面向增材制造的模型重建方法与成型工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代制造业全球化与市场化的发展,能在更短的时间内开发出新产品并推向市场是企业保持竞争力的关键所在。增材制造技术的应用加速了产品的设计开发过程,降低了产品设计验证成本。与传统去除材料的加工方式不同,增材制造是一个分层累积材料的过程,将三维零件降维到二维平面或者一维的点线,消除了复杂形状对加工制造的限制。
     从上世纪的八十年代增材制造技术出现开始,目前已经有多种增材制造加工工艺,也有光敏树脂、金属与陶瓷粉末等多种材料可供应用。但其加工精度、表面质量与所得零件的性能与传统的切削加工、铸造锻压成型、注塑成型等工艺还有较大的差距,这些都限制了增材制造的大范围应用。相对于传统的加工技术,增材制造加工零件的单个成本相对较高,不适合大批量零件的制造。针对上述问题,本文从集成数控增材制造工艺与基于掩膜图像投影的增材制造工艺两方面进行了研究,以期提高增材制造的加工质量、扩展其应用范围。主要研究内容与成果如下:
     (1)基于双轴旋转微镜的可集成模型数字化技术研究。以实现集成模型三维测量系统的增材制造工艺为目标,以德州仪器的TALPIOOOB双轴旋转微镜镜和摄像机为核心部件,设计了三维激光测量系统。该系统通过控制双轴旋转微镜来控制激光点的移动,实现一次固定,区域测量,可作为集成部件方便的安装到增材制造系统当中,实现对待加工表面的在线测量。测量系统中采用分层离散的定标算法对摄像机和激光位置进行标定,基于双线性插补算法计算图像像素点位置和激光点位置。由双轴旋转微镜与摄像机分别获取经过被测点的两条空间直线,然后通过空间直线的三角化求交来计算测量点位置。通过测量实例,分析了测量误差产生的原因及提高措施。
     (2)基于代数点集曲面APSS与多层深度法矢图像LDNIs的模型重建算法研究。采用代数点集曲面APSS拟合测量点集,进行去噪平滑,然后通过投影运算将APSS曲面转化为LDNIs表达的实体模型,进而采用轮廓线算法生成三角网格曲面,实现模型的重建。
     (3)研究了集成数控增材制造系统。针对传统分层增材制造工艺所得零件在不同方向上物理性能不一致的问题,开发基于数控技术的无分层增材制造工艺CNCA。将所开发的三维测量系统与模型重建算法集成到该工艺当中,实现对待加工表面的在线测量与模型重建。结合基于多层深度法矢图像的布尔运算与偏置运算,实现激光头的路径规划,输入数字控制系统,实现在给定曲面上的固化加工
     (4)基于MIP-SLA的大面积微细加工制造工艺研究。对基于DLP投影机的MIP-SLA(?)曾材制造工艺的加工原理、工艺流程及系统组成进行了研究,重点研究了基于约束液面的MIP-SLA增材制造工艺。设计开发了基于MIP-SLA的大面积微细制造工艺系统,研究了制造系统的图像生成与工艺规划。基于商业投影机,重构光学系统实现掩膜图像在微小区域内的聚焦,通过对光路与加工基座在平面内的扩展,实现大面积微细零件的制造。
     (5)基于LDNIs的掩膜图像切片生成算法研究。提出了基于LDNIs模型的掩膜图像生成算法,该算法首先对实体模型进行采样离散生LDNIs模型,然后采用离散的一维布尔运算代替传统的轮廓求交运算得出二维的掩膜图像。该算法在处理复杂模型与小层厚图像生成时与基于轮廓的算法有更高的运算效率。研究DLP投影机的标定算法,提出采用分层离散的方式对其进行空间定标。并根据定标数据实现了投影图像的反算。在基于MIP-SLA工艺的光滑表面制造系统中,应用空间投影图像反算算法生成该工艺中的二次投影图像。
     (6) MIP-SLA原型机系统设计。设计搭建了大面积微细制造工艺的硬件系统,对微细加工的曝光时间、加工分辨率等因素进行了研究。基于EtherMAC运动控制系统及WindowsCE (?)沃入式操作系统开发了约束液面式MIP-SLA原型机系统。开发了了基于PC的掩膜图像切片软件与基于WindowsCE嵌入式系统的控制软件,并设计了分离拉力的在线测量系统。通过实验验证了掩膜图像切片算法的正确性,测定了系统的加工精度、加工效率以及加工过程中分离拉力随加工面积的变化趋势。
     论文对面向增材制造的模型数字化技术与模型重建方法的研究,实现了集成的数控增材制造系统。该系统创新性地提出了无分层的制造方式,解决了分层制造工艺所加工零件在各个方向物理性能不一致的问题。基于多层深度法矢图像的掩膜图像生成算法与传统的基于轮廓的算法相比,在处理复杂模型方面具有更高的计算效率。所设计的大面积微细制造工艺系统克服了MIP-SLA工艺加工分辨率与加工面积之间的矛盾,可实现高分辨大面积零件的制造,对扩展MIP-SLA工艺的应用范围,提高零件的加工精度有重要的意义。
With the globalization and marketization of the modern manufacturing industry, to develop a new product in a shorter time and put it on the market is more and more important for a company, which can help them keep competitive strength. Application of additive manufacturing technology for product design can shorter the developing period and lower the verification cost. Different from the traditional process of removing material, additive manufacturing is a process of adding materials. By change the three dimensional model into two dimensional plane or points and lines, there is no restrictions for building complicated parts.
     From the invention of additive manufacturing process in later last80s, there have been lots kinds of fabrication technologies, with many kinds of materials, like photosensitive resin, metal and ceramic powder, etc. But there is still a big gap between the additive manufacturing process and traditional processes on the fabrication accuracy, surface quality, and the physical properties of the built parts. Also, compared with the traditional methods, it's much more expensive for the additive manufacturing process to fabricate one part, resulting to its improper usage for mass production. Based on these problems, the topic of this thesis is research on integrated computer numerical control accumulation process and mask image projection stereolithography apparatus based additive manufacturing process, aiming for improving the part quality and extending the using area of additive manufacturing process. The main contents and results are as follows:
