组合梁与连续复合螺旋箍混凝土柱节点研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步和发展,使用功能好、施工快捷、造价低、性能好的钢梁与混凝土柱体系在日本得到了较为广泛的应用。连续复合螺旋箍约束混凝土柱、钢与混凝土组合梁所组成的结构体系比钢梁与混凝土柱体系更具优越性。它降低了结构的自重,节约材料,净使用面积和净高得到了增加,同时具有一般混凝土结构和钢结构的优点。尤其在我国建筑钢材产量逐年递增的时候,组合梁—连续复合螺旋箍混凝土柱结构体系的提出符合建设部建筑产业化及大力发展建筑用钢的要求。端板螺栓连接的组合梁、连续复合螺旋箍混凝土柱节点和连接钢筋传力的组合梁、连续复合螺旋箍混凝土柱节点就是适用于这种体系的节点类型。其中连接钢筋传力的组合梁、连续复合螺旋箍混凝土柱节点更是节点类型中的大胆创新。弄清此类节点的破坏机理、节点核芯区的承载力、在水平低周反复荷载作用下的滞回性能、组合梁配筋率等因素对节点强度等特性的影响对于指导设计、推广组合梁与复合螺旋箍混凝土柱体系、相关的规程制定都有着重要的价值。就此,本文着重做了以下几个方面的工作:
     第一次进行了足尺的端板螺栓连接的组合梁、连续复合螺旋箍混凝土柱节点试件和连接钢筋传力的组合梁、连续复合螺旋箍混凝土柱节点试件的拟静力实验,以及相应的模拟节点核芯区试件的拟静力实验,来研究节点的强度、抗震性能等特性,根据实验现象和实验结果,提出了相应的构造措施。
     第一次用实体单元对混凝土、钢材以及钢筋组成的端板螺栓足尺节点试件与模拟节点核芯区试件进行三维建模,而且同时考虑了端板与柱表面的接触问题及钢材、混凝土、钢筋等各种材料的非线性,通过合理的单元选取及网格划分,精确地分析了节点区应力的分布,并研究了低周反复荷载作用下节点的抗震性能,对比了实验与有限元分析的结果。作者同时分析了组合梁混凝土强度、组合梁配筋率、组合梁钢材强度对端板螺栓节点抗震性能的影响。
     第一次通过构造奇异单元来建立带初始裂纹的节点有限元模型,将断裂问题的研究引入到端板螺栓节点的有限元分析中,并通过ANSYS软件中Parametric Design Language编程来计算裂纹尖端的J积分值、应力强度因子,根据断裂力学中的K准则、J积分准则判断初始裂纹是否会重新启裂。作者同时分析了初始裂纹宽度、组合梁混凝土强度和组合
    
    梁配筋率对裂纹尖端处J积分值、裂纹嘴张开位移等断裂参数的影响。
     根据实验结果对两种类型的节点提出了基于实验研究的节点核芯区承载力公式;另外
    对端板螺栓节点,根据有限元分析结果提出了基于有限元分析的节点核芯区承载力公式,
    并对比了节点核芯区承载力实验值、按本文两种公式一基于实验基础上的经验公式、基于
    有限元分析基础上的节点核芯区抗剪承载力公式计算值。
     本文的实验和理论分析结果,可供设计、相关研究参考,同时对断裂力学在结构工程
    领域的分析有借鉴意义。
With the improvement of science and technology, the composite structure constituted by steel beam and concrete column has been applied more and more in Japan because of low cost and good performance, the structure system constituted by composite beam (SC beam) and continuous compound spiral hoop reinforced concrete column (CCSHRC column) has more superiority than the structure constituted by steel beam and concrete column. In the SC beam and CCSHRC column structure system the structural dead-weight is depressed, the clean use area increases and less materials are used, this system also posses the advantages of the normal concrete structure and steel structure. Especially in the time that the civil structural steel product yield increases by degrees year after year, the bringing forward of this system accords construct ministry's appealing of construction industrialization and developing the structural steel products using. The endplate bolted SC beam and CCSHRC column joint and the bar passing force's joint
    of SC beam and CCSHRC column are the same with SC beam and CCSHRC column structure system, the bar passing force's joint of SC beam and CCSHRC column is audacious innovation of joint types. The joints' failure mechanism, the bearing capacity of core zone, hysteretic behavior under horizontal load and influence of the ratio of reinforcement in SC beam on the joint's behavior are not clear, and making these clear is very important in guiding design, popularizing the SC beam and CCSHRC column structure system and correlative code. At this point, the paper mainly does work as follows:
    For the first time the quasi-static tests are done to the full size endplate bolted connection of the SC beam and CCSHRC column specimen, the full size bar passing force's joint of SC beam and CCSHRC column specimens and the corresponding simulating core zone specimens to study the joint's seismic behavior and strength, the configuration advise is brought forward according to the test phenomenon and the test results.
