基于细分的曲线曲面变形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几何造型是CAD的核心内容,变形技术是几何造型的重要组成部分。细分建模因其具有任意拓扑适应性、样条曲线曲面的连续性等诸多优势,已成为几何造型领域的重要内容,基于细分的变形也成为变形研究的一个重要方向。本文主要研究内容和创新性成果如下:
     提出了一种基本函数作用下基于细分的曲线变形方法和一种改进的基于细分的保弧长曲线变形算法。前者结合了基本函数作用下的自由变形以及插值细分的曲线“蒙皮”,解决了多点约束作用于多条相交曲线情况下变形的快速求解问题;后者将弧长增加的曲线简化方式和带调节参数的逼近型细分模式应用于保弧长曲线变形过程,直接从整体弧长不变考虑细分调节参数的选取,改善了原算法在曲线简化程度较高时出现的不光顺现象。
     提出了一种基于细分曲面的泊松网格编辑方法,在此基础上进一步提出了一种基于细分曲面控制的网格变形方法。前者以待变形模型包围网格所决定的细分曲面构造变形控制曲面,通过修改包围网格,将对应细分曲面变化信息转化为对模型梯度场的操纵;后者在指定变形区域模型表面设计细分曲面作为变形控制曲面,根据编辑前后的细分控制曲面以及因需设计的参照和目标控制曲线共同对变形区域网格执行梯度场操纵。两种方法均有利于几何细节在编辑过程中的有效保持,同时前者具有以细分曲面张成中间变形空间的FFD方法的变形优势,后者克服了传统参数样条曲面作为变形控制曲面难以贴合任意拓扑物体外形的缺陷。
     提出了两种细分曲面的自由变形算法:变形参考曲线(DRC)作用下的细分曲面的自由变形算法和势函数作用下的细分曲面的自由变形算法。前者将DRC作用下的简单几何约束变形应用于细分曲面的形状编辑,根据细分规则求解约束点、线、面以及交互划定的变形区域在各层次细分网格间的传递映射关系,变形区域内每个细分网格顶点由对应DRC得到变形后位置;后者将势函数作用下的网格约束变形应用于细分曲面的形状编辑,根据均匀细分网格更新细分后各顶点基于测地距离的势函数值,并以此作为各顶点的变形权值。两者得到的细分变形网格都满足预期的约束要求,前者变形求解速度更快,后者在变形质量和变形稳定性方面更具优势。
     提出了插值曲线约束下的非均匀Doo-Sabin细分曲面的两种变形算法:基于最小二乘法的变形算法和基于离散PDE的变形算法。两种变形算法在基于非均匀Doo-Sabin细分方法构造曲线插值曲面的基础之上,遵循了插值曲线驱动变形的基本思路。前者根据对称网格带建立约束方程,变形求解基于对称网格带的控制顶点扰动量总和最小,适合局部变形,运算速度快;后者建立在前者变形基础之上,作用于细分到一定深度的非均匀Doo-Sabin细分网格,通过建立离散PDE方程求解所有自由顶点的理想平均曲率值并据此调整自由顶点位置,适合整体变形,得到的曲线插值细分曲面更为光滑。
Geometric modeling is the kernel of CAD. Deformation technology is an important component of geometric modeling. Subdivision modeling has become the important content in the domain of geometric modeling because of its good-sized advantages such as the arbitrary topological adaptability, the continuity of spline curves and surfaces, and so on. Deformation based on subdivision also becomes an important direction of deformation research. The main research contents and creative achievements are as follows:
     A subdivision-based curve deformation method under basic functions and an improved arc-length preserving curve deformation algorithm based on subdivision are presented. The former combines the free-form deformation under basic functions with the interpolatory subdivision curve“skinning”, and resolves the fast solution to deformation in the case of multiple intersectant curves with multiple constrained points. The latter applies a curve simplification method which can add the arc-length and an approximating subdivision scheme with an adjustable parameter to the arc-length preserving curve deformation process, and selects directly the adjustable parameter according to the constant global arc-length. Compared with the existing arc-length preserving curve deformation algorithm, the improved algorithm can achieve better fairness, especially when a curve is simplified highly.
