低合金钢板带热轧过程微宏观多参数耦合建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁工业长期以来一直是工业国家的重要产业,其中金属板带材在国民经济和国防现代化建设中更是起着非常重要的作用。板带轧制过程的控制主要包括两方面的内容:其一为满足产品最终形状和尺寸要求的外部质量控制;其二为满足产品性能要求的内部质量控制。这就要求在钢材生产的全过程,特别是热轧板带过程中,在控制板带的几何形状的基础上,还需要对板带的微观组织和结构进行有效的控制。因此在材料科学和现代数学、力学、宏观和微观相结合基础上,根据热加工工艺、组织、性能三者关系,建立热轧板带多参数(热、力及微观组织演变)耦合仿真系统,已经成为当前研究的前沿课题,是指导生产和提高产品内外部质量的有力工具。
     随着我国经济建设的不断发展,低合金高强度结构钢的应用越来越广泛。其中Q345B低合金高强度钢具有高强度、高韧性、抗冲击、耐腐蚀等优良特性,成为工程结构设计首选材料之一,被广泛应用于建筑、桥梁、船舶、车辆及其它结构件,市场前景广阔,所以针对该材料进行热轧阶段微观组织演变的研究,为最终获得性能良好的产品提供了理论基础。
     首先,由于金属材料的本构关系(变形抗力)是热轧过程中理论计算、工艺优化、设备力能参数计算等最基本的参数之一,因此根据变形条件(变形温度、变形速度及变形程度)与其的关系,应用Gleeble-3500热模拟实验机对低合金钢Q345B进行不同变形条件下的单道次热压缩实验,分别分析各种变形条件对材料变形抗力的影响,建立动态再结晶型和动态回复型变形抗力模型。通过与实验进行对比,表明了模型的准确性,为后序的轧制过程数值模拟提供了可靠的数据信息。
     其次,金属材料热轧过程中会发生动态软化(主要为动态再结晶)和静态软化(主要为静态再结晶和亚动态再结晶),并伴随着组织结构的变化及晶粒长大行为的发生,这些微观组织(奥氏体)演变过程对板带的最终性能有很大的影响。因此通过变形条件对奥氏体组织演变的影响,应用Gleeble-3500热模拟实验机对低合金钢Q345B进行不同变形条件下的单、双道次热压缩实验,并对道次间隙时间内静态软化机制进行深入研究,建立奥氏体演变(动态再结晶、静态再结晶、亚动态再结晶和间隙时间混合再结晶)动力学模型、晶粒尺寸模型以及晶粒长大模型。通过热轧过程的仿真计算和分析,讨论和研究奥氏体组织在间隙时间内的静态软化机制,考虑混合再结晶的发生,准确的揭示了变形条件和物理冶金现象间的复杂关系,加深对组织演变规律的认识,为轧制工艺的设计与改善,产品机械性能的提高提供理论基础。
     再次,分别基于流面条元法和有限差分法建立金属变形模型和温度场模型,为热轧阶段微观组织演变过程的预测提供必要的计算前提,为最终开发热轧板带多参数耦合仿真系统奠定了理论基础。
     最后,将金属变形模型、温度场模型、变形抗力模型和微观组织演变模型集成,利用Visual C++6.0编译软件结合计算机图形技术中的标准语言OpenGL对基于条元法热轧板带多参数耦合仿真系统进行可视化软件开发。对1750 mm六机架热连轧过程进行仿真模拟,计算了变形区应变、应变速率和整个热轧过程中温度等场量的分布情况,预报了热轧阶段奥氏体晶粒尺寸及其再结晶体积分数的变化情况,结果表明了仿真系统具有较高的精确性,并且可以大大地缩短实验时间,降低实验费用和工业实验的风险,为科学的制定轧制工艺,更准确地控制轧制过程等方面提供了良好的基础。
Iron and steel industry has long been an important industry in industrialized countries, especially the metal plate and strip is playing very important role in the national economy and the modernization of national defense. Strip rolling process control mainly includes two aspects: one is the final shape and size of products to meet the requirements of external quality control, the other is the performanceof products to meet the requirements of internal quality control. Effective control for microstructure and structure is necessary in production, especially hot rolling. Therefore, based on the relationship among the thermal processing, microstructure and performance, how to develop the multi-parameter (thermal, mechanical and microstructure evolution) coupling simulation system of hot rolling strip steel has become a leading topic of current research, which is the powerful tool to instruct production and improve product quality.