    For the first time the three dimension finite element model of the full size endplate bolted connection specimen and simulating core zone specimen are set up by the solid element, the contact problem of the endplate and column surface and the material nonlinear of concrete, steel and bar are taken into account in modeling at the same time, the stress distributing in joint zone is accurately analyzed by the rational element meshing, also the seismic behavior of the joint under cyclic load is studied, the test results and finite element results are contrasted. Finally the
    
    
    author analyzes the concrete strength, the ratio of reinforcement in the SC beam and steel strength's influences on the joints seismic behavior.
    For the first time the endplate bolted connection's finite element model with the original crack is set up by the singular element, the fracture problem study is introduced to the finite element analyzing. The J integral value and stress intensity factor of the crack tip are calculated by the ANSYS Parametric Design Language program, and the developing of original crack is judged from the K Rule and J Integral Rule. Finally author analyzes the width of the original crack, concrete strength and the ratio of reinforcement in SC beam's influences on the fracture parameters such as the J integral value and crack mouth open displacement.
    The core zone bearing capacity formulas of two types of joints based on the tests are brought forward respectively according to the tests. For the endplate bolted connection of SC beam and CCSHRC column, the core zone bearing capacity formula based on the finite element analyzing is also brought forward, at the same time the test values of core zone's bearing capacity, the formula calculating values based on test and based on finite element analyzing are compared.
    The results of test and finite element analysis can guide the design of endplate bolted connection of SC beam and CCSHRC column, simultaneously the paper is use for reference in structural fracture analysis.
引文
[1] 南宏一,阪中昇.日本铁筋柱·铁骨梁混合构造设计施工.第五回中日建筑构造技术交流会,西安,2001
    [2] Atsushi Nakazawa, Masataka Shibata. Effects of high Strength Transverse Reinforcement on the Ductile Behavior of Reinforced Concrete Members-Development of Riverbon MULTI SPIRAL HOOPs-, KAWASAKI STEEL TECHNICAL REPORT, NO. 28, June 1993
    [3] Masataka Shibata, Juro Mihara, Kiyoshi Masuo. Development of a specially designed high-strength reinforcement for square concrete columns, Proceedings of the Tenth World Conference on Earthquake Engineering, A.A. Balkema, 1992
    [4] 山川哲雄. An Experimental Study on Axial Compression Behavior of Concrete Double Confined in Steel Tube and Hoops, Proc. of 4-ICCS International Conference on Steel Tube and Hoops, Kosice, Slovakia, 1994.7
    [5] 山川哲雄,崎野健治,山田義智.A Study of Elastoplastic of R/C Short Column Doubly Confined in Steel Tube and Hoops, Proc. of the 3rd International Conference on Steel-Concrete composite Structures, Fukuoka, Japan, 1991
    [6] 山川哲雄,山田義智,崎野健治.正方形钢管直线型带筋 二重横补强 铁筋短柱弹塑性性状关实验的研究.1.实验概要结果,日本建筑建筑学会九州支部研究报告.第32号,1991.3
    [7] 山川哲雄,山田義智,崎野健治.正方形钢管直线型带筋 二重横补强 铁筋短柱弹塑性性状关实验的研究.2.理论解析实验结果检讨,日本建筑建筑学会九州支部研究报告.第32号,1991.3
    [8] 山川哲雄,山田義智,崎野健治.铜管带筋二重横补强短柱弹塑性性状关研究.工学年次论文报告集.13-2,1991
    [9] 山川哲雄,山田義智.正方形钢管带筋二重横补强铁筋短柱弹塑性性状关实验理论解析,环球大学工学部纪要,第42号,1991
    [10] Tetsuo Yamakawa, Kenji, Yoshitomo Yamada. A Study on Elastoplastic of R/C Short Columns Doubly confined by Steel Tube and Hoops, ASSA, 1991
    [11] 孙彦士.分段外包钢板筛RC柱抗震性能的实验研究,西安冶金建筑学院硕士研究生学位论文,1991
    [12] 中华人民共和国标准.钢结构设计规范(GBJ17-88),中国计划出版社,1988
    [13] 日本建筑学会.鉄筋柱·鉄骨梁混合构造设计施工[M].东京,2001.1-20.
    [14] 岩下静司,鸟穀利夫,菊田繁美.定著金物用柱RC,梁S部分架构实验的研究,日本建筑学会大会学术演讲梗概集,C构造Ⅱ,1689~1690,1994.9
    [15] 张富明,佐藤武,板仓康久.柱贯通形RC/S接合部断力及变形性状关研究,日本建筑学会大会学术演讲梗概集,C构造Ⅲ,1041~1042,1997.9
    [16] 宫野洋一,八繁公一,藤本利昭.柱RC·梁S构成架构实验的研究,日本建筑学会大会学术演讲梗概集,C构造Ⅱ,1829~1830,1993.9
    [17] 五十嵐贤次,木原隆明,山口雄二,稻田昇,望月重.RC柱S梁架构柱梁接合部断伝达机构关实验,日本建筑学会大会学术演讲梗概集,C构造Ⅱ,1699~1700,1994.9
    [18] 秦稚史,安倍勇,早川邦夫,细矢博.柱RC,梁S成构造物部分架构实验,日本建筑学会大会学术演讲梗概集,C构造Ⅱ,1615~1616,1991.9
    
    
    [19]红谷信行,金洸演,野口博.构造关日米共同实验研究-外柱RC·梁S接合部实验概要,日本建筑学会大会学术演讲梗概集,C构造Ⅲ,891~892,1995.8
    [20]远藤浩,松原正,金洸演,野口博.构造关日米共同实验研究-柱高强度用RCS接合部实验概要,日本建筑学会大会学术演讲梗概集,C构造Ⅲ,1121~1122,1996.9
    [21]胜仓靖,佐藤龙生,田村幸一,成原弘之.简易仕口柱RC梁S复合构造实验,日本建筑学会大会学术演讲梗概集,C构造Ⅱ,1895~1896,1992.8
    [22]阪口昇.铁筋柱上铁骨梁构成柱梁接合部断力,日本建筑学会构造系论文报告集,69~78,1991.10
    [23]柱RC梁S构成柱梁结合部断耐力钢构造论文集,No.5.19,1998.9
    [24]日本建筑学会,铁骨铁筋构造计算规准·同解说,1987
    [25]鈑冢信一,鸟穀利夫,内田和弘,田中伸幸.构造关日米共同实验研究柱RC·梁S接合部,日本建筑学会大会学术演讲梗概集,1301~1302,1998.9
    [26]山田裕,中野和久,西村泰志,南宏一.长缔高力引张接合混合构造柱接合部弹塑性举动,日本建筑学会大会学术演讲梗概集,1705~1706,1994.9
    [27]山田裕,西村泰志,南宏一.长缔高力引张接合混合构造柱接合部弹塑性举动,日本建筑学会大会学术演讲梗概集,1879~1880,1993.9
    [28]植松俊幸,西村泰志,南宏一.长缔高力引张接合混合构造柱接合部弹塑性举动,日本建筑学会大会学术演讲梗概集,1915~1916,1992.8
    [29]山田裕,西村泰志,南宏一.长缔高力引张接合混合构造柱接合部弹塑性举动,工学年次论文报告集.Vol.16,No.2,1994
    [30]阪口昇.铁筋柱铁骨梁构成刚性,耐力变形,日本建筑学会构造系论文报告集,107~112,1992.7
    [31]古川淳,阪口昇,吉松贤二,青木雅,高山秀雄,松邦夫.构造关日米共同实验研究柱RC·梁S接合部,日本建筑学会大会学术演讲梗概集,1289~1290,1998.9
    [32]西村泰志,南宏一.S·柱RC构成内部柱接合部应力伝达机构,日本建筑学会构造系论文集,No.401,77~85,1989.7
    [33]西村泰志,南宏一.铁骨铁筋柱接合部终局断耐力评価法,日本建筑学会构造系论文集,No.487,141~148,1996.9
    [34] Tauqir M. Sheikh, Gregory G. Deierlein, Joseph A. Yur, James O. Jirsa. Beam-Column Moment Connections for Composite Frame, Journal of Structural Engineering, Vol. 115, No. 11, 2858~2876, 1989.11
    [35]神野靖夫,富永博夫,村井義则,阪口昇,山野崎男.铁筋柱上铁骨梁构成架构耐力变形性能,日本建筑学会大会学术演讲梗概集,1189~1190,1990
    [36.]阪口昇,富永博夫,村井義则.铁筋柱铁骨梁接合部耐力及变形,工学年次论文报告集9-2,1987
    [37]阪口昇.铁筋柱上铁骨梁构成柱梁接合部断力—变形关系,日本建筑学会构造系论文报告集,No.429,1991.11
    [38]佐夕木仁,久保田勤,三瓶昭彦,山本哲夫.柱RC·梁S混合构造柱·梁接合
    
    部断抵抗机构,日本建筑学会构造系论文报告集,No.461,133~142,1994.7
    [39] 山田裕,中野和久,西村泰志,南宏一.长缔高力引张接合混合构造柱按合部弹塑性举动,日本建筑学会大会学术演讲梗概集,1705~1706,1994.9
    [40] 山田裕,西村泰志,南宏一.长缔高力引张接合混合构造柱接合部弹塑性举动,日本建筑学会大会学术演讲梗概集,1879~1880,1993.9
    [41] 植松俊幸,西村泰志,南宏一.长缔高力引张接合混合构造柱接合部弹塑性举动,日本建筑学会大会学术演讲梗概集,1915~1916,1992.8
    [42] 山田裕,西村泰志,南宏一.长缔高力引张接合混合构造柱按合部弹塑性举动,工学年次论文报告集.Vol.16,No.2,1994
    [43] Xiao Y, Choo BS, Nethercot DA. Composite connections in steel and concrete: experimental behavior of composite beam-column connections, J Construct Steel Res, Vol. 31, No. 1, 3~30, 1994
    [44] Anderson D, Najafi AA. Performance of composite connections: major axis endp[ate joints, J Construct Steel Res, No. 52, 269~291, 1999
    [45] Shi Y J, Chan SL, Wong YL. Ultimate strength analysis of composite plane frames, Proceedings of ICASS'96 International Conference of Advances in Steel Structure, Vol. 1, 1996
    [46] L.X Fang, S.L. Chart, Y.L. Wong. Strength analysis of semi-rigid steel-concrete composite frames, J Construct Steel Res, Vlo. 52, 269~291, 1999
    [47] A.K. Aggarwal, Comparative Tests on End-plate Beam-to-Column Connections, J. Construct. Steel Research 30(1994), pp. 151-175
    [48] N. Kishi and W.F. Chen, Data Base of Steel Beam-to-Column Connections, Structural Engineering Report, No. CE-STR-86-26, Purdue University, USA, 1986
    [49] Keh-Chyuan Tsai, Popov. Cyclic Behavior of End-plate Moment Connections, Journal of Structural Engineering, Vol. 116, No. 11, 1990
    [50] Ahmed Ghobarah, M. Korol, Ashraf Osman. Cyclic behavior of extended end-plate joints, Journal of Structural Engineering, Vol.118, No. 5, 1992
    [51] Korol, R.M., Gbobarah, Osman. Extended end-plate connections undercyclic loading behavior and design, Journal of Construction Steel Res., Vol.16, No. 4, 1991, 253~280.