     A subdivision surface-based Poisson mesh editing approach is proposed, and based on it, a mesh deformation method based on subdivision surface control is further proposed. The former constructs the deformation control surface using the subdivision surface determined by a bounding mesh of the deformable model. When the bounding mesh is modified, the change information of the corresponding subdivision surface is transformed into the alteration of the mesh gradient field. The latter designs a subdivision surface attached to a specified mesh deformation region as the deformation control surface. A gradient field modification is performed for the deformation region mesh according to the subdivision control surfaces before and after editing as well as the reference and target controlling curves designed for need. Both can effectively preserve the geometric details of an object. The former has the advantage of the FFD method using the subdivision surface spanning an intermediate deformation space, and the latter overcomes the shortcoming that traditional parametric spline surfaces as the deformation controlling surfaces are difficult to attach those objects with arbitrary topologies.
     Two free-form deformation algorithms of subdivision surfaces are put forward. One is named as the free-form deformation algorithm of subdivision surfaces under Deformation Reference Curve (DRC), and the other is named as the free-form deformation algorithm of subdivision surfaces under field functions. The former applies the simple geometric constrained deformation under DRC to the shape editing of subdivision surfaces. According to the subdivision algorithm, the image of the constrained points, constrained curves, constrained surfaces, and the deformation region determined interactively at successive subdivision levels is resolved. For each subdivision mesh vertex within the deformation region, its new position after deformation is obtained according to the corresponding DRC. The latter applies the mesh constrained deformation under field functions to the shape editing of subdivision surfaces. The geodesic-based field value of each vertex after subdivision as the deformation weight of this vertex is updated according to the equal subdivision mesh. The former has the advantage of fast solution to deformation, and the latter outgoes the former in terms of the deformation quality and the deformation stability.
     Two deformation algorithms of non-uniform Doo-Sabin subdivision surfaces with interpolated curve constraints are presented. One is based on least-square, and the other is based on discrete PDE. Acting on curve interpolation surfaces constructed based on the non-uniform Doo-Sabin subdivision scheme, both algorithms follow the basic idea of interpolated curve driving deformation. The former establishes constraint equations according to symmetric polygonal complexes, and resolves them to minimize the total disturbance of control vertices of symmetric polygonal complexes. It is suitable for local deformation and has the advantage of fast calculation speed. The latter is based on the former, and fit for the non-uniform Doo-Sabin subdivision mesh at a deep level. For each free vertex, the ideal average curvature value as the criterion of adjusting its position is obtained by establishing and resolving the discrete PDE equation. The latter is suitable for global deformation and the resulting deformation surface has better fairness.
引文
[1] Vergeest J S M. CAD surface data exchange using STEP. Computer Aided Design, 1991, 23(4): 269~281.
    [2] Akkouche S, Galin E. Implicit surface reconstruction from contours. Visual Computer, 2004, 20(6): 392~401.
    [3]李道伦,卢德唐,孔祥言,等.径向基函数网络的隐式曲面方法.计算机辅助设计与图形学学报, 2006, 18(8): 1142~1148.
    [4]肖秀春,姜孝华,张雨浓.基于广义多项式神经网络的点云数据隐式曲面重构方法.计算机应用, 2009, 29(8): 2043~2045.
    [5] Xu J B, Song H C, Wu L D, et al. A seamless representation of multi-scale clouds. Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC, Piscataway: IEEE, 2009: 1255~1260.
    [6] Chang J W, Lei S I E, Chang C F, et al. Real-time rendering of splashing stream water. Proceedings -3rd International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIHMSP 2007, Piscataway: IEEE, 2007: 337~340.
    [7] Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 1978, 10(6): 350~355.
    [8] Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary points. Computer Aided Design, 1978, 10(6): 356~360.
