
    [97] Nonaka G. I., Hashimoto F., Nishioka I. Tannins and related compounds. ⅩⅩⅩⅣ. Isolation and structures of theaflagallins, new red pigments from black tea [J]. Chem. Pharm. Bull. 1986, 34: 61-65.
    [98] Bailey R.G., Nursten H.E. The chemical oxidation of catechin and other phenolics: A study of the formation of black tea pigments [J].J Sci Food Agric , 1993, 63: 455-464.
    [99] 姚立虎,Harry E.Nursten.表儿茶素没食子酸酯及表没食子儿茶素没食子酸酯单体的化学氧化研究[J].食品与发酵工业,1997,23(5):21-25.
    [100] Wan X.C., Nursten H.E., Cai Y., et al. A new type of tea pigment from the chemical oxidation ofepicatechin gallate and isolated from tea [J].J Sci Food Agric, 1997,74: 401-408.
    [101] Chen, C.W., Ho, C.T. Antioxidant properties of polyphenols extracted from green and black teas [J]. J. Food Lipid, 1995(2):35-46
    [102] 崔文明,韩驰.茶色素防癌作用研究-体外短期试验[J].卫生研究,2002,31(4):314-315
    [103] Matsumoto N., Kchri T. Okushiok. Et al. Inhibitory effects of tea catechins, black tea extract and oolong tea extract on hepatocarcinogenesis in rat [J]. J. Cancer Res., 1996, 87(10): 1034-1038
    [104] Javed S., Mehrotra N. K., Shukla Y. Chemopreventive effects of black tea potyphenols in mouse skin model of carcinogenesis [J]. B iomed. Environ. Sci., 1998(11):307-313
    [105] Yang G.Y., Liu Z., Seril D.N. et al. Black tea constituents, theaflavins, inhibit 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice [J]. Carcinogenesis, 1997, 18:2361-2365
    [106] 李宁,韩驰,陈君石.茶对二甲基苯并蒽诱发金黄色地鼠口腔癌预防作用的研究[J].卫生研究,1999,28(5):289-292
    [107] Nomura M., Ma W.Y., Huang C. et al. Inhibition of ultraviolet B-induced AP-1 activation by theaflavins from black tea [J]. Molecular carcinogenis, 2000, 28(3): 148-155
    [108] Dong Z., Ma W., Huang C. et al. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins [J]. Cancer research, 1997, 57(19): 4414-4419
    [109] Nomura M., Ma W., Chen N. et al. Inhibition of 12-O-teradecanoylphorbol- 13-acetateinduced NF B activation by tea polyphenols, (-)-epigallocatechin gallate and theaflavins [J]. Carcinogenesis, 2000, 21(1): 1885-1890
    [110] Zhang G., Miura Y., Yagasaki K. Induction of apoptosis and cell cycle arrest in cancer cells by in vivo metabolites of teas [J]. Nutrition and Cancer, 2000, 38 (2): 265-273
    [111] Zhang G., Miura Y., Yagasaki K. Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity [J]. Cancer letters, 2000, 159(2): 169-173
    [112] 杜琪珍,江和源.茶色素的药理及应用[J].中国茶叶,1997,19(5):36-37
    [113] Apostolides Z., Balentine D. A., Karbowy M. E. et al. Inhibition of PhIP mutagenicity by catechins, and by theaflavins and gallate esters [J]. Mutation research, 1997, 389(2-3): 167-172
    [114] Masao H., Tomoc K. I., Tsuneo N. Dental caries prevention by traditional medicines xⅢ effect of tea polyphenols on gluean synthesis by glucosyltransfase for streptococcas mutans [J]. Chem. Pharm. Bull., 1990, 38(3): 717-720
    [115] Clark K.J., Grant P.G., Sarr A. B. et al. An in vitro study oftheaflavins extracted from black tea to neutralize be.vine rotavirus and bovine coronavirus infections [J]. Veterinary microbiology, 1998, 63(2-4): 147-157
    [116] Gomes A., Vedasiromori J.R., Das M. et al. Antihyperglycemic effect of black tea in rat [J]. Ethnopharmacology, 1995(45): 223-226
    [117] 孔凡真.茶色素的开发及应用前景[J].蚕桑茶叶通讯,1999,1:35
    [118] Pauling L.J. A Theory of the Structure and Process of Formation of antibodies [J]. J. Am. Chem. Soc, 1940, 62(3): 2643-2657
    [119] Wulff G., Sarhan A., Zabrocki K. Enzyme-Analogue Built Polymers and Their Use for the Resolution of Racemates [J]. Tetrahedron Letter, 1973, 4329-4332.
    [120] 赖家平,何锡文,郭洪声,等.分子印迹技术的回顾、现状与展望[J].分析化学研究报告,2001,29(7):836-844.
    [121] Norrlow O., Glad M., Mosbach K..Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates [J]. J Chromatogr, 1984,299:29-41
    [122] Mayes A.G., Mosbach K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase [J].Anal. Chem., 1996,68:3769-3774
    [123] Hosoya K., Yoshizako K., Shirasu Y., et al.. Molecularly imprinted uniform size polymerbased stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition [J]. J Chromatogr. A, 1996, 728: 139-147
    [124] Ansell R.J., Mosbach K. Molecularly imprinted polymers by suspension polymerization in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent [J]. Journal of Chromatography A, 1997, 787: 55-66
    [125] Sellergren B. Imprinting dispersion polymers: a new class of easily accessible affinity stationary phases [J]. J. Chromatography A, 1994,673(1): 133-141
    [l26]Surugiu I., Ye L.,Yilmaz E.,et al. An enzyme-linked molecularly imprinted sorbent assay [J].Analyst,2000,125( 1): 13-16
    [127] Kriz D., Ramstrom O., Svensson A., et al.. Introducing biomimetic sensors based on molecularly imprinted polymers as recognition elements [J]. Anal.Chem., 1995,67:2142-2144
    [128] Kobayashi T., Wang H.Y.,Fujii N.. Molecular imprint membranes of polyacrylonitrile copolymers with different acrylic acid segments [J]. Anal.Chim.Acta., 1998,365:81-88
    [129] Spurlock L.D., Jaramillo A., Praserthdam A., et al. Selectivity and sensitivity of ultrathin purine templated overoxidized polypyrrole film electrodes [J]. Anal.Chim. Acta., 1996,336:37-46
    [ 130] Mayes, A.G., Andersson L.I., Mosbach K. Sugar binding polymers showing high anomeric and epimeric discrimination obtained by non-covalent molecular imprinting. Anal.Biochem.,1994, 222: 483-488
    [131] Wulff G., Schauhof S. Racemic Resolution of Free Sugars with Macroporous Polymers Prepared by Molecular Imprinting. Selectivity Dependence on the Arrangement of Functional Groups versus Spatial Requirements [J]. J.Org.Chem.,1991, 56(1): 395-400
    [132] Hamase K., K.Iwashita, K.Zaitsu. Enantio-Selective Derivatization of Amino Compounds in the Presence of a Molecular Imprint Polymer [J]. Anal.Sci.,1999, 15(5):411-412
    [133] Andersson L., Sellergren B., Mosbach K. Imprinting of Amino Acid Derivatives in Macroporous Polymers [J]. Tetrahed.Lett.,1984, 25(45): 5211-5214
    [134] Lee H.S., Hong J. Chiral and electrokinetic separation of amino acids using polypyrrole-coated adsorbents. J.Chromatogr.A, 2000, 868(2): 189-196.