     First, constitutive of metal materials (deformation resistance) is one of the most basic parameters for theoretical calculation, process optimization, force and energy parameters in the hot rolling process. Therefore, according to the relationship of deformation conditions and deformation resistance, the deformation resistance of Q345B low-alloy steel during single-pass hot compression deformation is investigated at different deformation conditions on Gleeble-3500 thermo-simulation machine. By analyzing the effects of deformation conditions to deformation resistance, dynamic recrystallization and dynamic recovery deformation resistance models are set up. The error analysis of these models proved that the model had good accuracy, which can provide reliable data for the rolling process.
     Second, metal material can occur dynamic softening (mainly dynamic recrystallization), static softening (mainly static recrystallization and metadynamic recrystallization) and grain growth. This microstructure (austenite) evolution has a great influence of the final performance of the strip. The austenite recrystallization behavior of low-alloy steel Q345B during single-pass and double-pass hot compression deformation tests is investigated at different deformation conditions on Gleeble-3500 thermo-simulation machine. Static softening mechanism during the interpass time is researched deeply. Austenite evolution kinetics model, grain size model and grain growth model are set up. According to analyzing and calculating hot rolling process, the intensive study of austenite evolution is proven to more accurately reveal complex relationship between deformation conditions and the phenomenon of the physical metallurgy, which deepen the understanding of the microstructure evolution to control the rolling process more accurately, thereby enhancing the product's mechanical properties.
     Third, based on the stream surface strip element method and finite difference method to build three dimensional deformation model and the temperature field model, which provide the necessary computing prerequisite to forecast microstructure evolution during hot rolling and establish a theoretical foundation to development hot strip multi-parameter coupled simulation system.
     Finally, coupled the metal deformation model, the temperature field model, the deformation resistance model and the microstructure evolution model, the multi-parameter coupling visual simulation system software is developed by the visualization integrated software Visual C++6.0 and stand computer graphics technology language OpenGL. The simulation for the 1750 mm 6 stand hot continuous rolling calculates the distribution of the fields, such as the strain, the strain rate and temperature and so on and predicts the changes of austenite grain size and recrystallization volume fraction in hot rolling process. The results show that the simulation system can greatly reduce the experimental time, reduce experimental costs and the risk of industrial experiments, which provide a good basis to develop the scientific of rolling process and more accurate control rolling process.
引文