    [52] Kato, Chen W.F., Nakao M. Effects of joint-panel shear deformation on frames, Journal of Construction Steel Res., Vol. 10, No. 1, 1988, 269~320
    [53] Cameron P. Chasten, Le-Wu Lu, George C. Driscoll, Prying and Shear in End-plate Connection Design, Journal of Structural Engineering, Vol. 118, No. 5, 1992
    [54] N. Krishnamurthy, Modeling and prediction of steel bolted connection behavior, Computers and Structures, Vol. 11, 175~182, 1979
    [55] M. R. Baharri, A. N. Sherbourne, Computer Modelling of An Extended End-Plate Bolted Connections, Computers & Structures, Vol 52, No. 5, 879~893, 1994
    [56] N. Sherbourne, R. Bahaari, 3D simulation of end-plate bolted connections, Journal of Structural Engineering, Vol. 120, No. 11, 1994
    [57] N. Sherbourne, R. Bahaari, Finite Element Prediction of End Plate Bolted Connection Behavior, Ⅰ: Parametric Study, Journal of Structural Engineering, Vol 123, No. 2, 1997
    
    
    [58] R. Bahaari, N. Sherbourne, Finite Element Prediction of End Plate Bolted Connection Behavior, Ⅱ: Analytic Formulation, Journal oF Structural Engineering, Vol. 123, No. 2, 1997
    [59] 郭兵.钢框架梁柱端板连接在循环荷载作用下的破坏机理及抗震设计对策,西安建筑科技大学博士学位论文,2002
    [60] 彭福明.钢结构框架梁柱节点性能研究,青岛建筑工程学院硕士学位论文,2001
    [61] 陈绍蕃,钢结构设计原理,北京:科学出版社,1998
    [62] 钟善桐.高层钢管混凝土结构.哈尔滨:黑龙江科技出版社,1999
    [63] 韩林海.钢管混凝土结构.北京:科学出版社,2000
    [64] 中华人民共和国经济贸易委员会.钢—混凝土组合结构设计规程(DL/T-5085-1999),北京:中国电力出版社,1999
    [65] 俞磊.钢管混凝土柱-钢筋混凝土梁板空间节点抗震性能实验研究,西安建筑科技大学硕士学位论文,2000
    [66] 西安建筑科技大学结构与抗震试验室.钢管混凝土柱、RC梁板节点拟静力三向加载试验报告,1999
    [67] 中华人民共和国标准.建筑抗震设计规范(GB50011-2001),中国建筑工业出版社,2001
    [68] 中华人民共和国标准.混凝土结构设计规范(GBJ10-89),中国建筑工业出版社,1989
    [69] Plumier A. Behavior of connections, Journal of Construct Steel Research. No. 29, 95~119, 1994
    [70] 中华人民共和国行业标准.型钢混凝土组合结构技术规程(JGJ138-2001,J130-2001),中国建筑工业出版社,2001
    [71] C. Matsui, et.. AIJ Design Method For Concrete Filled Steel Tubular Structure, ASCCS Seminar, Innsbruek, 18th, 1997.9
    [72] 日本建筑学会,铁骨铁筋置构造计算规准·同解说,1991
    [73] AISC, Seismic Provisions for Structural Steel Buildings. American Institute of Steel Construction, Chicago, 1997.
    [74] 江见鲸.钢筋混凝土结构非线性有限元分析,西安:陕西科学技术出版社,1994
    [75] 江见鲸,冯乃谦.混凝土力学,北京:中国铁道出版社,1991
    [76] Suidan M., Schnobrich W. C.. Finite Element Analysis of Reinforced Concrete, Journal of Structural Division, Vol. 99 No. 10, 1973
    [77] Suidan M., Schnobrich W. C., Finite element analysis of reinforced concrete, Journal of Structural Division, Vol. 99, 1997. 10
    [78] Darwin D., Pechnold D. A., Analysis of RC shear panels under cyclic loading, Journal of Structural Division, Vol. 102, 1976.2
    [79] K. J. William, E. P. Warnke. Constitative model for the trialxial behaviour of concrete, IABSE Proc., Bergams. Italy, 1974.5
    [80] William, K.J., Warnke, E. D., "Constitutive Model for the Triaxial Behavior of Concrete", Proceedings, International Association for Bridge and Structural Engineering, Vol. 19, ISMES, Bergamo, Italy
    [81] 朱伯龙,董振翔.钢筋混凝土非线性分析,上海:同济大学出版社,1984
    [82] 沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳有限元分析,北京:清华大学出版社,1993
    [83] ANSYS Theory Reference, Electronic Release, SAS IP, Inc., 1998
    
    
    [84] ANSYS Element, Reference, Electronic Release, SAS IP, Inc., 1998
    [85] ANSYS Operation Reference, Electronic Release, SAS IP, Inc., 1998
    [86] ANSYS Modeling and Meshing Reference, Electronic Release, SAS IP, Inc., 1998
    [87] 王仁东.断裂力学理沦与应用,北京:化学工业出版社,1984
    [88] Westergaard, H. M., Bearing pressures and cracks, J. Appl. Mech., Vol. 61, 1939
    [89] Rice J R., Rosengren G R., Plane strain deformation near a Crack Tip in a power-law Hardening Material, J. Mech. Phys. Solids, Vol. 16 1968
    [90] D.布洛克.工程断裂力学基础,北京:科学出版社,1980
    [91] 丁遂栋,孙利民.断裂力学,北京:机械工业出版社,1978
    [92] 褚武扬.断裂力学基础,北京:科学出版社,1979
    [93] 范天佑.断裂力学基础,南京:江苏科学技术出版社,1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700