     (1) Research on the modeling digitalizing method based on two-axis rotation micro-mirror. For the purpose of setting up an additive manufacturing system integrated with three dimensional scanning system, a three dimensional scanning system is developed based on the TALP1000b two-axis rotation micro-mirror form Texas Instruments and a simple web camera. By control the movement of the laser dot by the rotation mirror, a rectangle area can be scanned one time. So it can be easily integrated into the additive manufacturing system and measure the surface of the part to be built on immediately. A layered based discrete method was used for the camera calibration and laser position calibration. By using the bi-linear interpolation algorithm, the world coordinates of the pixels in the captured images and the world coordinates of the laser dots from the rotation mirror can be computed, which defines two spatial lines both passing through the scanned points. Then by calculating the intersection between these two lines, we can get the world coordinates of the scanned point. By doing some experiments, the reasons of the measured errors are analyzed and the improvement methods are proposed.
     (2) Research on the model reconstruction algorithm based on algebraic point set surface (APSS) and layered depth normal images (LDNls). First, by fitting the scanned points into APSS surface, the noisy points can be removed and smoothed. Then, by using the projecting operation, convert the APSS surface into LDNIs models, which can be converted into mesh based surface by contouring algorithm and finishing the model reconstruction process.
     (3) Research on the integrated computer numerical control accumulation manufacturing system. There is much non-uniformity of their physical properties between different directions in the parts built by layered fabrication processes. To solve this problem, a new non-layered additive manufacturing process based on computer numerical control system was developed. By integrating the designed three dimensional scanning system and the model reconstruction algorithm into this process, it can get the model of the unknown surface online. Together with the Boolean and offsetting computation based on layered depth normal images, the tool path of the laser can be generated. With the computer numerical control system, it can build parts on the given surface.
     (4) Research on large-area and micro-structure fabrication system based on mask image projection stereolithography apparatus. Some research job was done on the principle of MIP-SLA based additive manufacturing process, its building steps and system structure, especially the bottom-up projection based MIP-SLA process. A new system for large-area and micro-structure fabrication was designed, with its mask image generation and building process planning. In the system, a commercial projector was used, and the optical system was rebuilt to make the image focused in a very small area. By extending the optical path and building base in the X and Y directions, parts of large area with micro-structures can be built.