    [9] Loop C. Smooth subdivsion surfaces based on triangles, [Master's Thesis]. Utah: University of Utah, 1987.
    [10] Dyn N, Levin D, Gregory J A. A butterfly subdivision scheme for surface interpolation with tension control. ACM Transaction on Graphics, 1990, 9(2): 160~169.
    [11] Dyn N, Levin D, Gregory J A. A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design, 1987, 4(4): 257~268.
    [12] Qin H, Mandal C, Vemuri B C. Dynamic Catmull-Clark subdivision surfaces. IEEE Transactions on Visualization and Computer Graphics, 1998, 4(3): 215~229.
    [13] Sederberg T W, Zheng J, Sewell D, et al. Non-uniform recursive subdivision surfaces. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, New York: ACM SIGGRAPH, 1998: 387~393.
    [14] Zorin D, Schroder P, Sweldens W. Interactive multiresolution mesh editing. Computer GraphicsProceedings, SIGGRAPH 99, New York: ACM SIGGRAPH, 1999: 395~404.
    [15] Shiue L, Peters J. A realtime GPU subdivision kernel. ACM Transaction on Graphics, 2005, 24(3): 1010~1015.
    [16]李胜,黄鑫,汪国平.基于GPU的视点相关自适应细分.计算机辅助设计与图形学学报, 2007, 19(4): 409~414.
    [17] Ma W Y, Ma X H, Tso S K, et al. A direct approach for subdivision surface fitting from a dense triangle mesh. Computer Aided Design, 2004, 36(6): 525~536.
    [18]周海,周来水.任意拓扑三角网格模型的Loop细分曲面重建系统.中国机械工程, 2006, 17(16): 1723~1729.
    [19]刘浩,廖文和.基于Catmull-Clark细分的曲面重构.中国科学院研究生院学报, 2007, 24(3): 307~315.
    [20] DeRose T, Kass M, Truong T. Subdivision surfaces in character animation. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, New York: ACM SIGGRAPH, 1998: 85~94.
    [21] McDonnell K T, Qin H. Dynamic sculpting and animation of free-form subdivision solids. Visual Comput, 2002, 18(2): 81~96.
    [22] McDonnell K T, Qin H. A novel framework for physically based sculpting and animation of free-form solids. Visual Comput, 2007, 23(4): 285~296.
    [23] Barr A H. Global & local deformations of solid primitives. Computer Graphics, 1984, 18(3): 21~30.
    [24] Watt A, Watt M. Advanced animation and rendering techniques: theory and practice. Boston: Addison-Wesley, 1992.
    [25]金小刚,鲍虎军,彭群生.一种新的基于factor curve的变形控制方法.软件学报, 1996, 7(9): 537~541.
    [26] Sederberg T W, Parry S R. Free-Form deformation of solid geometric models. Computer Graphics, 1986, 20(4): 151~160.
    [27] Coquillart S. Extended free-form deformation: A sculpting tool for 3D geometric modeling. Computer Graphics, 1990, 24(4): 187~196.
    [28] Kalra P, Mangil A, Thalmann N M, et al. Simulation of facial muscle action based on rational free-form deformation. Computer Graphics Forum, 1992, 11(3): 59~69.
    [29] Lamousin H J, Waggenspack W N. NURBS-based free-form deformation. IEEE Computer Graphics and Applications, 1994, 14(6): 59~65.
    [30] MacCracken R, Joy K I. Free-form deformations with lattices of arbitrary topology. Proceedingsof the 23rd annual conference on Computer graphics and interactive techniques, New York: ACM SIGGRAPH, 1996: 181~188.
    [31] Hsu W M, Hughes J F, Kaufman H. Direct manipulation of free-form deformation. Computer Graphics, 1992, 26(2): 177~184.
    [32] Hu S M, Zhang H, Tai C L, et al. Direct manipulation of FFD: Efficient explicit solutions and decomposable multiple point constraints. Visual Computer, 2001, 17(6): 177~184.
    [33]张慧,孙家广.基于NURBS权因子调整的FFD直接操作.计算机学报, 2002, 25(9): 910~915.
    [34] Lazarus F, Coquillart S, Jancene P. Axial deformation: an intuitive deformationtechnique. Computer Aided Design, 1994, 26(8): 607~613.
    [35] Chang Y K, Rockwood A P. A generalized de casteljua approach to 3D free-form deformation. Proceedings of 21st International SIGGRAPH Conference on Computer Graphics, New York: ACM SIGGRAPH, 1994: 257~260.
    [36] Singh K, Fiume E. Wires: A geometric deformation technique. Computer Graphics, 1998, 32(3): 405~414.
    [37] Feng J Q, Ma L Z, Peng Q S. A new free-form deformation through the control of parametric surfaces. Computers & Graphics, 1996, 20(4): 531-539.
    [38]冯结青,彭群生,马利庄.沿参数曲面的均匀变形方法.软件学报, 1998, 9(4): 263~267.
    [39]冯结青,赵豫红,万华根,等.基于曲线和曲面控制的多边形物体变形反走样.计算机学报, 2005, 28(1): 60~67.
    [40]王小平,叶正麟,孟雅琴,等.参数曲面自由变形新方法.工程图学学报, 2002, 23(1): 48~52.
    [41] Wang X P, Zhou R R, Ye Z L, et al. Periodic deformation of parametric surface. Chinese Journal of Mechanical Engineering, 2004, 17(3): 187~190.
    [42]周廷方,冯结青,肖春霞,等.基于层次B样条的网格模型变形技术.计算机辅助设计与图形学学报, 2006, 18(3): 443~450.
    [43]吴金钟,刘学慧,吴恩华.网格图形编辑的样条方法.计算机辅助设计与图形学学报, 2007, 19(7): 907~912.
    [44] Borrel P, Rappoport A. Simple constrained deformation for geometric modeling and interactive design. ACM Transaction on Graphics, 1994, 13(2): 137~155.
    [45] Raffin R, Neveu M, Jaar F. Curvilinear displacement of free-form-based deformation. Visual Computer, 2000, 16(1): 38~46.
    [46] Jin X G, Li Y F, Peng Q S. General constrained deformation based on generalized meatballs.Computers & Graphics, 2000, 24(2): 219~231.
    [47]金小刚,彭群生.基于广义元球的一般约束变形.软件学报, 1998, 9(9): 677~682.
    [48] Zhou Y, Jin X G, Feng J Q. Constrained deformations based on convolution surfaces. Journal of Computational Information Systems, 2006, 2(2): 513~520.
    [49]栗雷雷,莫国良,张三元.一类交互式网格曲面编辑工具的设计.计算机应用研究, 2004, 21(12): 149~151.
    [50]张新宇,张三元,叶修梓.交互式自由雕刻变形.计算机辅助设计与图形学学报, 2005, 17(11): 2420~2426.
    [51] Damme R V, Wang R H. Curve interpolation with constrained length. Computing, 1995, 54(1): 69~81.
    [52] Roulier J A, Piper B. Prescribing the length of parametric curves. Computer Aided Geometric Design, 1996, 13(1): 3~22.
    [53]金小刚,彭群生.基于弧长不变的曲线变形.软件学报, 1997, 8(增刊): 49~55.
    [54] Peng Q S, Jin X G, Feng J Q. Arc-length-based axial deformation and length preserving deformation. Proceedings of the 1997 Computer Animation Conference, Los Alamitos: IEEE, 1997: 86~92.
    [55]孙岩松.带几何约束条件的空间变形方法, [硕士学位论文].大连:大连理工大学, 2002.
    [56] Rappoport A, Sheffer A, Bercovier M. Volume-preserving free-form solids. IEEE Transactions on Visualization and Computer Graphics, 1996, 2(1): 19~27.
    [57] Alexa M. Differential coordinates for local mesh morphing and deformation. Visual Computer, 2003, 19(2): 105~114.
    [58] Nealen A, Sorkine O, Alexa M, et al. A sketch-based interface for detail-preserving mesh editing. ACM Transaction on Graphics, 2005, 24(3): 1142~1147.
    [59] Lipman Y, Sorkine O, Levin D, et al. Linear rotation-invariant coordinates for meshes. ACM Transaction on Graphics, 2005, 24(3): 479~487.
    [60] Xu W W, Zhou K, Yu Y Z, et al. Gradient domain editing of deforming mesh sequences. ACM Transactions on Graphics, 2007, 26(3): Article No 84.
    [61]王隽,张宏鑫,许栋,等.勾画式泊松网格编辑.计算机辅助设计与图形学学报, 2006, 18(11): 1723~1729.
    [62]许栋.微分网格处理技术, [博士学位论文].杭州:浙江大学, 2006.
    [63] Piegl L. Modifying the shape of rational B-spline, Part 1: Curves. Computer Aided Design, 1989, 21(8): 509~518.
    [64] Piegl L. Modifying the shape of rational B-spline, Part 1: Surfaces. Computer Aided Design,1989, 21(9): 538~546.
    [65] Fowler B, Bartels R. Constraint-based curve manipulation. IEEE Computer Graphics and Applications, 1993, 13(5): 43~49.
    [66] Au C K, Yuen M M F. Unified approach to NURBS curve shape modification. Computer Aided Design, 1995, 27(2): 85~93.
    [67]蒋大为,缑秦东.有理Bézier曲线的权因子计算.航空学报, 1993, 14(11): 666~669.
    [68] Hu S M, Li Y F, Ju T, et al. Modifying the shape of NURBS surfaces with geometric constraints. Computer Aided Design, 2001, 33(12): 903~912.
    [69] Hu S M, Zhu X, Sun J G. Shape modification of NURBS surfaces via constrained optimization. Journal of software, 2000, 11(12): 1567~1571.
    [70] Hu S M, Zhou D W, Sun J G. Shape modification of NURBS curves via constrained optimization. Proceeding of CAD/Graphics’99, Shanghai: Wen Hui Publishers, 1999: 958~962.
    [71]张乐年,周来水,周儒荣. NURBS曲线曲面的可控修形研究.工程图学学报, 1995, 16(1): 21~27.
    [72]孙利君,张彩明,刘宁.用导矢差乘法对NURBS曲线进行形状调整.计算机辅助设计与图形学学报, 2003, 15(5): 527~531.
    [73]王志国.曲线曲面形状修改和变形关键技术研究, [博士学位论文].南京:南京航空航天大学, 2006.
    [74] Terzopoulos D, Platt J, Barr A. Elasically deformable models. Computer Graphics, 1987, 21(4): 205~214.
    [75] Gelniker G, Gossard D. Deformable curve and surface finite elements for free-form shape design. Computer Graphics, 1991, 25(4): 257~266.
    [76] Nealen A, Müller M, Keiser R, et al. Physically based deformable models in computer graphics. Computer Graphics Forum, 2006, 25(4): 809~836.
    [77]王青,柯映林,李江雄.基于力密度方法的NURBS曲线和曲面变形框架.机械工程学报, 2007, 43(3): 135~142.
    [78]宋超.基于物理的弹性变形模拟技术研究, [博士学位论文].杭州:浙江大学, 2008.
    [79]郁佳荣,石教英,周永霞.基于物理的实时人体动画.浙江大学学报(工学版), 2006, 40(12): 2079~2082.
    [80]贾世宇,潘振宽.虚拟手术中基于Tensor-Mass的变形仿真技术.系统仿真学报, 2008, 20(7): 1686~1690.
    [81]蔡洪斌,靳碧鹏,何明耘.实时布料运动仿真技术.电子科技大学学报, 2007, 36(2): 242~245.
    [82]鲍春波,王博亮,刘卓,等.一种用于软组织变形仿真的动态质点弹簧模型.系统仿真学报, 2006, 18(4): 847~851.
    [83]陈为,王融清,鲍虎军,等.加权Catmull-Clark曲面.计算机辅助设计与图形学学报, 2000, 12(4): 277~280.
    [84]曾庭俊,罗国明,张纪文. Catmull-Clark细分曲面的形状调整.计算机辅助设计与图形学学报, 2004, 16(5): 707~711.
    [85]韩旭里,邹冬花.基于Catmull-Clark细分规则的双参数细分曲面.工程图学学报, 2007, 28(2): 100~103.
    [86]丁永胜.细分曲线的形状控制及应用, [硕士学位论文].西安:西北工业大学, 2005.
    [87]周敏,叶正麟,彭国华,等.细分曲面的形状调整与控制.机械科学与技术, 2006, 25(10): 1163~1165.
    [88] Nasri A H. Constructing polygonal complexes with shape handles for curve interpolation by subdivision surfaces. Computer Aided Design, 2001, 33(11): 753~765.
    [89]刘晓芬. Loop细分曲面的曲线插值与形状控制, [硕士学位论文].福州:福建师范大学, 2006.
    [90] Nasri A, Kim T, Lee K. Polygonal mesh regularization for subdivision surfaces interpolating meshes of curves. Visual Computer, 2003, 19(2-3): 80~93.
    [91] Nasri A. Recursive subdivision of polygonal complexes and its applications in computer-aided geometric design. Computer Aided Geometric Design, 2000, 17(7): 595~619.
    [92] Nasri A, Abbas A. Designing Catmull–Clark subdivision surfaces with curve interpolation constraints. Computers & Graphics, 2002, 26(3): 393~400.
    [93]何钢.基于几何约束的细分曲面造型基础技术研究, [博士学位论文].南京:南京航空航天大学, 2008.
    [94] Levin A. Interpolating nets of curves by smooth subdivision surfaces. Computer Graphics Proceedings, SIGGRAPH 99, New York: ACM SIGGRAPH, 1999: 57~64.
    [95] Schneider R, Kobbelt L. Mesh fairing based on an intrinsic PDE approach. Computer Aided Design, 2001, 33(11): 767~777.
    [96]李涛,周来水,顾步云.基于几何约束的Doo-Sabin细分曲面修改算法.中国机械工程, 2008, 19(4): 423~427.
    [97]李涛,周来水,张维中. C-C细分曲面的交互形状修改.中国图象图形学报, 2008, 13(1): 170~175.
    [98] Zhou K, Huang X, Xu W W, et al. Direct manipulation of subdivision surfaces on GPUs. ACM Transactions on Graphics, 2007, 26(3): Article No 91.
    [99] Gregory A D, Ehmann S A, Lin M C. inTouch: interactive multiresolution modeling and 3D painting with a haptic interface. Proceedings IEEE Virtual Reality 2000, Los Angeles: IEEE, 2000: 45~52.
    [100] Pusch R, Samavati F. Local constraint-based general surface deformation. Proceedings of the Shape Modeling International (SMI 2010), Los Alamitos: IEEE, 2010: 256~260.
    [101] Lanquetin S, Raffin R, Neveu M. Constrained free form deformation on subdivision surfaces. Advances in Computational Methods in Sciences and Engineering 2005, Selected papers from the International Conference of Computational Methods in Sciences and Engineering, 2005, 4A-4B: 311~314.
    [102] Lanquetin S, Raffin R, Neveu M. Generalized SCODEF deformations on subdivision surfaces. Articulated Motion and Deformable Objects - 4th International Conference, Berlin: Springer-Verlag, 2006: 132~142.
    [103] Lanquetin S, Raffin R, Neveu M. Curvilinear constraints for free form deformations on subdivision surfaces. Mathematical and Computer Modelling, 2010, 51(3-4): 189~199.
    [104] Su Z X, Li L, Zhou X J. Arc-length preserving curve deformation based on subdivision. Journal of Computational and Applied Mathematics, 2006, 195(1-2): 172~181.
    [105] Feng J Q, Shao J, Jin X G, et al. Multiresolution free-form deformation with subdivision surface of arbitrary topology. Visual Computer, 2006, 22(1): 28~42.
    [106]陈效弈.基于自由曲面的空间变形方法, [硕士学位论文].杭州:浙江大学, 2006.
    [107] Bajaj C, Warren J, Xu G. A smooth subdivision scheme for hexahedral meshes. Visual Computer, 2001, 18(5-6): 343~356.
    [108] Chang Y S, Mcdonnell K T, Qin H. A new solid subdivision scheme based on box splines. Proceedings of the seventh ACM symposium on Solid modeling and applications, New York: ACM SIGGRAPH, 2002: 226~233.
    [109] Schaefer S, Hakenberg J, Warren J. Smooth subdivision of tetrahedral meshes. Proceedings of the 2004 ACM SIGGRAPH Symposium on Geometry processing, New York: ACM SIGGRAPH, 2004: 147~154.
    [110]朱佳一.基于GPU的四面体网格细分算法与应用, [硕士学位论文].杭州:浙江大学, 2008.
    [111] Sun H Q, Wang H W, Chen H, et al. Touch-enabled haptic modeling of deformable multi-resolution surfaces. Virtual Reality, 2007, 11(1): 45~60.
    [112] Capell S, Green S, Curless B, et al. A multiresolution framework for dynamic deformations. Proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation, New York: ACM SIGGRAPH, 2002: 41~47.
    [113] Biermann H, Martin I, Bernardini F, et al. Cut-and-paste editing of multiresolution surfaces. ACM Transactions on Graphics, 2002, 21(3): 312~321.
    [114] Kobbelt L, Schroder P. A multiresolution framework for variational subdivision. ACM Transactions on Graphics, 1998, 17(4): 209~237.
    [115] Boier-Martin I, Ronfard R, Bernardini F. Detail-preserving variational surface design with multiresolution constraints. Journal of Computing and Information Science in Engineering, 2005, 5(2): 104~110.
    [116]张景峤,王国瑾,郑建民.基于非均匀Catmull-Clark细分方法的曲线插值.软件学报, 2003, 14(12): 2082~2091.
    [117] Sun Y F, Nee A Y C, Lee K S. Modifying free-formed NURBS curves and surfaces for offsetting without local self-intersection. Computer Aided Design, 2004, 36(12): 1161~1169.
    [118] Chaikin G M. An algorithm for high speed curve generation. Computer Graphics and Image Processing, 1974, 3(4): 346~349.
    [119]蔡志杰.变参数四点法的理论及其应用.数学年刊, 1995, 16A: 524~531.
    [120] Yoshizawa S, Belyaev A G, Seidel H P. A simple approach to interactive free-form shape deformations. Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, Los Alamitos: IEEE, 2002: 471~474.
    [121]朱心雄.自由曲线曲面造型技术.北京:科学出版社, 2000.
    [122]丁友东,华宣积.基于光顺化的NURBS曲线权因子估计方法.计算机辅助设计与图形学学报, 2005, 12(5): 325~329.
    [123] Spall J C. Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 817~823.
    [124] Davis L. Adapting operator probabilities in genetic algorithms. Proceedings of the 3rd International Conference on Genetic Algorithms, San Francisco: Morgan Kaufmann, 1989: 61~69.
    [125] Hamann B, Chen J L. Data point selection for piecewise trilinear approximation. Computer Aided Geometric Design, 1994, 11(5): 477~489.
    [126]王卫民,罗国明,张纪文,等.一种可调的Catmull-Clark细分曲面.工程图学学报, 2002, 23(3): 115~121.
    [127]郑慧娆,陈绍林,莫终息,等.数值计算方法.武汉:武汉大学出版社, 2002: 114~119.
    [128] Sauvage B, Hahmann S, Bonneau G P. Volume preservation of multiresolution meshes. Computer Graphics Forum, 2007, 26(3): 275~283.
    [129] Marinov M, Botsch M, Kobbelt L. GPU-based multiresolution deformation using approximatenormal reconstruction. Journal of Graphics Tools, 2007, 12(1): 27~46.
    [130] Tong Y, Lombeyda S, Hirani A N, et al. Discrete multiscale vector field decomposition. ACM Transactions on Graphics, 2003, 22(3): 445~452.
    [131] Yoshizawa S, Belyaev A G, Seidel H P. Free-form skeleton-driven mesh deformations. Proceedings of the eighth ACM Symposium on Solid Modeling and Applications, New York: ACM SIGGRAPH, 2003: 247~253.
    [132]戴宁,周永耀,廖文和,等.口腔修复体模型曲面局部变形设计研究与实现.中国生物医学工程学报, 2008, 27(3): 378~382.
    [133]刘浩.基于四边形网格的细分曲面造型基础技术研究, [博士学位论文].南京:南京航空航天大学, 2005.
    [134] Wyvill B, Wyvill G. Field functions for implicit surfaces. Visual Computer, 1989, 5(1-2): 75~82.
    [135] Sharir M, Schorr A. On shortest path in polyhedral spaces. SIAM Journal on Computing, 1986, 15(1): 193~215.
    [136] Chen J D, Han Y J. Shortest paths on a polyhedron, part I: Computing shortest paths. International Journal of Computational Geometry & Applications, 1996, 6(2): 127~144.
    [137] Kapoor S. Efficient computation of geodesic shortest paths. Proceedings of the 31st Annual ACM Symp. on Theory Computation, New York: ACM Press, 1999: 770~779.
    [138]肖春霞,冯结青,缪永伟,等.基于Level Set方法的点采样曲面测地线计算及区域分解.计算机学报, 2005, 28(2): 250~258.
    [139] Lanthier M, Maheshwari A, Sack J R. Approximating weighted shortest paths on polyhedral surfaces. Proceedings of the 13th Annual ACM Symp. on Computational Geometry, New York: ACM Press, 1997: 274~283.
    [140] Kanai T, Suzuki H. Approximate shortest path on a polyhedral surface and its applications. Computer Aided Design, 2001, 33(11): 801~811.
    [141]张丽艳,吴熹.三角网格模型上任意两点间的近似最短路径算法研究.计算机辅助设计与图形学学报, 2003, 15(5): 592~597.
    [142] Kimmel R, Sethian J A. Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences, 1998, 95(15): 8431~8435.
    [143] Novotni M, Klein R. Computing geodesic distances on triangular meshes. Journal of WSCG, 2002, 10(2): 341~347.
    [144] Lai S, Zou S, Cheng F. Constrained scaling of Catmull-Clark subdivision surfaces. Computer-Aided Design and Applications, 2004, 1(1-4): 7~16.
    [145] Juhasz I, Hoffmann M. Constrained shape modification of cubic B-spline curves by means ofknots. Computer Aided Design, 2004, 36(5): 437~445.
    [146]郭凤华,杨兴强.调整节点矢量对B样条曲线的影响.计算机工程与科学, 2005, 27(11): 109~110.
    [147]陈凯云,谢晓芹.节点矢量影响NURBS曲线的规律研究与应用.机械工程学报, 2008, 44(10): 294~299.
    [148] Moreton H. Minimum Curvature Variation Curves, Networks, and Surfaces for Fair Free-Form Shape Design, [Doctor of Philosophy Thesis]. BERKELEY: UNIVERSITY of CALIFORNIA, 1992.
    [149] Desbrun M, Meyer M, Schroder P, et al. Implicit fairing of irregular meshes using diffusion and curvature flow. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, New York: ACM SIGGRAPH, 1999: 317~324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700