    [135]Giraudi G., Giovannoli C, Tozzi C.,Baggiani C.Anfossi L. Molecular recognition properties of peptide mixtures obtained by polymerization of amino acids in the presence of estradiol [J]. Anal.Chim.Acta,2003, 481: 41-53
    [136] Makote R., M.M.Collinson. Dopamine Recognition in Templated Silicate Films [J]. Chem.Comm., 1998,(3): 425- 426.
    [137] Peng H., Liang C, Zhou A., et al. Development of a new atropine sulfate bulk acoustic wave sensor based on a Molecular by imprinted electrosynthesized copolymer of aniline with o-phenylenediamine [J]. Anal.Chim.Acta, 2000, 423(2):221-228
    [138] Hwang C.C.; Lee W.C. Chromategraphic resolution of the enantiomers of phenylpropanolamine by using molecularly imprinted polymer as the stationary phase [J]. J. Chromatogr. B, 2001,765(1): 45-53
    [139] Tong A.J., Dong H., Li L.D. Molecular imprinting-based fluorescent chemosensor for histamine using zincII-protoporphyrin as a functional monomer [J]. Anal.Chim.Acta,2002, 466: 31-37
    [140] Spivak D., Shea K.J. Molecular Imprinting of Carboxylic Acids Employing Novel Functional Macroporous Polymers [J]. J. Org.Chem., 1999, 64(13):4627-4634
    [141] Idziak I., Gravel D., Zhu X. Polymer-catalyzed aminolysis of covalently imprinted cholic acid derivative [J]. Tetrahedron Letter, 1999,40(52): 9167-9170
    [142] Yoshikawa M., Izumi J., Guiver M.D., Robertson G.P. Recognition and selective transport of nucleic acid components through molecularly imprinted polymeric membranes [J]. Macromol. Mater.Eng.,2001, 286(1): 52-59
    [143] Chen Z.D., Nagaoka T., Recognition of vitamin K-1 with a molecularly imprinted selfassembled monolayer film [J]. Bunseki Kagaku.,2000, 49(7): 543-545
    [144] Shi H.Q., Rather B.D. Template recognition of protein-imprinted polymer surfaces [J]. J.Biomed.Mater.Res., 2000, 49(1): 1-11.
    [145] Vlatakis G.,Andersson L.I., Miller R., Mosbach K. Drug assay using antibody mimics made by molecular imprinting [J]. Nature,1993, 361:645-647
    [146] 郭洪声,何锡文,邓昌辉,等.药物扑热息痛分子印迹聚合物的选择性富集与识别特性研究[J].高等化学学报,2000,21(3):363-367.
    [147] Umeno D., Kawasaki M., Maeda M. Imprinting of proteins on polymer-coated DNA for separation with enhanced selectivity [J]. ACS Symp.Ser., 1998,703:202-216.
    [148] Hjerten S., Liao J.L., Nakazato K., et al.Gels mimicking antibodies in their selective recognition of proteins [J]. Chromatographia, 1997, 44:227-234
    [149] 王进防,周良模,刘学良,王海清,朱道乾.三元交联剂分子烙印手性固定相[J].分析化学研究简报,2000,28(10):1224-1228.
    [150] Kempe M. Antibody-mimicking polymers as chrial stationary phase in HPLC [J]. Anal.Chem., 1996, 68(11):1948-1953
    [151] Piletsky S.A., Alcock S., Turner A. Molecular imprinting: at the edge of the third millennium [J]. Trends in Biotechnology,2001, 19(1): 9-12
    [152] Sellergren B., Karmalkar R.N., Shea K.J. Enantioselective ester hydrolysis catalyzed by imprinted polymers [J]. Journal of Organic Chemistry,2000, 65(13): 4009 -4027
    
    [153] Strikovsky A.G., Kasper D., Grun M., et al. Catalytic molecularly imprinted polymers using conventional bulk polymerization or suspension polymerization: Selective hydrolysis of diphenyl carbonate and diphenyl carbamate [J]. Journal of the American Chemical Society,2000,122(26): 6295-6296
    
    [154] Cammidge A.N., Baines N.J., Bellingham R. K.Synthesis of heterogeneous palladium catalyst assemblies by molecular imprinting [J]. Chemical Communications,2001,24: 2588-2589
    
    [155] Haupt K. Imprinted polymers-tailor-made mimics of antibodies and receptors [J]. Chemical Communications,2003,2:171-178
    
    [156] Wulff G. Enzyme-like Catalysis by Molecularly Imprinted Polymers [J]. Chemical Reviews, 2002, 102(1): 1-28
    
    [157] Matsui J., Fujiwara K., Takeuchi T. Atrazine-selective polymers prepared by molecular imprinting of trialkylmelamines as dummy template species of atrazine [J]. Analytical Chemistry, 2000,72(8): 1810-1813
    
    [158] Kugimiya A., Takeuchi T. Application of indoleacetic acid-imprinted polymer to solid phase extraction [J]. Analytical Chimica Acta,1999, 395(3):251-255
    
    [159] Pichon V. Environmental sample treatment: Evolution and perspectives [J]. Analusis, 1997, 25: 101-106
    
    [160] Rashid B.A, Briggs R.J., Hay J.N., et al. Preliminary evalution of a molecular imprinted polymer for solid-phase extraction of tamoxifen [J]. Analytical Communications, 1997,34(10): 303-305
    
    [161] Sellergren B. Direct drug determination by selective sample enrichment on an imprinted polymer [J]. Analytical Chemistry,1994, 66(9): 1578-1582
    
    [162] Nicholls I. A., Ramstrvm O., Mosbach K. Insights into the role of the hydrogen bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide mimics [J].Journal of Chromatography A,1995,691(1-2):349-353
    
    [163] Svec F., Frechet J.M.T. Continuous rods of macroporous polymer as high performance liquid chromatography separation media [J].Analytical Chemistry, 1992, 64(7): 820 -822
    
    [164] Patrick T., Vincent V., Remcho T. Highly selective separations by capillary electro- chromatography: molecular imprint polymer sorbents [J]. Journal of Chromatography A.2000, 887(1-2): 125-135
    [165] Piletsky S.A., Piletska E.V., Chen B., et al. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates .Application of artificial adrenergic receptor in enzyme-linked assay for p-agonists determination. Analytical Chemistry,2000, 72(18):4381-4385
    [166] fgbal S.S., Lulka M.F., Chambers J.P., et al. Artificial receptors: molecular imprints discern closely related toxins [J]. Materials Science and Engineering:C,2000, 7(2): 77-81
    [167] Wulff G. M olecular imprinting in cross-linked materials with the aid of molecular ternplates-a way towards artificial antibodies [J]. Angewandte Chemie Internet Edition in English, 1995, 34: 1812-1832
    [168] Haupt K., Mosbach K. Plastic antibodies: developments and applications [J]. Tibtech,1998, 15(11): 468-475
    [169] Lorenzo CA., Concheiro A. Molecularly imprinted polymers for drug delivery [J]. Journal of Chromatography B: Biomedical Sciences and Applicatioins,2004, 804(1): 231 -245
    [170] Allender C.J., Brain K.R., Heard CM. Molecularly imprinted polymers preparation, biomedical applications and technical challenges [J]. Progress in Medicinal Chemistry, 1999, 36: 235-291
    [171] Andersson L.I., Mtiller R., Vlatakis G., et al. Mimic of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine. Proceeding of the National Academy of Sciences U.S.A.,1995, 92(11): 4788-4792
    [172] W .E. Hennink, van Nostrum CF. Novel crosslinking methods to design hydrogels [J]. Advanced Drug Delivery Reviews, 2002, 54(1): 13-36
    [173] Striegler S. Selective Carbohydrate recognition by synthetic receptors in aqueous solution [J]. Current Organic Chemistry..2003,7(1): 81-102
    [174] Tabushi I., Kurihara K., Naka K., et al. Supramolecular sensor based on SnO_2 electrode modified with octadecylsilyl monolayer having molecular binding sites [J]. Tetrahedron Letters,1987, 28(37):4299-4302
    [175] Y.Murakami, J.Kikuchi.Y.Hisaeda, et al., Artificial Enzymes [J], Chem. Rev., 1996,96: 722-758
    [176] W.B. otherwel, M.J.Binham and Y. Six, Recent Progress in the Design and Synthesis of Artificial Enzymes [J].Tetrahedron,2001,57:4663-4686
    [177] B.Meunier. Metalloporphyrin as Versatile Catalysts for Oxidation and Oxidative DNt Cleavage [J].Chem.Rev. 1992, 92:1411-1456
    [178] 操锋,任勇,华维一,马坤芳,郭寅龙.利用人工模拟酶环糊精催化羧酸酯水解反应的研究进展[J].有机化学,2002,22(11):827-834
    [179] T.N.Sorrel. Synthetic Models for Binuclear Copper Proteins [J]. Tetrahedron, 1989,43:3—46
    [180] J.V.Dagdigian, Reed. A New Series of Imidazole Thioetber Chelating Ligands for Bioinorganic Copper [J]. Inorg.Chem., 1979,18:2623—2626
    [181] 郭奇珍,陈明德.仿生化学[M],化学工业出版社,北京,1990:16-53
    [182] 李早英,张悦宁,朱训进,冯清.新型金属卟啉的合成及其仿酶活性研究[J].高等学校化学学报,2002,23(5):756-762
    [183] Crestini C., Pastorini A., Tagliatesta P. Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds [J].2004,208(1-2): 195-202
    [184] Liang J., Liu Z.H., Cai R.X. A Novel Method for Determination of Peroxynitrite Based on Hemoglobin Catalyzed Reaction [J]. Anal.Chim.Acta, 2005,530(2): 317-324
    [185] Fujii H., Yoshimura T., Kamada H. Imidazole and p-nitrophenolate complexes of oxoiron(Ⅳ) porphyrin pi-cation radicals as models for compounds Ⅰ ofperoxidase and catalase [J]. Inorganic Chemistry, 1997, 36(27): 6142-6143
    [186] Liu X.C., Mosbach K. Catalysis of benzisoxazole isomerization by molecularly imprinted polymers [J]. Macromol.Rapid Commun.,1998, 19:671-674
    [187] Morihara K., Kurokawa M., Kamata Y., Shimada T. Enzyme-like enantioselective catalysis over chiral 'molecular footprint' cavities on a silica (alumina) gel surface [J]. J.Chem.Soc., Chem. Commun., 1992, (4): 358-360
    [188] Toorisaka E., Uezu K., Goto M., et al. A molecular imprinted polymer that shows enzymatic activity[J]. Biochemical Engineering Journal,2003, 14(2): 85-91
    [189] Ohkuho K., Urata Y., Hirota S., Honda Y., Fujishita Y., Sagawa T. Homogeneous esterolytic catalysis of a polymer prepared by molecular imprinting of a transition state analog. J.Mol.Catal.,1994, 93:189-193
    [190] Ohkubo K., Urata Y., Hirota S., Funakoshi Y., Sagawa T., Usui S., Yoshinaga K. Catalytic actMties of novel L-histidyl group-introduced polymers imprinted by a transition state analog in the hydrolysis of amino acid esters [J]. J.Mol.Catal.A: Chemical,1995, 101:L111-L114
    [191] Strikovsky A.G., Kaspar D., Grun M., Hradil J., Green B.S., Wulff G. Catalytic molecularly imprinted polymers using convertional bulk polymerzation or suspersion polymerzation:selective hydrolysis of diphenyl carbonate and diphenyl carbomate [J]. J.Am.Chem.Soc., 2000, 122(26): 6295-6296
    [192] Strikovsky A., Hradil J., Wulff G. Catalytically active, molecularly imprinted polymers in bead form [J]. React.Funct.Polym.,2003, 54 (1-3): 49-61
    [193] Mayes A.G. in Molecularly Imprinted Polymers-Man-Made Mimics &Antibodies and Their Application in Analytical Chemistry (ed. Sellergren B). Amsterdam: Elsevier,2001:305-324
    [194] Liu X.C., Mosbach K. Studies towards a tailor-made catalyst for the Diels-Alder reaction using the technique of molecular imprinting [J]. Macromol.Rapid Commun., 1997,18:609-615
    [195] Matsui J., Nicholls I. A., Karube I., Mosbach K. Carbon-carbon bond formation using substrate selective catalytic polymers prepared by molecular imprinting [J]. J.Org.Chem.,1996,61 (16): 5414-5417
    [196] 梅光泉,田亚平,方允中,罗勤慧.若干锰(Ⅱ)配合物的合成及其清除活性氧效能的研究[J].无机化学学报,2002,18(4):357-361
    [197] 唐波,刘阳,唐晓玲.SDS-Schiff碱铜(Ⅱ)配合物模拟酶催化光度法研究[J].高等学校化学学报,2001,22(6):919-921
    [198] Tang B., Yue T,X., Du M.. WANG Y., CHEN Z.Z., WANG H.J. Study and application of HRP-like catalyst copper 2-hydroxy-1-naphthaldehyde-2- aminothiazole [Cu~Ⅱ-(HNATS)_2] [J].Polish Journal of Chemistry,2002, 76(11): 1527-1535
    [199] 张建军,罗勤慧.木质素酶及其化学模拟的研究进展[J].化学通报,2001,64(8):470-477
    [200] Mohajer D., Rezaeifard A. Efficient oxygenation of hydrocarbons with tetrabutylammonium monopersulfate catalyzed by manganese meso-tetra- phenylporphyrin in the presence of imidazole [J]. Tetrahedron Letter, 2002, 43(10): 1881-1884
    [201] Mukherjee S., Weyhermuller T., Bothe E., Wieghardt K., Chaudhuri P. Dinuclear and mononuclear manganese(Ⅳ)-radical complexes and their catalytic catecholase activity [J]. Dalton transactions, 2004, 22:3842-3853
    [202] Harrison C.R., Hodge P. Preparation of a Polymer-supported Per-acid and its Use to Oxidize Olefins to Epoxides [J]. J. Chem. Soc., Chem. Commun. 1974, 1009-1010
    [203] Frechet J.M.J., Haque K.E. Polymeric Reagents. Preparation of Resins containing Polyvinylperbenzoic Acid Unils [J]. Macromolecules, 1975, 8(2): 130-134.
    [204] Harrison C.R., Hodge P. Oxidation of Some Penicillins and Other Sulphides by Use of a Polymer-supported Peroxy-acid [J]. J. Chem. Soc., Perkin Trans 1. 1976, 21:2252-2254
    [205] Jacobson S. E., Mares F., Zambri P. M. Biphase and Triphase Catalysis. Arsonated Polystyrenes as Catalysts for Epoxidation of Olefins by Aqeuous Hydrogen Peroxide [J]. J. Am. Chem. Soc., 1979, 101(23): 6946-6950
    [206] Mackie R. K., Smith D. M. Guide book to Org. Synth [M]. New York: Academic, 1988
    [207] Taylor R.T., Flood L.A. Polystyrene-bound phenylseleninic acid: catalytic oxidations of olefins, ketones, and aromatic systems [J]. J. Org. Chem. 1983,48(26): 5160-5164 [208] Climent M.S., Marinas J.M., Sinisterra J.V. Oxidising supported reagents. II. Influence of the chemical and textural properties of the potassium dichromate supported reagents on the oxidation of menthol [J]. Tetrahedron, 1988,44(10): 2963-2968
    [209] Frechet J.M.J., Warnock J., Farrall MJ. Polymeric Reagents III. Poly(vinyl pyridinium chlorochromate): a new Recyclable Oxidizing Agent [J], J. Org. Chem., 1978, 43(13): 2618-2621.
    [210] Frechet J.M.J., Darling P., Farrall M.J. Poly(vinyl pyridinium dichromate): an Inexpensive Recyclable Polymeric Reagent [J]. J. Org. Chem., 1981,46(8), 1728-1730.
    [211] Tamami B., Hatam M., Mohadjer D. Polymeric reagent I: Polymer supported silver dichromate complex as an oxidizing agent [J]. Polymer bulletin, 1989, 21(5): 531-533.
    [212] Crosby G. A., Weinshenker N. M., Uh U.S. Polymeric reagents III. Synthesis of an insoluble polymeric thioanisole and its utilization for the oxidation of alcohols [J]. J. Am. Chem. Soc, 1975, 97(8): 2232-2235
    [213] Crosby G.A., Kato M. The utilization of a polymeric phenylthiomethyllithium reagent for the homologation of alkyl iodides and its application for the study of intraresin reactions of polymer-bound functional groups [J]. J. Am. Chem. Soc, 1977, 99(1): 278-280.
    [214] Harrison C.R., Hodge P. Polymer-supported periodate and iodate as oxidizing agents [J]. J. Chem. Soc, Perkin Trans 1, 1982 (2): 509-511
    [215] Cainelli G., Conento M., Manescalchi F., Plessi L. Cleavage of Olefins by Polymer-Supported Osmium Tetroxide and Sodium Periodate [J]. Synthesis, 1989, 1: 47-48
    [216] Sket B., Zupan M., Zupet P. Role of the polymer backbone on the reactivity of polymer-supported (dichloroiodo)benzene [J]. Tetrahedron, 1984, 40(9): 1603-1606
    [217] Yoshida J., Nakai R., Kawabata N. Novel Method of Oxidation by a Polymeric Reagent Electrochemically Generated and Recycled in Situ. Facile Oxidation of Alcohols [J]. J. Org. Chem., 1980, 45(26): 5269-5273.
    [218] Yoshida J., Hashimoto J., Kawabata N. Epoxidation of Olefins by a Polymeric Reagent Electrochemically Generated and Recycled in Situ [J]. J. Org. Chem., 1982, 47(18): 3575-3577.
    [219] Yoshida J., Ogura K., KawabataN. Electrolytic Side Chain Oxidation of Alkylbenzenes Using Polymeric Electron Carrier [J]. J. Org. Chem., 1984, 49 (18), 3419-3421.
    [1] 汪小钢,萧伟祥.超临界CO_2提取茶叶中咖啡碱[J],茶叶科学,1998,18(1):65—69
    [2] 朱旗,施兆鹏,任春梅.茶叶咖啡碱提取分离工艺研究现状[J],茶叶通讯,1999,1:17—20
    [3] 周志,汪兴平,莫开菊,张家年.茶叶咖啡碱分离提取新技术研究[J],食品科学,2002,23(8):105—107
    [4] The Merk Index,12th ed.; Merk & Co.,Inc.:Whitehouse Sta- tion,NJ,1996;pp 268.
    [5] Matthew A.Z., Anthony G.Z., Mark G.K.,et al. A novel method of caffeine synthesis from uracil [J]. Synth. Commun. 2003,33:3291—3297.
    [6] Ashihara H., Gillies F.M., Crozier A. Metabolism of caffeine and related purine alkaloids in leaves of tea. (Cam illia sinensis L.) [J]. Plant Cell Physiol. 1997,38:413—419.
    [7] Ashihara H., Monteiro A.M., Gillies F.M., et al. Biosynthesis of caffeine in leaves of coffee [J].Plant Physiol., 1996,111: 747—753.
    [8] Demain A.L. Small bugs, big business:The economic power of the microbe [J]. Biotechnol. Adv. 2000,18(6): 499—514.
    [9] 吴振坤.健康与红茶茵[M].北京:科学技术出版社,1982
    [10] Liu Chi-Hsein, Liao Chii-cherng. Effects of production condition on 2-stage fermentation of Haipao [J]. Food Sci. Agric. Chem., 1999, 1(3): 210-214
    [11] 江洁,王艳杰,姚再庆.以淀粉糖为主料,茶为辅料乳酸发酵饮料的研究[J].齐齐哈尔大学学报,2001,17(2):6-8
    [12] 邹礼根,丁玉庭,陈艳.微生物在发酵茶饮料中的应用[J].食品工业科技,2004,1:142-144
    [13] 尹旭敏,王雪萍,姜波,齐桂年.茶叶加工中微生物的研究进展[J].乐山师范学院学报,2005,20(12):78-80
    [14] Y.Y.Tu, H.L.Xia,N.Watanabe.Changes in Catechins during the Fermentation of Green Tea [J].Applied Biochemistry and Microbiology,2005,41(6):574-577
    [15] R.Jayabalan, S.Marimuthu, K.Swaminathan. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation [J]. Food Chemistry,2007,102:392-398
    [16] 杨抚林等,黑茶微生物学研究进展,微生物学杂志,2006,26(1):81-84
    [17] 马静等,黑茶加工中微生物鉴定研究进展,中国茶叶,2001,2:12-13
    [18] 蒋积祝子等,黑茶制造过程中化学成分的变化,国外农学茶叶,1984,4:23—25
    [19] 何国藩等,广东普洱茶沤堆过程咖啡碱和茶多酚含量变化及其饮效,中国茶叶,1986,5:8—9
    [20] 王增盛等,黑茶初制中主要含氮化合物的变化,茶叶科学,1991,11(增刊):29—33
    [21] Misako kato;Kouichi Mizuno;et al. Purification and Characterization of Caffeine Synthase from Tea Leaves. Plant Physiology, 1999, 120,579-586.
    [22] Conrad, A.; Mark, R. B.; Clive, D.; Pillip, G. H.; et al. Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J. Agric. Food Chem. 2001, 4: 5340-5347.
    [1] Smith P.F., Smith A., Miners J., et al. The safety aspects of dietary caffeine [R]. Australia: Report from the expert working group. 2000, 20-23.
    [2] Rachima-Maoz C., Peleg E., Rosenthal T. The effect of caffeine on ambulatory blood pressure in hypertensive patients[J]. Am J Hypertens, 1998,11 (12): 1426-1432.
    [3] 吴小崇.热水浸提法生产低咖啡因绿茶[J].中国茶叶,1994,2:2-3
    [4] 郭玉良,胡熙恩.氯仿萃取咖啡劳因的传质研究[J].清华大学学报(自然科学版),2003,43(10):1317-1320
    [5] 汪小钢,萧伟祥.超临界CO_2提取茶叶中咖啡碱[J].茶叶科学,1998,18(1):65-69
    [6] 岳鹏翔,吴守一.用超临界CO2脱除绿茶中咖啡碱的试验研究[J].茶叶科学,2002,22(2):131-134
    [7] 韩佳宾,陈静,王静康,封顺祥.超临界二氧化碳萃取咖啡因的研究进展[J].现代化工,2003,23(3):25-27
    [8] 李拥军.茶叶脱咖啡碱方法综述[J].湖南农业大学学报,1998,24(3):254-258
    [9] Fairhurst R.E., Chassaing C., Venn R.F., Mayes A.G. A direct comparison of the performance of ground,beaded and silica-grafted MIPs in HPLC and Turbulent Flow Chromatography applications [J].Biosens. Bioelectron,2004,20(6): 1098-1105.
    [10] Ferrer I.,Lanza F., Antal T. Selective trace enrichment of chloro- triazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers [J]. Anal Chem.,2000,72 (19): 3934-3941.
    [11] Wulff G. Enzyme-like catalysis by molecularly imprinted polymers [J]. Chem Rev,2002,102(1): 1-28.
    [12] Tan Y., Yin J., Liang C., Peng H., et al. A study of a new Tsm biomimetic sensor using a molecularly imprinted polymer coating and its application for the determination of nicotine in human serum and urine [J]. B ioelectro- chem.2001, 53(2): 141-148.
    [13] Ma J., Wang X., Yang C. Application of molecularly imprinted polymers in separation of chiral drugs and determination of medicines [J]. Chem Ind Time,2004,18(1): 5-8.
    [14] Crescenzi C., Bayouth S., Cormack P.A.G. Determination of clenbuterol in bovine liver by combining matrix solid-phase dispersion and molecularly imprinted solid-phase extraction followed by liquid chromatography/electrospray ion trap multiple-stage mass spectrometry [J]. Anal Chem, 2001, 73(10): 2171-2177.
    [15] Wang H.Y., Kobayashi T., Fufii N. Surface molecular imprinting on photosensitive dithiocarbamoyl polyacrylonitrile membrane using photograft polymerization [J]. J.Chem. Technol.Biotechnol, 1997, 70(4): 355-362
    [16] Kobayashi T., Wang H.Y., Fufii N. Molecular imprint membranes of polyacrylonitrile copolymers with different acrylic acid segments [J]. Anal Chim Acta, 1998, 365(1-3): 81-88.
    [17] Wang H.Y., Kobayashi T., Fukaya T.et al. Molecular imprint membranes prepared by the phase inversion technique.(2)Influence of coagulation temperature in the phase inversion process on the encoding in polymeric membranes[J].Langmuir,1997,13(20):5396-5400.
    [18] Mullett W.M., Lai E.P.C. Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution [J]. Anal.Chem., 1998,70(17):3636-3641
    [19] 苏立强,刘学良,王俊德,商振华.分子烙印聚合物固定相分离咖啡因和茶碱的研究[J].高等学校化学学报,2001,22(7):1122-1124
    [20] Liang C.D., Peng H., Bao X.Y., et al. Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determina-tion of caffeine in human serum and urine [J]. Analyst,1999,124:1781-1785
    [21] Hong J.M. Separation of Chemically Similar Molecules by Molecular Recognition [J]. J.Ind. Eng.Chem.(Seoul), 1998,4(3):226-230
    [22] Lai E.P.C., Fafara A., Noot V.A.V., et al. Sensors using molecularly imprinted polymers for sorbent assay of theophylline,caffeine and xanthine[J]. Can J Chem,1998, 76(3):265-273
    [23] 颜流水,王宗花,罗国安,王义明.分子印迹毛细管整体柱液相色谱法测定咖啡因[J].分析化学,2004,32(2):148-152
    [24] 郑细鸣,涂伟萍.分子印迹聚合物微球的粒径尺寸及分布[J].化工时刊,2004,18(6):12-15
    [25] Lai J.P., Lu X.Y., Lu C.Y., et al. Preparation and evaluation of molecularly imprinted polymeric microspheres by aqueous suspension polymerization for use as a high-performance liquid chromatography stationary phase[J].Anal Chim Acta,2001,442(1):105-111.
    [26] 赖家平,卢春阳,何锡文.水溶液微悬浮聚合法制备酸性药物吲哚美辛分子印迹微球及其色谱表征[J].高等学校化学学报,2003,24(7):1175-1179
    [27] 高崑玉编著.色谱法在精细化工中的应用[M].北京:中国石化出版社,1997,319-320
    [1] Yamamoto T., Lewis J., Wataha J., Dickinson D., et al. Roles of catalase and hydrogen peroxide in green tea polyphenol-induced chemopreventive effects [J]. J Pharmacol Exp Ther, 2004, 308(1): 317-323
    [2] Zhen-Yu Chen, Qin Yah Zhu, David Tsang and Yu Huang. Degradation of green tea catechins in tea drinks [J]. J. Agric. Food Chem. 2001, 49:477-482
    [3] Ikeda I., Kobayashi M., Hamada T., Tsuda K., Goto H., et al. Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate [J]. J. Agric. Food Chem., 2003, 51: 7303-7307
    [4] Yasuo S., Mamoru I. Inhibitory Effect of Epigallocatechin Gallate on binding of Murine Melanoma Cells to Laminin [J]. Cancer letters, 2001,173:15-20
    [5] Zhang Q., Wei D., Liu J. In vivo reversal of doxorubicin resistance by (-)-epigallocatechin gallate in a solid human carcinoma xenograft [J]. Cancer Letters, 2004, 208: 179-186.
    [6] 李奕,曹进.表没食子儿茶素没食子酸酯抗白血病的分子机制[J].国外医学—医学地理分册,2004,25(4):178-181.
    [7] Kim H.C., Chang E.J., Munk C. Effects of Epigallocatechin Gallate on the Hemolysis Induced by Cyclosporine [J]. Transplantation Proceedings,2005,37(5): 2385-2386
    [8] 钟世安,周春山,杨娟玉.高效液相色谱法分离纯化酯型儿茶素的研究[J].化学世界,2003,(5):237-240
    [9] 戚向阳,谢笔钧,胡慰望.高纯度表没食子儿茶素没食子酸酯(EGCG)的分离与制备[J].精细化工,1994,11(4):40-46.
    [10] 唐德松,沈生荣.儿茶素的富集及单体分离研究进展[J].茶叶,2003,29(3):136-138
    [11] 王洪新,戴军,等.茶叶儿茶素单体的分离纯化及鉴定[J].无锡轻工大学学报,2001,20(2):117-121
    [12] 王霞,高丽娟,林炳昌.表没食子儿茶素没食子酸酯(EGCG)的分离与制备[J].食品科学,2005,26(9):242-246
    [13] Haupt K., Dzgoev A., Mosbach K. Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element [J]. Anal Chem, 1998,70(3): 628-631
    [14] Olsen J., Martin P., Wilson I.D., et al. Methodology for assessing the properties of molecular imprinted polymers for solid phase extraction [J]. Analyst, 1999, 124(4): 467-471
    [15] Sellergren B. Direct drug determination by selective sample enrichment on an imprinted polymer [J]. Anal Chom, 1994, 66(7): 1578-1582
    [16] Walshe M., Howarth J., Kelly M.T. The preparation of a molecular imprinted polymer to 7-hydroxycoumarin and its use as a solid-phase extraction material [J]. J Pharm Biomed Anal, 1997, 16(2):319-325
    [17] Mullett W.M., Lai E.P.C. Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution [J]. Anal Chem, 1998, 70(17): 3636-3641
    [18] Rashid B.A., Briggs R.J., Hay J.N., et al. Preliminary evaluation of a molecular imprinted polymer for solid-phase extraction of tamoxifen [J]. Anal Commun, 1997, 34(10): 303-305
    [19] Moldoon M., Stanker L.H. Molecularly imprinted solid-phase extraction of atrazine from beef liver extracts [J]. Anal Chem, 1997, 69(3): 803-808
    [20] Matsui J., Okada M., Tsoruoka M., et al. Solid-phase extraction of atrazine herbicide using a molecularly imprinted synthetic receptor[J]. Anal Commun, 1997, 34(3): 85-87
    [21] Zander A., Findlay P., Renner T., et al. Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid-phase extraction [J]. Anal Chem, 1998, 70(15): 3304-3314
    [22] Xie J.C., Zhu L.L., Xu X.J. Direct Extraction of Specific Pharmacophoric Flavonuids from Gingko leaves using a molecularly imprinted polymer for quercetin [J]. J. Chromatogr. A,2001, 934(1-2): 1-11
    [23] Molinelli A., Weiss R., Mizaikoff B. Advanced Solid Phase Extraction Using Molecularly Imprinted Polymers for the Determination of Quercetin in Red Wine [J].J. Agric. Food Chem. 2002,50:1804-1808
    [24] Xie J., Chert L., Li C., Xu X. J. Selective extraction of functional components derived from herb in plasma by using a molecularly imprinted polymer based on 2,2-bis(hydroxymethyl) butanol trimethacrylate [J]. Chromatogr. B, 2003,788(2): 233-242
    [25] Zhu L., Xu X. Selective separation of active inhibitors of epidermal growth factor receptor from Caragana Jubata by molecularly imprinted solid-phase extraction [J]. J. Chromatogr. A, 2003,991:151-158
    [26] Suarez-Rodriguez J. L., Diaz-Garcia M.E. Flavonol fluorescent flow-through sensing based on a molecular imprinted polymer [J]. Anal Chim Acta, 2000, 405:67-76
    [27] Weiss R., Molinelli A., Jakusch M., Mizaikoff B. Molecular imprinting and solid phase extraction of flavonoid compounds [J]. Bioseparation, 2001, 10(6): 379-387
    [28] 颜流水,井晶,,黄智敏,温振东,刘凤涛.槲皮素分子印迹聚合物的制备及固相萃取性能研究[J].分析试验室,2006,25(5):97-100
    [29] Blahova E., Lehotay J., Skacani I. The Use of Molecularly Imprinted Polymer for Selective Extraction of (+)-Catechin [J]. J. Liq. Chromatogr. Rel. Technol., 2004, 27(17): 2715-2731
    [30] 雷启福,钟世安,向海艳,周春山,于典.儿茶素活性成分分子印迹聚合物的分子识别特性及固相萃取研究[J].分析化学,2005,33(6):857-860
    [1] 宛晓春,李大祥,夏涛.茶色素及其药理学功能[J].天然产物研究与开发,2001,13(4):65-70
    [2] Collier P.D., Mallows R., Korver O., et al. The theaflavins of black tea [J].Tetrahedon,1973, 29:125-142
    [3] Crispin D.J. The separation of theaflavins on sephadex LH-20 [J]. J.Chromatogr,1971, 54:133-135
    [4] Lea A.G.H. The separation of theaflavins on sephadex LH-20 [J]. J Chromatogr,1968, 37:118
    [5] Qizhen Du, Heyuan Jiang, Yoichiro Ito. Separation of theaflavins of black tea: High-speed counter current chromatography vs. sephadex LH-20 gel column chromatography [J]. Journal of Liquid Chromatography and Related Technologies,2001,24(15): 2363-2369
    [6] Degenhardt A., Engelhardt U.H., Wendt A.S., et al. Isolation of black tea pigments using high-speed counter current chromatography and studies on properties of black tea polymers [J]. Journal of Agricultural and Food Chemistry,2000,48(11):5200-5205
    [7] 李大祥,宛晓春,夏涛.茶色素的制备和化学成分分析[J].卫生研究,2004,33(6):698-700
    [8] E.A.H. Roberts. The phenolic substances of manufactured tea Ⅱ-their origin as enzymatic oxidation products in fermentation[J]. J sci Food Agric, 1958,4(9): 212-216.
    [9] 夏涛,童启庆,萧伟祥.影响悬浮发酵红茶色素形成的因素[J].安徽农业科学,1999,7(5):520-521.
    [10] Berkowitz J.E., Coggon P., Sanderson G.W. Formation of epitheaflavic acid and its transformation to thearubigins during tea fermentation [J]. Phytochemistry, 1971,10:2271-2278
    [11] Margaret A. Dix, Charles J.Fairley, David J. Millin, Derwent Swaine. Fermentation of tea in Aqueous. Influence of Tea Peroxidase [J]. J.Sci.Food Agric., 1981, 32(9): 920-932
    [12] Robertson A., Bendall D.S. Production and HPLC analysis of black tea theaflavins and thearubgins [J]. Phytochemistry, 1983, 22(4): 883-887
    [13] OPIE S. C., CLIFFORD M. N., ROBERTSON A. The role of (-)-epicatechin and polyphenol oxidase in the coupled oxidative breakdown of theaflavins [J]. J. Sci. Food Agric., 1993, 63(4): 435-438
    [14] Opie S. C., Clifford M. N., Robertson A. The formation of thearubigin-like substances by in-vitro polyphenol oxidase-mediated fermentation of individual flavan-3-ols [J]. J. Sci. Food Agric., 1995, 67(4): 501-505
    [15] 丁兆堂,王秀峰,于海宁,沈生荣.茶多酚固定化酶体外氧化产物茶黄素组成及其化学发光分析[J].茶叶科学,2005,25(1):49-55
    [16] You-Ying Tu, Xin-Qing Xu, Hui-Long Xia, Naoharu Watanabe. Optimization of theaflavin biosynthesis from tea polyphenols using an immobilized enzyme system and response surface methodology [J]. Biotechnology Letters, 2005, 27:269-274
    [17] 屠幼英,方青,梁惠玲,黄海涛.固定化酶膜催化茶多酚形成茶黄素反应条件优选[J].茶叶科学,2004,24(2):129-134
    [18] 李慎新,李建章,谢家庆,陈勇等.Schiff碱铜配合物模拟过氧化物酶的研究[J].化学学报,2004,62(6):567-572
    [19] A. Puzari, Jubaraj B. Baruah. Copper(Ⅱ)-Catalyzed Reactions of Activated Aromatics [J]. J. Org. Chem., 2000, 65(8): 2344-2349,.
    [20] Nishino H., Satoh H., Yamashita M., Kurosawa K. (Nitrosonaphtholato) metal complexcatalyzed oxidation of phenols and alkenes [J]. J. Chem. Soc., Perkin Trans. 2, 1999, 1919-1924,
    [21] 李得加,胡绍云,邹国林.辣根过氧化物酶模拟酶研究进展[J].氨基酸和生物资源,2003,25(4):43-47
    [22] B. Tang, T.X. Yue, M. Du, Y. Wang, Z.Z. Chen, H.J. Wang. Study and Application of HRP-like Catalyst Copper 2-Hydroxy-1-naphthaldehyde-2-aminothiazole [CuⅡ-(HNATS)2] [J]. Polish J. Chem., 2002,76:1527-1535
    [23] Tang B., Du M., Sun Y., et al. The study and application of biomimic peroxidease ferric 2-hydroxy-1-naphthal-dehyde thiosemicarbazone(FeⅢ-HNT) [J]. Talanta, 1998, 47:361-366
    [24] 关怀民,童跃进.镧(Ⅲ)与壳聚糖配位聚合物的形成及其催化作用[J].稀土,1997,18(5):20-23
    [25] 刘蒲,王岚,王向宇.壳聚糖金属配合物催化剂和壳糖载体的研究进展[J].精细石油化工,2003,5:53-57
    [26] Yin M.Y., Yuan G.L., Wu Y.Q., Huang M.Y., Jiang Y.Y. Asymmetric hydrogenation of ketones catalyzed by a silica-supported chitosan-palladium complex [J]. J. Mol Catal. A: Chem. 1999; 147(1-2): 93-98
    [27] 章明,张爱琴,唐星华.环境友好催化剂壳聚糖催化Knoevenagel反应[J].有机化学,2004,24(9):1106-1107
    [28] 苏秋芳.壳聚糖硫酸盐催化合成环己酮缩乙二醇[J].化学研究与应用,2006,18(1):110-112
    [29] 蒋挺大编著.壳聚糖(第二版)[M].北京:化学工业出版社,2006.177
    [30] Chen R.H., Hwa H.D. Effect of Molecular Weight of Chitosan with the Same Degree of Deacetylation on the Thermal, Mechanical, and Permeability Properties of the Prepared Membrane[J].Carbohydrate Polymers, 1996, 29:353-358.
    [31] Wang W., Bo S.Q., Li S.Q., Qin W. Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation [J]. Int. J. Biol. Macromol, 1991, 13(5): 281-285
    [32] 钟萝编著.茶叶品质理化分析.上海科学技术出版社,1989,258-261.
    [33] 华中师范大学,东北师范大学,陕西师范大学合编.分析化学实验[M].北京:高等教育出版社,1998,138-142.
    [34] 刘晓,石瑛,白雪芳,杜昱光.甲壳低聚糖的酸水解[J].中国水产科学,2003,10(1):69-72
    [35] 曾坤伟,李夜平,方月娥.水溶性微晶壳聚糖的制备及结构[J].应用化学,2002,19(3):216-219
    [36] 赵海峰,张敏卿,曾爱武.H_2O_2氧化降解壳聚糖研究[J].化工进展,2003,2:160-164
    [37] 严淑兰,陆大年.壳聚糖H_2O_2法降解研究[J].化工新型材料,2001,29(12):21-22
    [38] 覃彩芹,肖玲,杜予民,樊木,施晓文.过氧化氢氧化降解壳聚糖的可控性研究[J].武汉大学学报(自然科学版),2000,46(2):195-198
    [39] 曾嘉,郑连英.几丁质固定化壳聚糖酶的研究[J].食品科学,2001,22(10):21-24
    [40] Zhang H., Du Y.G, Yu X.J., et al. Preparation of chitooligosaccarides from chitosan by a complex enzyme [J]. Carbohydrate Research,1999,320:257-260
    [41] Lin H., Wang H.Y., Xue C.H., et al. Preparation of chitosan oligomer by immobilized papain [J]. Enzyme Microb Tech,2002,31:588-592
    [42] 刘秉钺 王井,姚姝娓.壳聚糖-铜络合物在抗菌纸上的应用[J].中华纸业,2004,25(4):43-45
    [43] 季君晖.壳聚糖对Cu~(2-)吸附行为及机理研究[J].离子交换与吸附,1999,15(6):511-517
    [44] Schlick S. Binding, Sites of Cu~(2+) in Chitin and Chitosan. Macromolecules, 1986, 19: 192-195.
    [45] Domard A. pH and c.d. measurements on a fully deacetylated chitosan: application to Cu~(Ⅱ)- polymer interactions. Int. J. Biol Macromol., 1987, 9(2): 98-104
    [46] 王爱勤,邵士俊,周金芳,俞贤达.甲壳胺与Cu(Ⅱ)配合物的合成与表征[J].高分子学报,2000,3:297-300
    [47] 温燕梅,李思东,钟杰平,谢建英.章超桦.壳聚糖希夫碱铜配合物的制备及其催化性能[J].湛江海洋大学学报,2006,26(4):63-66
    [48] Okuyama K., Moguchi K., Kanenari M., et al. Structural Diversity of Chitosan and its Complexes [J]. Carbohydrate Polymers, 2000, (41):237-247
    [49] 刘峥,田兴乐,蒋先明.交联壳聚糖缩水杨醛螯合树脂的制备及性能研究[J].离子交换与吸附,1999,15(5):432-439
    [50] 郁建平,郭刚军,肖云鹏,刘新宽,古练权.海藻酸钠固定化多酚氧化酶及红倍酚的合成研究[J].有机化学,2003,23(1):57-61
    [1] Vipin A., Nair, Sreekumar K. Polymer supported catalysts for epoxidation reactions [J]. Current Science, 2001, 81(2): 194-197
    [2] Sheela M.S., Sreekumar K. Epoxidation and oxidation reactions using 1,4-butanediol dimethacrylate crosslinked polystyrene-supported tertiary butyl hydroperoxide [J]. J.Chem Sci, 2004, 116(6): 319-324
    [3] Sukanta Bhattacharyya. Advances in organic synthesis using polymer-supported reagents and scavengers under microwave irradiation [J]. Molecular Diversity, 2005,9: 253-257.
    [4] Roberts E.A.H., Cartwright R.A., Oldschool, M. The phenolic substances of manufactured tea. Ⅰ.-fractionation and paper chromatography of water-soluble substances. J. Sci. Food Agric. 1957, 8: 72-80.
    [5] Takino Y., Imagawa H., Horikawa H., Tanaka A. Studies on the mechanism of the oxidation of tea leaf catechins. Part Ⅲ. Formation of a reddish orange pigment and its spectral relationship to some benzotropolone derivatives [J]. Agricultural and Biological Chemistry, 1964, 28:64-71
    [6] Takino Y., Ferretti M., Flanagan V., Gianturco M., Vogel M. The structure of theaflavin, a polyphenol of black tea [J]. Tetrah. Lett. 1965 6:4019-4025
    [7] Takino Y., Flanagan V., Gianturco M., Vogel M. Spectral evidence for the structure of three flavanotropolones related to theaflavin, an orange-red pigment of black tea [J]. Can. J. Chem., 1967, 45:1949-1956
    [8] Coxon D.T., Holmes A., Ollis W.D. Theaflavic and epitheaflavic acids [J]. Tetrah. Lett., 1970, 11:5247-5250
    [9] Collier P.D, Bryce T., Mallows R., Thomas P.E., Frost D.J., et al. The theaflavins of black tea [J]. Tetrah., 1973, 29:125-142
    [10] Nonaka G.I., Hashimoto F., Nishioka I. Tannins and related compounds. ⅩⅩⅩⅥ. Isolation and structures of theaflagallins, new red pigments from black tea [J]. Chem. Pharm. Bull. 1986, 34:61-65
    [11] Bailey R.G., Nursten H.E. The chemical oxidation of catechin and other phenolics: A study of the formation of black tea pigments [J].J Sci Food Agric, 1993, 63:455-464
    [12] 姚立虎,Harry E,Nursten.表儿茶素没食子酸酯及表没食子儿茶素没食子酸酯单体的化学氧化研究[J].食品与发酵工业,1997,23(5):21-25
    [13] Wan X.C., Nursten H.E., Cai Y., et al. A new type of tea pigment from the chemical oxidation of epicatechin gallate and isolated from tea [J].J Sci Food Agric, 1997,74:401-408
    [14] 卡尔雅金,按捷洛夫著.于忠等译.无机化学试剂手册[M].北京:中国工业出版社.1964.221-223.
    [15] 李大祥.茶儿茶素化学氧化的研究[D].合肥:安徽农业大学轻工业学院茶业系,2000.17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700