1朱久发.我国汽车用热轧板卷的生产状况及市场需求分析.钢铁研究, 2005, 142(1): 55-58
    2王国栋,刘相华,张殿华.我国中厚板行业如何直面WTO.轧钢, 2002, 10(4): 3-5
    3 S. Fumio, F. Tetsuya. Progress in Technological Developments During the Past 50 Years at Kawasaki Steel and Future Prospects. Kawasaki Steel Technical Report, 2001, 4: 163-177
    4马建明,吴初国.缓解当前我国铁矿资源供求矛盾的关键何在.国土资源情报, 2008, 7: 33-35
    5余杨斌.新中国国民经济恢复时期的钢铁工业.冶金经济与管理, 2008, 7: 45-48
    6王有铭,李曼云,韦光.钢材的控制轧制和控制冷却.北京:冶金工业出版社, 1995: 1-49
    7王占学.控制轧制与控制冷却.北京:冶金工业出版社, 1988: 1-11
    8 H. J. Frosset, M. F. Ashhby. Deformation Mechanism Maps. New York: Pergamon Press, 1982
    9 S. B. Brown, K. H. Kim, L. Anand. Internal Variable Constitutive Model for Hot Working of Metals. International Journal of Plasticity., 1989, 2(5): 95-130
    10 J. H. Hollomon. Tensile Deformation. Trans. AIM, 1945: 162-268
    11 P. Ludwick. Element der Tech.Mech, Julius, ed. SpringerVerlag, Berlin, 1990: 32
    12 H. W. Swift. Plastic Instability Under Plane Stress. Journal of the Mechanics and Physics of Solids, 1952, 1: 1-18
    13 E. Voce. The Relationship Between Stress and Strain for Homogeneous Deformation. J. Inst. Met., 1948, 74: 537
    14沙孝春,兰勇军,李殿中,等.带钢热轧组织性能预测与控制技术应用与发展.轧钢, 2003, 20(3): 23-26
    15 C. M. Sellars. Computer Modelling of Hot-Working Processes. Materials Science and Technology, 1985, 1(14): 325-332
    16 C. M. Sellars, J. A. Whiteman. Recrystal1ization and Grain Growth in Hot Rolling. Metal Science, 1978, 13(5): 187-194
    17 H. J. Mcqueen, J. J. Jonas. Role of the Dynamic and Static Softening Mechanisms in Multistage Hot Working. Journal of Materials Shaping Technology, 1985, 3(4): 410-420
    18 F. H. Samuel, S. Yue, J. J. Jonas, et al. Modeling of Flow Stress and Rolling Load of a Hot StripMill by Torsion Testing. ISIJ International, 1989, 29(10): 878-886
    19 J. W. Bowden, F. H. Samuel, J. J. Jonas. Effect of Interpass Time on Austenite Grain Refinement by Means of Dynamic Recrystallization of Austenite. Metallurgical and Materials Transactions A, 1991, 22(12): 2947-2957
    20 A. Laasraoui, J. J. Jonas. Prediction of Temperature Distribution, Flow Stress and Microstructure During the Multipass Hot Rolling of Steel Plate and Strip. ISIJ International, 1991, 31(1): 95-105
    21 T. M. Maccagno, J. J. Jonas, P. D. Hodgson. Spreadsheet Modelling of Grain Size Evolution During Rod Rolling. ISIJ International, 1996, 36(6): 720-728
    22 K. Minami, F. Siciliano Jr, T. M. Maccagno, et al. Mathematical Modeling of Mean Flow Stress During the Hot Strip Rolling of Nb Steels. ISIJ International, 1996, 36(12): 1507-1515
    23 C. Devadas, D. Baragar, G. Ruddle, et al. The Thermal and Metallurgical State of Steel Strip During Hot Rolling: Part II. Factors Influencing Rolling Loads. Metallurgical Transactions A, 1991, 22: 321-333
    24 C. Devadas, I. V. Samarasekera, E. B. Hawbolt. The Thermal and Metallurgical State of Steel Strip During Hot Rolling: Part III. Microstructural Evolution. Metallurgical Transactions A, 1991, 22: 335-349
    25 C. Devadas, I. V. Samarasekera, E. B. Hawbolt. The Thermal and Metallurgical State of Steel Strip During Hot Rolling: Part I. Characterization of Heat Transfer. Metallurgical Transactions, 1991, 22: 307-319
    26 B. A. Parker, R. K. Gibbs, P. D. Hodgson. Prediction of Ferrite Grain Size in Niobium Microalloyed Controlled Rolled Steels. International Symposium on Low-Carbon Steels for the 90's, 1993: 173-179
    27 Zbigniew Kedzierski Maciej Pietrzyk, Halina Kusiak, et al. Evolution of the Microstructure in the Hot Rolling Process. Steel Research, 1993, 64(11): 549-556
    28 M. Pietrzyk. Finite Element Based Model of Structure Development in the Hot Rolling Process. Steel Research, 1990, 61(2): 603-607
    29 K. Karhausen, R. Kopp, M. M. De Souza. Numerical Simulation Method for Designing Thermomechanical Treatments, Illustrated by Bar Rolling. Scandinavian journal of metallurgy, 1991, 20(6): 351-363
    30 R. Kopp. K. Karhausen. Model for Integrated Process and Microstructure Simulation in Hot Forming. Steel Research, 1992, 63(6): 247-256
    31 H. Dyja, P. Korczak. Application of the Thermal-Mechanical-Microstructural Finite Element Model to the Simulation of Hot Plate Rolling. Proc. Int. Congr. Numer. Methods Eng. Appl. Sci., CIMENICS 96, 1996: 359-366
    32 J. Yanagimoto, K. Karhausen, A. J. Brand, et al. Incremental Formulation for the Prediction of Flow Stress and Microstructural Change in Hot Forming. Journal of Manufacturing Science and Engineering, 1998, 120: 316-323
    33 J. Yanagimoto, J. Liu. Incremental Formulation for the Prediction of Microstructural Change in Multi-Pass Hot Forming. ISIJ International, 1999, 39(2): 171-175
    34 J. Liu, A. Yanagida, S. Sugiyama, et al. The Analysis of Phase Transformation for the Prediction of Microstructure Change after Hot Forming. ISIJ International, 2001, 41(12): 1510-1516
    35 S. R. Wang, A. A. Tseng. Macro- and Micro-Modelling of Hot Rolling of Steel Coupled by a Micro-Constitutive Relationship. Materials & Design, 1995, 16(6): 315-336
    36 Kyuhwan Lim, Youngseog Lee, P. A. Manohar. Simulation of Microstructural Evolution in Rod Rolling of a Medium C-Mn Steel. Materials Science Forum, 2003, 426-432(5): 3789-3794
    37 P. M. Pauskar. An Integrated System for Analysis of Metal Flow and Microstructural Evolution in Hot Rolling. PhD Thesis, the Ohio State University, 1998: 30-224
    38 Y. Lee, S. Choi, P. D. Hodgson. Integrated Model for Thermo-Mechanical Controlled Process in Rod (or Bar) Rolling. Journal of Materials Processing Technology, 2002, 125-126(9): 678-688
    39 C. G. Sun, H. N. Han, J. K. Lee, et al. A Finite Element Model for the Prediction of Thermal and Metallurgical Behavior of Strip on Run-out-Table in Hot Rolling. ISIJ International, 2002, 42(4): 392-400
    40 S. X. Zhou. An Integrated Model for Hot Rolling of Steel Strips. Journal of Materials Processing Technology, 2003, 134(3): 338-351
    41 M. Suehiro, K. Sato, Y. Tsukano, et al. Computer Modeling of Microstructural Change and Strength of Low Carbon Steel in Hot Strip Rolling. Transactions of the Iron and Steel Institute of Japan, 1987, 27(6): 439-445
    42 Takehide Senuma, Masayoshi Suehiro, Hiroshi Yada. Mathematical Models for PredictingMicrostructural Evolution and Mechanical Properties of Hot Strips. ISIJ International, 1992, 32(3): 423-432
    43 F. Kovac, M. Dzubinsky, J. Boruta. Prediction of Low Carbon Steels Behaviour under Hot Rolling Service Conditions. Acta Materialia, 2003, 51(6): 1801-1808
    44 Yoshiyuki Watanabe, Shin-Ichi Shimomura, Kazuo Funato, et al. Integrated Model for Microstructural Evolution and Properties of Steel Plates Manufactured in Production Line. ISIJ International, 1992, 32(3): 405-413
    45 Atsuhiko Yoshie, Masaaki Fujioka, Yoshiyuki Watanabe, et al. Modelling of Microstructural Evolution and Mechanical Properties of Steel Plates Produced by Thermo-Mechanical Control Process. ISIJ International, 1992, 32(3): 395-404
    46 E. Anelli. Application of Mathematical Modelling to Hot Rolling and Controlled Cooling of Wire Rods and Bars. ISIJ International, 1992, 32(3): 440-449
    47 P. D. Hodgson, R. K Gibbs. A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels. ISIJ International, 1992, 32(12): 1329-1338
    48 P. D. Hodgson. Microstructure Modelling for Property Prediction and Control. Journal of Materials Processing Technology, 1996, 60(1-4): 27-33
    49 WANG Min-Ting, ZANG Xin-Liang, LI Xue-Tong, et al. Finite Element Simulation of Hot Strip Continuous Rolling Process Coupling Microstructural Evolution. Journal of Iron and Steel Research, International. 2007, 14(3): 30-36
    50王敏婷,杜凤山,李学通,等.楔横轧轴类件热变形时奥氏体微观组织演变的预测.金属学报, 2005, 41(2): 118-122
    51 XU Yun-Bo, YU Yong-Mei, LIU Xiang-Hua, et al. Prediction of Rolling Load, Recrystallization Kinetics, and Microstructure During Hot Strip Rolling. Journal of Iron and Steel Research, International, 2007, 14(6): 42-46
    52 Hiroshi Yoshida, Akira Yorifuji, Satoshi Koseki, et al. Integrated Mathematical Simulation of Temperatures, Rolling Loads and Metallurgical Properties in Hot Strip Mills. ISIJ International, 1991, 31(6): 571-576
    53 F. Mucciardi, N. Pokutylowicz, S. Yue, et al. Windowstm-Based Rolling Model for Long Products. ASME, Materials Division (Publication) MD, 1995, 70: 153-160
    54 J. Andorfer, D. Auzinger, M. Hirsch, et al. Vaiq-Strip: A New Integrated Quality Control System for Hot Rolled Strip. Revue de Metallurgie. Cahiers D'Informations Techniques, 1998, 95(7-8): 883-892
    55 K. Randerson, A. J. Trowsdale, P. F. Morris, et al. Metmodel: Microstructural Evolution Model for Hot Rolling and Prediction of Final Product Properties. Ironmaking and Steelmaking, 2001, 28(2): 170-174
    56 U. Lotter, H. P. Schmitz, L. Zhang. Structure of the Metallurgically Oriented Modelling System Tk-Stripcam for Simulation of Hot Strip Manufacture and Application in Research and Production Practice. J. Phys. IV, France, 2004, 120: 801-808
    57 David L. Rosburg Richard A. Shulkosky, Jerrid D. Chapman, et al. A Microstructure Evolution Model Used for Hot Strip Rolling. Materials Science and Technology 2003 Meeting, 2003: 509-527
    58 O. Kwon. A Technology for the Prediction and Control of Microstructural Changes and Mechanical Properties in Steel. ISIJ International, 1992, 32(3): 350-358
    59王国栋,刘相华,刘振宇.钢材热轧过程中组织—性能预测技术的发展现状和趋势.钢铁, 2007, 10(42): 1-5
    60刘振宇. C-Mn钢热轧板带组织—性能预测模型的开发及在生产中的应用. [东北大学工学博士学位论文]. 1995: 1-32
    61曲锦波. HSLA钢板热轧组织性能控制及预测模型. [东北大学工学博士学位论文]. 1998: 1-17
    62刘振宇,许云波,王国栋.热轧钢材组织—性能演变的模拟和预测.沈阳:东北大学出版社, 2004: 1-35
    63许云波,邓天勇,刘相华,等.热轧中厚板显微组织和平均流变应力的预测与优化.东北大学学报(自然科学版), 2008, 29(1): 81-84
    64赵辉.低碳钢轧后显微组织变化的计算机模拟与性能预测. [北京科技大学工学博士学位论文]. 1998: 1-18
    65窦晓峰,鹿守理,赵辉. Q235钢动态再结晶模型的建立.北京科技大学学报, 1998, 20(5): 467-470
    66窦晓峰,鹿守理,赵辉. Q235低碳钢静态再结晶模型的建立.北京科技大学学报, 1999, 21(1): 20-22
    67崔振山. H型钢热轧过程变形和微观组织演变的计算机模型. [燕山大学工学博士学位论文]. 1999: 12-80
    68王健,肖宏.流变应力逆分析确定静态再结晶动力学模型.金属学报, 2008, 44(7): 937-842
    69 Wang Jian, Xiao Hong. Determination of the Kinetics for Dynamic and Static Recrystallization by Using the Flow Curves. Materials Science Forum, 2008, 575-578(2): 904-909
    70 WANG Min-ting, LI Xue-tong, DU Feng-shan, ZHENG Yang-zeng. Hot Deformation of Austenite and Prediction of Microstructure Evolution of Cross-wedge Rolling. Materials Science and Engineering A, 2004: 133-140
    71 WANG Min-ting, LI Xue-tong, DU Feng-shan, ZHENG Yang-zeng. A Coupled Thermal–mechanical and Microstructural Simulation of the Cross Wedge Rolling Process and Experimental Verification. Materials Science and Engineering A, 2005: 305-312
    72李学通,杜凤山,藏新良.板带粗轧过程热、力、组织耦合三维有限元模拟.中国机械工程, 2006, 17(1): 92-95
    73王东城,彭艳,刘宏民.基于位错密度的热轧含Nb钢平均变形抗力模型.钢铁, 2006, 41(增刊2): 343-347
    74 LIN Yong-cheng, CHEN Ming-song, ZHONG Jue. Study of Metadynamic Recrystallization Behaviors in a Low Steel. Journal of Materials Processing Technology, 2009, 209: 2477-2482
    75蔺永诚,陈明松,钟掘. 42CrMo钢形变奥氏体的静态再结晶.中南大学学报(自然科学版), 2009, 40(2): 411-416
    76 F. Hollander. Model to Calculate the Complete Temperature Distribution in Steel During Hot Rolling. Iron and Steel Inst, 1970: 46-74
    77 G. D. Lahoti, S. N. Shah, T. Altan. Computer Aided Analysis of the Deformations and Temperature in Strip Rolling. Journal of Engineering for Industry, 1978, 100(2): 159-166
    78 A. A. Tseng. Numerical Heat Transfer Analysis of Strip Rolling. Journal of Heat Transfer, 1984, 106(3): 512-517
    79 C. Devadas, I. V. Samarasekera. Heat Transfer During Hot Rolling of Steel Strip. Ironmaking and Steelmaking, 1986, 13(6): 311-321
    80 Gierulski Boguslaw, Cierniak Marek. Temperature Field on Strip Cross-Section During Hot Rolling. Steel Research, 1989, 60(5): 208-214
    81刘振宇,韩淑芝,王国栋.板带热连轧温度的预报计算及应用.钢铁, 1994, 29(2): 31-34
    82 O. C. Zienkiewicz, E. Onate, J. C. Heinrich. General Formulation for Coupled Thermal Flow of Metals Using Finite Elements. International Journal for Numerical Methods in Engineering, 1981, 17(10): 1497-1514
    83 C. T. Hsu, R. W. Evans. Finite Element Analysis on Hot Rolling of Steel. Advanced Technology of Plasticity, 1990, 2: 587-593
    84李长生,刘刚,刘相华.热带连轧过程轧件温度场有限元模拟.热加工工艺, 1998, 5: 17-19
    85 Yamada Kenji, Ogawa Shigeru, Hamauzu Shuichi. Two-dimensional Thermo-mechanical Analysis of Flat Rolling Using Rigid-Plastic Finite Element Method. ISIJ International, 1991, 31(6): 566-570
    86 M. Pietrzyk, J. G. Lenard. Study of Heat Transfer During Flat Rolling. International Journal for Numerical Methods in Engineeing, 1990, 30(8): 1459-1469
    87兰勇军,陈祥永.带钢热轧过程中温度演变的数值模拟和实验研究.金属学报, 2001, 37(1): 99-103
    88 F. Micari. Three-dimensional Coupled Thermo-mechanical Analysis of Hot Rolling Processes. Journal of Materials Processing Technology, 1992, 34(1-4): 303-310
    89 S. M. Hwang, M. S. Joun, Y. H. Kang. Finite Element Analysis of Temperatures, Metal Flow, and Roll Pressure in Hot Strip Rolling. Journal of Engineering for Industry. Transactions of the ASME, 1993, 115(3): 290-298
    90 C. G. Sun, H. D. Park, S. M. Hwang. Prediction of Three Dimensional Strip Temperatures Through the Entire Finishing Mill in Hot Strip Rolling by Finite Element Method. ISIJ International, 2002, 42(6): 629-635
    91李传瑞,王宝峰,麻永林. CSP连轧过程金属变形的热力耦合模拟分析.特殊钢, 2005, 26(6): 29-31
    92韩斌,佘广夫,焦景民.热轧板带钢冷却过程中热力耦合计算及变形分析.钢铁, 2005, 24(4): 39-42
    93连家创.变分法求解辊缝中金属横向流动问题.东北重型机械学院学报, 1980, (1): 1-10
    94 LIAN Jia-chuang. Analysis of Profile and Shape Control in Flat Rolling. Proceeding of the First International Conference on Steel Rolling, Tokyo, 1980: 713-724
    95连家创,段振勇.轧件宽展量的研究.钢铁, 1984, 19(11): 15-20
    96柳本左門,青木至.圧延加工にぉけゐ平均圧延圧力を与元ゐ関係式にっぃて.日本機械学会論文集, 1967, 33(249): 826-831
    97刘宏民.三维轧制理论及其应用.北京:科学出版社, 1999: 54-104
    98户澤康寿,中村雅勇,石川孝司.三次元解析の方法と計算例.塑性と加工, 1976, 17(180): 37-44
    99石川孝司,中村雅勇,戸澤康寿.ロールの変形を考慮した薄板圧延の3次元解析.塑性と加工, 1980, 21(237): 902-908
    100戸澤康寿,石川孝司,岩田德利.薄板圧延の3次元変形に对ぉゐ改良た解析.塑性と加工, 1982, 23(263): 1181-1187
    101松本紘美,中島浩衛.幅方向の変形を考慮した板形狀クラウムの計算方法.塑性と加工, 1982, 23(263): 1201-1208
    102 Hitomi Matsumoto, Takao Kawanami. Mechanism of Material Deformation Related to Shape and Crown Phenomena. The Science and Technology of Flat Rolling, 4th International Steel Rolling Conference. Deauville, France, 1987, 2(E6): 1-12
    103连家创,段振勇,叶星.三维解析法求解辊缝中金属横向流动问题.东北重型机械学院学报, 1984, (3): 1-9
    104 P. Perzyna. Fundamental Problems in Viso-Plasticity in Recent Advance in Applied Mechanics. New York: Acadmie Press, 1966: 243-377
    105 C. David. A Transient 3-D FEM Analysis of Hot Rolling of Thick Slabs. Proc.Numiform 86, August 1986, Gothenburg, K.Mattiasson et al., eds., A. A. Balkema, Rotterdam, 1986: 103-107
    106 P. Buessler, P. Schoenberger. Analysis of Hot Rolling by on Elasto-Viso-Plastic Finite Element Method. 4th Inter. Steel Rolling Conf, 1987: 539-551
    107 Y. Liu, J. Lin. Modelling of Microstructural Evolution in Multipass Hot Rolling. J. Mater. Process. Technol., 2003, (143-144): 723-728
    108 C. H. Lee, S. Kobayashi. New Solutions to Rigid-Plastic Deformation Problems Using a Matrix Method. Transaction of the ASME, Journal of Engineering for Industry, 1973, 95(3): 865-873
    109 K.Mori, K.Osakada, T. Oda. Simulation of Plane-Strain Rolling by the Rigid-plastic Finite Element Method. Int. J. Mech. Sci, 1982, 24(9): 519-527
    110 S. Chandra, U. S. Dixit. A Rigid-plastic Finite Element Analysis of Temper Rolling Process. Journal of Materials Processing Technology, 2004, 152(1): 9-16
    111刘相华,白光润.三维平板轧制问题的刚塑性有限元分析.轧钢理论文集第二集(下), 1983: 5-43
    112吴迪,白光润.三维高件轧制问题的刚塑性有限元分析.轧制理论文集第二集(下), 1983: 5-66
    113钱仁根.轧制问题的有限单元法解.北京钢铁学院学报, 1983: 13-18
    114李学通,杜凤山,藏新良.板带粗轧过程热、力、组织耦合三维有限元模拟.中国机械工程, 2006, 17(1): 92-95
    115 P. V. Marcal, I. P. Kong. Elastic-plastic Analysis of Two-dimensional Stress System by the Finite Element Method. Int. J. Mech. Sci., 1967, 9: 143-155
    116 T. Tamano. Finite Element Analysis of Steady-Flow in Metal Processing. J. Jap. Soc. