双层堤基渗透破坏发展机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双层堤基广泛存在于江河中下游地区,渗透破坏是该类堤基中出险率最高的破坏形式,多年来针对堤后渗透破坏产生条件的研究已经取得了一定的成果,但是对于渗流出口(工程中也称管涌口)形成后,集中渗流通道(工程中也称管涌通道)的断面扩展和上溯仍然缺乏深刻的认识,而该通道的发展直接关系到渗流出口形成后渗透破坏危险性的大小,因而本文针对双层堤基中管涌口产生以后,在强弱透水层之间产生的管涌通道进行研究,其发展包含通道断面扩展和尖端上溯两个方面,本文主要针对这两个方面开展工作,具体内容为:
     1.管涌通道发展的机理性研究,包含通道扩展和上溯两个部分。在通道扩展方面,以通道边壁砂颗粒作为研究对象,通过颗粒的稳定状态来判定通道扩展的最终形态,砂颗粒的稳定性由其受力状态所决定,在颗粒受力平衡的分析中,引用河流动力学中的相关概念与公式,考虑了不同粒径砂颗粒之间的相互作用和起动标准,通过计算得到了作用在砂颗粒上的临界起动速度,考虑通道内流速的紊动、非均匀分布和通道内的水流特性,采用通道断面平均流速来作为通道扩展的判定标准,该标准具有方便测量和简单易用等特点;在通道上溯方面,提出了以尖端坡降作为通道是否上溯的评判标准,通道上溯后,尖端坡降由于通道各处断面形状的变化,其变化趋势分为稳定和增长两种,如果尖端坡降稳定,则通道能够保持稳定,如果尖端坡降增加,则通道无法稳定会持续上溯,直至贯穿堤基。
     2.管涌通道发展的试验研究,包含通道扩展和上溯两个部分。在通道扩展方面,采用两种模型尺寸进行了多组试验,试验结果显示在远端和通道内水头差较小时,渗透力对通道的扩展作用较明显,但是当水头差增大时,渗透力对通道扩展的作用减弱,此时通道内水流冲刷对通道扩展的影响则较为明显;在通道上溯方面,采用两种覆盖层模拟方法研究了通道上溯时平面和剖面的发展形态,试验结果证实了机理分析中尖端坡降的相关内容。
     3.管涌通道发展的数值模拟计算,包含通道扩展和上溯两个部分。在通道扩展方面,以二维有限元渗流程序为基础,以通道断面平均流速、自然休止角和形状附加条件三条标准为断面的扩展的判定条件,以远端、通道内水头差和通道内水流流量为边界条件,模拟了通道的扩展过程,给出了通道的稳定状态;在通道上溯方面,采用多层透水地层准三维有限元程序进行通道发展的计算,兼顾计算量和计算精度,提出了一种等效代换方法,在研究通道各处断面扩展判定时采用通道实际断面形式,在三维渗流场计算时采用等效矩形断面形式,等效前后,通道内水流和通道外渗流均保持一致,计算结果给出了渗流场以及通道尖端坡降,可用于判定通道上溯的稳定性。
     4.通过程序计算结果与试验结果进行对比,验证了机理分析与程序编制的正确性,基于程序分析,对典型双层堤基管涌通道的发展进行了相关探讨。
Double-layer dike foundation widely distributed in the middle and lower reaches ofrivers. Seepage failure is the most common failure modes in the dike foundation. In recentyears, many scholars have done a lot of research on the seepage failure generation condition.But few research on how the piping channel developing after the seepage exit generating. Thedevelopment of the piping channel is related to the degree of risk. For this problem, this paperstudies the characteristics of the piping channel. After the seepage exit appears, thedevelopment of the piping channel contains two parts: the radial expansion and the axialexpansion. This paper do the flowing jobs in the problem.
     1. Research on the mechanism of piping channel development, contains radial expansionand axial expansion. About the radial expansion, take the particles on the side wall as theresearch object. The final form of the channel radial expansion is determined by state of theseparticles. River Dynamics concepts and formulas introduced in the mechanical analysis.Incipient velocity of particles was deduced by the particles stress analysis. Interactionsbetween particles of different size and incipient standard were considered in the analysis.Considering the impact of turbulent flow, non-uniform velocity distribution and flowcharacteristics in the channel, channel average velocity were used as channel radial expansioncriteria.