     (5) Research on mask image generation algorithm based on LDNIs. A new algorithm of mask image generation based on LDNIs was proposed. First, the LDNIs models are generated by discrete sampling of a solid model, and then use one dimensional Boolean operation instead of contouring intersecting to generate the mask image. This algorithm is much more efficient in processing complicated models with small layer thickness than the contour intersection based algorithm. A DLP based projector was spatially calibrated by layered database, which can be used for the mask image compensation and reverse computation. A new smooth surface fabrication process was introduced, which uses the mask image reverse computation algorithm to generate the second exposure images.
     (6) Design of MIP-SLA prototyping systems. A new prototyping system for large-area and micro-structure fabrication was built, and the curing time, building resolution of the micro fabrication system was tested by doing some experiments. Also a bottom-up projection based MIP-SLA prototyping system was developed using the EtherMAC motion control system and Windows CE embedded system, which contains an online measuring system of the peeling force during the building process. Some experiments were made to verify the accuracy, the curing time of the system. Also the relationship between the peeling force and the area of the part is established by the online force measuring system.
     In this thesis, an integrated computer numerical control accumulation system was developed with the research on three dimensional model digitalizing technology and the model reconstruction algorithm. This system can be used for fabricating parts without layers, which is helpful in improving the physical properties of the part in different directions. The proposed mask image generation algorithm based on LDNIs is much more efficient in the slicing operation of complicated models than the traditional algorithm based on contouring method. The designed large-area and micro-structure fabrication system overcomes the contradictions between the building resolution and building area by MIP-SLA process, which can build large-area parts with micro-structures on them. This ability is significant for extending the usage of MIP-SLA process and improving the accuracy of its fabricated parts.
引文
[1]李涤尘,田小永,王永信,等.增材制造技术的发展[J].电加工与模具,2012(z1):20-22.
    [2]卢秉恒,赵万华,洪军,等.增材制造及RP&M集成制造系统研究[J].世界制造技术与装备市场,2001(2):77-79.
    [3]卢秉恒.西安交通大学先进制造技术研究进展[J].中国工程科学,2013(1).
    [4]Crawford R H, Beaman J J. Solid freeform fabrication[J]. Spectrum, IEEE, 1999,36(2):34-43.
    [5]MARCUS, L. H, BOURELL, et al. Solid freeform fabrication finds new applications[J]. Advanced materials & Processes,1993,144(3):28-35.
    [6]Kruth J P, Leu M C, Nakagawa T. Progress in Additive Manufacturing and Rapid Prototyping[J]. CIRP Annals-Manufacturing Technology,1998,47(2):525-540.
    [7]孙长库许志钦.3D逆向工程技术[M].北京:中国计量出版社,2002.
    [8]童水光金涛.逆向工程技术[M].北京:机械工业出版社,2003.
    [9]王霄.逆向工程技术及其应用[M].北京:化学工业出版社,2004.
    [10]张国雄.三坐标测量机[M].天津:天津大学出版社,1999.
    [11]李爱林.柔性臂三坐标测量机原型的研究与开发[D].浙江大学机械制造及其自动化,2006.
    [12]程文涛.关节式坐标测量机标定技术研究[D].合肥工业大学精密仪器及机械,2011.
    [13]荣烈润.三坐标测量机的现状和发展动向[J].机电一体化,2001,7(6):8-11.
    [14]Bosch J A. Coordinate Measuring Machines and Systems[M]. New York, USA: Marcel Dekker Inc.,1995.
    [15]郑德华,沈云中,刘春.三维激光扫描仪及其测量误差影响因素分析[J].测绘工程,2005,14(2):32-34,56.
    [16]毛方儒,王磊.三维激光扫描测量技术[J].宇航计测技术,2005,25(2):1-6.
    [17]董秀军.三维激光扫描技术及其工程应用研究[D].成都理工大学地质工程,2007.
    [18]Land M. F. N D E. Animal Eyes[M]. Oxford, UK:Oxford University Press,2004.
    [19]Vaillant R, Faugeras O D. Using extremal boundaries for 3-D object modeling[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1992,14(2):157-173.
    [20]Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. second ed. Cambridge Univ Press,2004.
    [21]Seitz S M, Curless B, Diebel J, et al. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms:Computer Vision and Pattern Recognition,2006 IEEE Computer Society Conference on,2006[C].
    [22]Laurentini A. The visual hull concept for silhouette-based image understanding [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1994,16(2):150-162.
    [23]Matusik W, Buehler C, Raskar R, et al. Image-based visual hulls:Proceedings of the 27th annual conference on Computer graphics and interactive techniques, 2000[C]. ACM Press/Addison-Wesley Publishing Co..
    [24]赵阳.高显现力三目视觉测量关键技术[D].天津大学仪器科学与技术:测试剂量技术及仪器,2011.
    [25]李国华.低成本机器视觉三维测量系统及其在逆向工程中的应用研究[D].天津科技大学机械设计及理论,2004.
    [26]李金辉.主动机器视觉动态目标跟踪及多自由度协调控制[D].吉林大学控制理论与控制工程,2003.
    [27]李锋.机器视觉应用技术研究[D].浙江大学光学工程,2003.
    [28]范亚兵,黄桂平,高宝华,等.三目立体工业摄影测量系统外部参数的快速标定[J].测绘工程,2012,21(5):48-52.
    [29]罗世民,李茂西.双目视觉测量中三维坐标的求取方法研究[J].计算机工程与设计,2006(19):3622-3624.
    [30]高立志,方勇,林志航.立体视觉测量中摄像机标定的新技术[J].电子学报,1999,27(2):13-15.
    [31]乌秀春,郭东明,王晓明,等.三维复杂曲面快速测量新方法[J].机械与电子,2001(4):7-10.
    [32]Blais F. Review of 20 years of range sensor development[J]. Journal of Electronic Imaging,2004,13(1).
    [33]王文格.基于计算机视觉的大型复杂曲面三维测量关键技术研究[D].湖南大学机械制造及其自动化,2003.
    [34]Wang Y F, Mitiche A, Aggarwal J K. Computation of Surface Orientation and Structure of Objects Using Grid Coding[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1987,PAMI-9(1):129-137.
    [35]Morano R A, Ozturk C, Conn R, et al. Structured light using pseudorandom codes[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1998,20(3):322-327.
    [36]Caspi D, Kiryati N, Shamir J. Range imaging with adaptive color structured light[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1998,20(5):470-480.
    [37]梁猛,方强.具有等腰三角形齿结构的线性结构光编码的三维面形测量技术[J].光学学报,2000,20(10):1353-1357.
    [38]梁猛,方强.等腰三角形结构光编码的面形测量误差分析[J].光学学报,2000,20(11):1518-1523.
    [39]Huang P S, Chiang F P. Recent advances in fringe projection technique for 3D shape measurement:SPIE's International Symposium on Optical Science, Engineering, and Instrumentation,1999[C]. International Society for Optics and Photonics.
    [40]Pawlowski M E, Kujawinska M, Wegiel M. Monitoring and measurement of movement of objects by fringe projection method[J]. Three-Dimensional Image Capture and Applications Ⅲ:Proceedings,24-25 January 2000, San Jose, California,2000,3:116.
    [41]刘维一,王肇圻,母国光,等.彩色组合编码条纹光栅轮廓术[J].光学学报,2000,20(9):454-458.
    [42]Salvi J, Pages J, Batlle J. Pattern codification strategies in structured light systems[J]. Pattern Recognition,2004,37(4):827-849.
    [43]3D3 scanner[EB/OL]. http://www.3d3solutions.com/.
    [44]孙秋成.基于机器视觉的轴径测量[D].吉林大学机械科学与工程学院,2010.
    [45]Tsai R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. Robotics and Automation, IEEE Journal of,1987,3(4):323-344.
    [46]Heikkila J. Geometric camera calibration using circular control points[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000,22(10):1066-1077.
    [47]Zhang Z. A flexible new technique for camera calibration[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2000,22(11):1330-1334.
    [48]Hartley R. Self-Calibration of Stationary Cameras[J].1997,22(1):5-23.
    [49]Sang D M. A self-calibration technique for active vision systems[J]. Robotics and Automation, IEEE Transactions on,1996,12(1):114-120.
    [50]Moons T, van Gool L, Proesmans M, et al. Affine reconstruction from perspective image pairs with a relative object-camera translation in between[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1996,18(1):77-83.
    [51]Heyden A, Astrom K. Euclidean reconstruction from constant intrinsic parameters:Pattern Recognition,1996., Proceedings of the 13th International Conference on,1996[C].
    [52]Triggs B. Autocalibration and the absolute quadric:Computer Vision and Pattern Recognition,1997. Proceedings.,1997 IEEE Computer Society Conference on, 1997[C].
    [53]Pollefeys M, van Gool L, Oosterlinck A. The modulus constraint:a new constraint self-calibration:Pattern Recognition,1996., Proceedings of the 13th International Conference on,1996[C].
    [54]Pauly M, Gross M. Spectral Processing of Point-sampled Geometry:SIGGRAPH '01, New York, NY, USA,2001 [C]. ACM.
    [55]Alexa M, Behr J, Cohen-Or D, et al. Computing and rendering point set surfaces[J]. Visualization and Computer Graphics, IEEE Transactions on, 2003,9(1):3-15.
    [56]Fleishman S, Cohen-Or D, Cl, et al. Robust moving least-squares fitting with sharp features[J]. ACM Trans. Graph.,2005,24(3):544-552.
    [57]Weyrich T, Pauly M, Keiser R, et al. Post-processing of scanned 3D surface data: Symposium on Point-Based Graphics,2004[C].
    [58]胡国飞.三维数字表面去噪光顺技术研究[D].浙江大学计算机图形学,2005.
    [59]肖春霞.三维点采样模型的数字几何处理技术研究[D].浙江大学应用数学(计算机图形学),2006.
    [60]邹万红.大规模点云模型几何造型技术研究[D].浙江大学计算机科学与技术学院浙江大学计算机科学与技术,2007.
    [61]王仁芳.点模型数字几何处理若干技术研究[D].浙江大学计算机学院浙江大学计算机科学与技术,2007.
    [62]贺美芳.基于散乱点云数据的曲面重建关键技术研究[D].南京航空航天大学航空宇航制造工程,2006.
    [63]刘含波.基于散乱点云数据的隐式曲面重建研究[D].哈尔滨工业大学航天学院,2009.
    [64]Boissonnat J. Geometric structures for three-dimensional shape representation[J]. ACM Trans. Graph.,1984,3(4):266-286.
    [65]Hoppe H, DeRose T, Duchamp T, et al. Surface reconstruction from unorganized points[J]. SIGGRAPH Comput. Graph.,1992,26(2):71-78.
    [66]Schall O, Samozino M. Surface from Scattered Points[C].
    [67]Alexa M, Behr J, Cohen-Or D, et al. Computing and rendering point set surfaces[J]. Visualization and Computer Graphics, IEEE Transactions on, 2003,9(1):3-15.
    [68]Levin D. Mesh-independent surface interpolation[J]. Geometric modeling for scientific visualization,2003,3:37-49.
    [69]Ohtake Y, Belyaev A, Alexa M, et al. Multi-level partition of unity implicits: ACM SIGGRAPH 2005 Courses, Los Angeles, California,2003[C]. ACM.
    [70]Adamson A, Alexa M. Approximating bounded, nonorientable surfaces from points:Shape Modeling Applications,2004. Proceedings,2004[C].
    [71]Amenta N, Kil Y J. Defining point-set surfaces[J]. ACM Trans. Graph., 2004,23(3):264-270.
    [72]Amenta N, Kil Y J. The Domain of a Point Set Surface:SPBG'04 Symposium on Point-Based Graphics 2004,2004[C]. The Eurographics Association.
    [73]Dey T K, Sun J. An adaptive MLS surface for reconstruction with guarantees: Proceedings of the third Eurographics symposium on Geometry processing, Vienna, Austria,2005[C], Eurographics Association.
    [74]Gael G, Markus G. Algebraic point set surfaces[J]. ACM Trans. Graph., 2007,26(3):23.
    [75]Chen Y, Wang C C L. Layer Depth-Normal Images for Complex Geometries: Part One---Accurate Modeling and Adaptive Sampling[J]. ASME Conference Proceedings,2008,2008(43277):717-728.
    [76]Wang C C L, Chen Y. Layered Depth-Normal Images for Complex Geometries: Part Two---Manifold-Preserved Adaptive Contouring[J]. ASME Conference Proceedings,2008,2008(43277):729-739.
    [77]Chen Y. An accurate sampling-based method for approximating geometry[J]. Computer-Aided Design,2007,39(11):975-986.
    [78]Shade J, Gortler S, He L, et al. Layered depth images:Proceedings of the 25th annual conference on Computer graphics and interactive techniques,1998[C]. ACM.
    [79]Ashley S. From CAD art to rapid metal tools[J]. Mechanical Engineering, 1997,119(3):82-87.
    [80]Kruth J P. Material Incress Manufacturing by Rapid Prototyping Techniques[J]. CIRP Annals-Manufacturing Technology,1991,40(2):603-614.
    [81]Sachs E, Cima M, Cornie J. Three-Dimensional Printing:Rapid Tooling and Prototypes Directly from a CAD Model[J]. CIRP Annals-Manufacturing Technology,1990,39(1):201-204.
    [82]SPENCER, D. J, DICKENS, et al. Rapid prototyping of metal parts by three-dimensional welding[J]. Journal of Engineering Manufacture, 1998,212(3):175-182.
    [83]颜永年,陈立峰,王笠.快速成型技术的发展趋势和未来:2001年第九届全国特种加工学术年文集,2001.
    [84]翟媛萍.光固化快速成型材料的研究与应用[D].南京理工大学机械制造及其自动化,2004.
    [85]杨继全.光固化快速成型的理论、技术及应用研究[D].南京理工大学机械电子工程,2002.
    [86]胥光申,邓攀,赵万华,等.高分辨率激光快速成形系统研究与开发[J].机械工程学报,2005,41(2):127-131.
    [87]赵万华.激光固化快速成型的精度研究[D].西安交通大学机械制造,1998.
    [88]王崴.光固化快速成型零件制作方向优化问题研究[D].西安交通大学机械工程,2003.
    [89]陈皓.光固化快速成型零件变形机理及其影响因素的研究[D].西安交通大学机械学,1997.
    [90]翟媛萍.光固化快速成型材料的研究与应用[D].南京理工大学机械制造及其自动化,2004.
    [91]杨继全.光固化快速成型的理论、技术及应用研究[D].南京理工大学机械电子工程,2002.
    [92]Deckard L, Claar T D. Fabrication of ceramic and metal matrix composites from selective laser sintered ceramic preforms:Solid Freeform Fabrication Symposium, 1993[C].
    [93]Zong G, Wu Y, Tran N, et al. Direct selective laser sintering of high temperature materials:Solid Freeform Fabrication Symposium 1992,1992[C].
    [94]张剑峰.Ni基金属粉末激光直接烧结成形及关键技术研究[D].南京航空航天大学机械制造及其自动化,2002.
    [95]纪良波.熔融沉积成型有限元模拟与工艺优化研究[D].南昌大学材料加工工程,2011.
    [96]邹国林.熔融沉积制造精度及快速模具制造技术的研究[D].大连理工大学机械制造及其自动化,2002.
    [97]Takagi T, Nakajima N. Photoforming applied to fine machining:Proceedings of IEEE on Micro Structures, Sensors, Actuators, Machines and Systems,1993[C].
    [98]Bertsch A, Zissi S, Jezequel J Y, et al. Microstereophotolithography using a liquid crystal display as dynamic mask-generator[J]. Microsystem Technologies, 1997,3(2):42-47.
    [99]Devaux F, Mosset A, Lantz E, et al. Image Upconversion from the Visible to the UV Domain:Application to Dynamic UV Microstereolithography[J]. Applied Optics,2001,40(28):4953-4957.
    [100]Bertsch A, Bernhard P, Renaud P. Microstereolithography:concepts and applications:Proceedings.2001 8th IEEE International Conference on Emerging Technologies and Factory Automation, Ecole Polytech. Fed. de Lausanne, Switzerland,2001 [C].
    [101]Sun C, Zhang X. Experimental and numerical investigations on microstereolithography of ceramics[J]. Journal of Applied Physics, 2002,92(8):4796-4802.
    [102]Sun C, Fang N, Wu D M, et al. Projection micro-stereolithography using digital micro-mirror dynamic mask[J]. Sensors and Actuators A:Physical, 2005,121(1):113-120.
    [103]Wu D, Fang N, Sun C, et al. Adhesion force of polymeric three-dimensional microstructures fabricated by microstereolithography[J]. Applied Physics Letters, 2002,81 (21):3963-3965.
    [104]Wu D, Fang N, Sun C, et al. Stiction problems in releasing of 3D microstructures and its solution[J]. Sensors and Actuators A:Physical,2006,128(1):109-115.
    [105]ZHOU C, CHEN Y, WALTZ, et al. Optimized Mask Image Projection for Solid Freeform Fabrication[J]. Journal of manufacturing science and engineering, 2009,131(6).
    [106]Zhou C, Chen Y. Calibrating Large-area Mask Projection Stereolithography for Its Accuracy and Resolution Improvements:International Solid Freeform Fabrication Symposium, The University of Texas at Austin,2009[C].
    [107]Zhou C, Chen Y. Additive Manufacturing Based on Multiple Calibrated Projectors and Its Mask Image Planning[J]. ASME Conference Proceedings, 2010,2010(44090):439-449.
    [108]Pan Y, Zhou C, Chen Y. A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes[J]. Journal of Manufacturing Science and Engineering,2012,134(5):51011-51019.
    [109]Pan Y, Zhao X, Zhou C, et al. Smooth surface fabrication in mask projection based stereolithography[J]. Proceedings of NAMRI/SME,2012,40.
    [110]Stampfl J, Fouad H, Seidler S, et al. Fabrication and moulding of cellular materials by rapid prototyping[J]. International Journal of Materials and Product Technology,2004,21(4):285-296.
    [111]Lu Y, Mapili G, Suhali G, et al. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds[J]. Journal of Biomedical Materials Research Part A, 2006,77A(2):396-405.
    [112]EnvisionTec. EnvisionTec[EB/OL]. [0218]. www.envisiontec.com.
    [113]Systems D.3D Systems[EB/OL]. [0218]. http://www.3dsystems.com/.
    [114]彭钦军,郭永康,陈波,等.液晶实时掩膜技术制作连续微光学元件[J].光学学报,2003,23(2):220-224.
    [115]谌廷政,吕海宝,漆新民,等.电寻址空间光调制器制作灰度掩模技术的研究[J].光电工程,2004,31(7):46-49,64.
    [116]王伊卿,贾志洋,赵万华,等.面曝光快速成形关键技术及研究现状[J].机械设计与研究,2009,25(2):96-100.
    [117]黄莉.基于数字微镜投影光固化快速成形光学系统设计[D].华中科技大学材料加工工程,2009.
    [118]汪敏.面曝光快速成形的关键技术研究[D].华中科技大学数字化材料成形,2011.
    [119]宫静,胥光申,金京,等.面曝光快速成形技术的变形[J].纺织高校基础科学学报,2011,24(4):585-589.
    [120]胡送桥,胥光申,马训鸣,等.面曝光快速成形系统升降工作台运动精度研究[J].西安工程大学学报,2010,24(1):66-70.
    [121]潘焕,罗声,胥光申,等.面曝光快速成形系统中紫外光辐照度分布研究[J].西安工程大学学报,2009,23(6):53-57.
    [122]谭东才,胥光申,罗声,等.用于面曝光快速成形系统的光照度测量系统研究[J].光电技术应用,2010,25(3):53-57.
    [123]杨根,马训鸣,胥光申,等.面曝光快速成形系统中图像的畸变校正[J].西安工程大学学报,2011,25(5):712-716.
    [124]杨剑.面曝光快速成型光固化实验研究[D].西安:西安工程大学机械电子工程,2011.
    [125]海霞,陈敏.一种微光学元件制作方法初探[J].科技信息,2011(11):16-406.
    [126]海霞.基于数字掩模光快速成形技术的微光学元件制作工艺研究[D].南昌航空大学光学工程,2011.
    [127]沈冬梅.数字掩模光成型法制作微光学器件的研究[D].南昌航空大学物理电子学,2007.
    [128]INSTRUMENTS T. Dual-Axis Analog MEMS Pointing Mirror[Z].2010.
    [129]Laserglow. Laserglow Technologies[EB/OL]. http://www.laserglow.com/BDP#.
    [130]Dynomotion. KMotion[EB/OL]. www.dynomotion.com.
    [131]OpenCV. OpenCV[EB/OL]. http://opencv.willowgarage.com/wiki/.
    [132]Ga, Guennebaud L, Gross M. Algebraic point set surfaces[J]. ACM Trans. Graph., 2007,26(3):23.
    [133]Pauly M, Keiser R, Kobbelt L P, et al. Shape modeling with point-sampled geometry[J]. ACM Trans. Graph.,2003,22(3):641-650.
    [134]Adamson A, Alexa M. Anisotropic point set surfaces:Computer Graphics Forum, 2006[C]. Wiley Online Library.
    [135]Pratt V. Direct least-squares fitting of algebraic surfaces[J]. SIGGRAPH Comput. Graph.,1987,21(4):145-152.
    [136]Alexa M, Adamson A. On normals and projection operators for surfaces defined by point sets:In Symposium on Point-based Graphics,2004[C]. Citeseer.
    [137]Chen Y, Wang C C L. Uniform offsetting of polygonal model based on Layered Depth-Normal Images[J]. Computer-Aided Design,2011,43(1):31-46.
    [138]Ju T, Losasso F, Schaefer S, et al. Dual contouring of hermite data[J]. ACM Trans. Graph.,2002,21 (3):339-346.
    [139]Varadhan G, Krishnan S, Kim Y J, et al. Featurc-sensitive subdivision and isosurface reconstruction:Visualization,2003. VIS 2003. IEEE,2003[C].
    [140]Chen Y, Zhou C, Lao J. A layerless additive manufacturing process based on CNC accumulation[J]. Rapid Prototyping Journal,2011,17(3):218-227.
    [141]Kataria A, Rosen D W. Building around inserts:methods for fabricating complex devices in stereolithography[J]. Rapid Prototyping Journal,2001,7(5):253-262.
    [142]Wang C C L, Leung Y, Chen Y. Solid modeling of polyhedral objects by Layered Depth-Normal Images on the GPU[J]. Computer-Aided Design, 2010,42(6):535-544.
    [143]Zhou C. Optimized Mask Image Projection for Large-Area Based Additive Manufaturing Process[D]. Los Angeles:University of Southern CaliforniaIndustrial and Systems Engineering,2011.
    [144]TI. Texas Instruments[EB/OL]. http://www.dlp.com/.
    [145]谭东才,胥光申,罗声,等.用于面曝光快速成形系统的光照度测量系统研究[J].光电技术应用,2010,25(3):53-57.
    [146]吴国华.影响水性聚氨酯树脂对金属附着力的因素及解决方法[J].涂料工业,2004,2004(7):41-43.
    [147]Choi J. Development of projection-based microstereolithography apparatus adapted to large surface and microstructure fabrication for human body application[D]. Busan:Pusan National University,2007.
    [148]Ikuta K, Hirowatari K. Real three dimensional micro fabrication using stereo lithography and metal molding:Micro Electro Mechanical Systems,1993, MEMS '93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE.,1993[C].
    [149]A. S. Limaye D W R. Process planning for maskprojection micro-stereolithography[J]. Rapid Prototyping Journal,2007,2007(13):76-84.
    [150]Zhou C, Chen Y. Three dimensional digital halftoning for layered manufacturing based on droplets[J]. Transactions Of the North American Manufacturing Research Institution of SME,2009,37:175-182.
    [151]杨林.基于工业以太网的运动控制系统关键技术研究[D].山东大学机械电子工程,2011.
    [152]Zhao X, Zhang C. A new camera and projector calibration method based on discrete computation:4th International Conference on Mechanical and Electrical Technology, ICMET 2012, July 24,2012-July 26,2012, Kuala Lumpur, Malaysia,2012[C]. Trans Tech Publications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700