     2. Research on the experiment of piping channel development, contains radial expansionand axial expansion. About the radial expansion, took multi-group experiments by using twomodel box. Experimental results demonstrate the impact of the hydraulic gradient to the radialexpansion is great when the head difference between the channel and the remote is low. Andwhen the head difference is high, the impact becomes not so clear. At this time, the impact ofthe scour in the channel is clear. About the axial expansion, took multi-group experiments byusing two typeset of material to simulate the aquitard. The shape changes of the channel werestudied in plan and section. Experimental results confirmed the thesis of the tip hydraulicgradient trend.
     3. Research on the numerical of piping channel development, contains radial expansionand axial expansion. About the radial expansion, prepared a two-dimensional finite elementprogram. The program simulated the channel radial expansion process. The channel averagevelocity, natural angle of repose and additional shape conditions is the determinationcondition of the radial expansion. The head difference between the channel and the remoteand the flow in the channel is the boundary conditions. About the axial expansion, proposed a method of equivalent substitution based on the Multi-layer High permeableThree-dimensional finite element program. This method can achieve accuracy and reduce theamount of computation. When it came to judge the channel radial expansion, the actual formof the channel cross-section was used. When it came to calculate of seepage field, theequivalent rectangular cross-section was used. The flow in the channel and the seepage fieldout the channel is consistent with both before and after the change. The seepage field and thehydraulic gradient in channel tip can be get from the program. They can used to judgewhether the channel will occur axial expansion.4. Verify the correctness of the mechanismand the program by comparing the results of the calculation and experiment. Discussing thedevelopment of the piping channel in the typical double-layer dike foundation based on thefinite element program.
引文
[1]中国水利年鉴编纂委员会.中国水利年鉴2011[M].2011:517-521.
    [2]丁留谦,张启义,姚秋玲.1998年长江流域管涌险情特点分析[J].水利水电技术.2007(02):44-45.
    [3]王威,黄为,冯忠民.堤防抢险及对今后建设的建议[J].人民长江.1999(02):18-21.
    [4]毛昶熙.渗流计算分析与控制[M].北京:中国水利水电出版社,1990.
    [5]曹敦履.砂砾地基上土坝的渗流控制[J].水利学报.1963(2):71-74.
    [6]蒋国澄,刘宏梅.砂砾地基上土坝的渗流控制[J].水利学报.1962(01):33-43.
    [7]毛昶熙.砂砾地基上土坝的渗流控制[J].水利学报.1963(3):66-69.
    [8]毛昶熙,段祥宝,蔡金傍,等.堤基渗流无害管涌试验研究[J].水利学报.2004(11):46-53.
    [9]刘昌军,丁留谦,孙东亚,等.双层堤基管涌模型试验尺寸效应的数值模拟[J].岩石力学与工程学报.2012(S1):3110-3116.
    [10]周红星.双层堤基渗透破坏机理和数值模拟研究[D].华南理工大学,2011.
    [11]周健,姚志雄,张刚.基于散体介质理论的砂土管涌机制研究[J].岩石力学与工程学报.2008(4):749-756.
    [12] Jianhua Y. FE Modelling of Seepage in EmbankmentSoils with Piping Zone[J].岩石力学与工程学报.1998(06).
    [13]周晓杰,介玉新,李广信.基于渗流和管流耦合的管涌数值模拟[J].岩土力学.2009(10):3154-3158.
    [14]毛佩郁,段祥宝,毛昶熙.黄河下游堤防现状与渗流防冲调研[J].人民黄河.1998(05):34-37.
    [15] Mansur C I, G. Postol J R, Salley. Performance of Relief Well Systems AlongMississippi River Levee[J]. Journal of Geotechnical&Geoenvironmental Engineering.2000,126(8):727-738.
    [16] Darcy H P G. Les fountaines publiques de la Ville de Dijon[M]. Paris, France: VictonDalmont,1856.
    [17] Forchheimer P. Ueber die ergiebigkeit von brunnen-anlagen und sickerschlitzen[J]. Z.Architekt. Ing. Ver. Hannover.1886,32:539-563.
    [18] Slichter C S. Theoretical investigations of the motion of ground waters[C].Washington,DC: USGS.
    [19] Bligh W G. Dams, barrages and weirs on porous foundations[J]. Engineering News.1910,64(26):708-710.
    [20] Van Zyl D, Harr M E. Seepage erosion analysis of structures[C]. Balkema,1981.
    [21] Lane E W. Security from Under-Seepage Masonry Dams on Earth Foundations[J]. Transactions ASCE.1919,100.
    [22]刘杰.无粘性土的渗透变形特性及抗渗强度[C].北京:水利电力出版社,1983.
    [23]刘杰.缺乏中间粒径砂砾石的渗透稳定性[C].北京:中国工业出版社,1963.
    [24]沙金煊.关于砂砾料的渗透变形问题[D].南京水利科学研究所,1977.
    [25] Terzaghi K. Der Grundbruch an Stauwerken und seine Verhuetung[J]. Die Wasserkraft.1922,17:445-449.
    [26] Terzaghi K. Effeet of minor geologic details on the safety of dams[J]. Mining Geology.1929,26:31-46.
    [27] Nakajima Y. Study of the Failure of PIPing in Polder Dikes for Land Reelamation,[J].Soil and Foundations.1968,8(4):30-47.
    [28]吴良骥.无粘性土管涌临界坡降的计算[J].水利水运科学研究.1980(4):90-95.
    [29]毛昶熙.电模拟试验与渗流研究[M].北京:水利出版社,1981:300-325.
    [30]沙金煊.多孔介质中的管涌研究[J].水利水运科学研究.1981(3):89-93.
    [31]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.水利水电工程地质勘察规范(GB50487-2008)[S].北京,2008.
    [32] Khilar K C, Folger H S, Gary D H. Model for piping-plugging in earthen structures[J].J.Geoteeh.Eng.1985,111(7):833-846.
    [33]刘忠玉,乐金朝,苗天德.无粘性土中管涌的毛管模型及其应用[J].岩石力学与工程学报.2004(22):3871-3876.
    [34] Sellmeijer J B. On the Mechanism of Piping under Impervious Structures(Thesis)[J].LGM-Mededelingen.1988.
    [35] Calle E O F, Best H, Sellmeijer J B, et al. Probabilistic analysis of piping underneathwater retaining structures[J]. The12th International Conference on Soil Mechanics andFoundatoin Engineering.1989:819-822.
    [36] Sellmeijer J B, Koenders M A. A Mathematical Model for Piping[J]. AppliedMathematical Modelling.1991,15(6):646-651.
    [37] Koenders M A, Sellmeijer J B. Mathematical Model for Piping[J]. Journal ofGeotechnical Engineering (ASCE)JGENDZ.1992,118(6):943-946.
    [38] Weijers J B A, Sellmeijer J B. A New Model To Eeal With the Piping Mechanism[J].ilters in Geotechnical and Hydraulic Engineering.1993:349-355.
    [39] Weijers J, Sellmeijer J B. A new model to deal with the piping mechanism[J]. Filters ingeotechnical and hydraulic engineering.1993:349-355.
    [40] Singh V P, Ojha C S P, Adrian D D, et al. Role of sand boil fomation in levee failure[J].XXIX IAHR Congress Proceedings,Theme C.2001.
    [41] Ojha C S P, Singh V P, Adrian D D. Influence of porosity on piping models of leveefailure[J]. Journal ofGeotechnical and Geoenvironmental Engineering.2011.
    [42] Ojha C S P, Singh V P, Adrian D D. Determination ofcritical head in soil piping[J].Joumal of hydraulic engineering.2003.
    [43]曹敦侣.渗流管涌的随机模型[J].长江水利水电科学研究院院报.1985(2):39-46.
    [44]刘忠玉.无粘性土中管涌的机理研究[D].兰州大学,2001.
    [45]林志.关于管涌的试验研究和理论分析[D].上海:同济大学,2001.
    [46]刘建刚,陈建生,焦月宏.砂砾石地基渗漏涌砂模型[J].大坝观测与土工测试.2001,25(3):41-43.
    [47]刘建刚,陈建生,赵维炳.典型堤基渗漏的完整井管涌模型及其涌砂影响范围的估算[J].工程勘察.2002(4):26-27.
    [48]滕凯,康百赢.关于堤坝管涌计算方法的进一步研究[J].岩土工程技术.2003(1):11-15.
    [49]陈建生,刘建刚,焦月红.接触冲刷发展过程模拟研究[J].中国工程科学.2003(7):33-39.
    [50]周晓杰.堤防的渗透变形及其发展的研究[D].清华大学,2006.
    [51]介玉新,董唯杰,傅旭东,等.管涌发展的时间过程模拟[J].岩土工程学报.2011(2):215-219.
    [52]周红星,曹洪.双层堤基渗透破坏机制和数值模拟方法研究[J].岩石力学与工程学报.2011(10):2128-2136.
    [53]吴梦喜,邓琴芳,黄艳北.堤基管涌动态发展的数值模拟[J].郑州大学学报(工学版).2012(5):66-71.
    [54] Bazat. Measuring soil deformation caused by the Pressure of the seepage[J]. In:17thInt.Navig.Congr.1949:195-198.
    [55] Schmiderbauer J. Die Schwimmsanderseheinungen beim senkrecht auf steigendenGrundwasserstrom[J].Diss.1.eCh.Hochsch.1950.
    [56] Sentko M. Der Zeitliehe Ablouf des Schwimmsand aufbruches und der Einfluss dergeometrisehen Anordung der Baugrubenumschliess ungen auf das kritische Gefaelle[J].Veroffeniliehungen Institu fuer Bedenmeehanik,Karsruhe:Teehnisehe Hoehsehule.1961,7.
    [57] Van Zyl D. Seepage Erosion of Geoteehnical Structures Subjeeted to Confined Flow-AProbabilistic Design Approach[D]. London: PurdueUniversi,1979.
    [58] de Wit M, Sellimeijer J B, Penning A. Laboratory testing on piping[J].10thInt.Conf.onSoil Mech. and Found. Eng.1981.
    [59] Kohno L, Nishigaki M, Takeshita Y. Levee Failure Caused by seepage and PreventiveMeasures[J]. natural disaster science.1987,9(2):55-76.
    [60]冷元宝,李跃伦,黄宜更,等.流场法探测堤坝管涌渗漏新技术[J].人民黄河.2001(11):8-37.
    [61]张家发,吴昌瑜,朱国胜.堤基渗透变形扩展过程及悬挂式防渗墙控制作用的试验模拟[J].水利学报.2002(9):108-112.
    [62]毛昶熙,段祥宝,蔡金傍,等.北江大堤典型堤段管涌试验研究与分析[J].水利学报.2005(7):818-824.
    [63]毛昶熙,段祥宝,蔡金傍,等.悬挂式防渗墙控制管涌发展的试验研究[J].水利学报.2005(1):42-50.
    [64]刘杰,崔亦昊,谢定松.关于堤基渗流无害管涌试验研究的讨论[J].水利学报.2005,36(11):1392-1395.
    [65]周红星,洪曹,林洁梅.管涌破坏机制模型试验覆盖层模拟方法的探讨[J].广东水利水电.2005(2):6-7.
    [66]罗玉龙,吴强,詹美礼,等.考虑应力状态的悬挂式防渗墙-砂砾石地基管涌临界坡降试验研究[J].岩土力学.2012(S1):73-78.
    [67]刘昌军,丁留谦,孙东亚,等.单层堤基管涌侵蚀过程的模型试验及数值分析[J].土木工程学报.2012(8):140-147.
    [68]陈建生,何文政,王霜,等.双层堤基管涌破坏过程中上覆层渗透破坏发生发展的试验与分析[J].岩土工程学报.2013:1.
    [69] Zhou H, Cao H, Zhang W. Experimental studies on seepage failure of the top stratum at aweak spot in double-layer dike foundations[C]. Xi'an, China: Trans Tech Publications,2012.
    [70]李兴华.堤基渗透破坏过程及管涌通道冲刷扩展的试验研究[D].华南理工大学,2011.
    [71]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [72] Garde R J, Sethuraman S. Variation of the drag coefficient of a sphere rolling along aboundary[J]. La Houille Blanche.1969(7):727-732.
    [73] Coleman N L. The drag coefficient of a stationary sphere on boundary of similarspheres[J]. La Houille Blanche.1972(1):17-22.
    [74]唐学林,于欣,任松长.固-液两相流体动力学及其在水利机械中的应用[M].郑州:黄河水利出版社,2006.
    [75]明滋,舒别尔特.粒状材料水力学[M].北京:水利出版社,1957.
    [76]冷魁,王明甫.无粘性非均匀沙起动规律探讨[J].水力发电学报.1994(2):57-65.
    [77]何文社.非均匀沙运动特性研究[D].四川大学,2002.
    [78]韩其为.泥沙起动规律及起动流速[J].泥沙研究.1982(2):11-26.
    [79]韩其为,何明民.泥沙起动规律及起动流速[M].北京:科学出版社,1999.
    [80]韩其为,何明民.泥沙运动统计理论[M].科学出版社,1984.
    [81]窦国仁.再论泥沙起动流速[J].泥沙研究.1999(6):1-9.
    [82]吴持恭.水力学(上册)[M].北京:高等教育出版社:143-151.
    [83]费祥俊.浆体与粒状物料输送水力学[M].北京:清华大学出版社,1994:120-136.
    [84]赵辉.堤基管涌通道冲刷扩展的试验研究[D].华南理工大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700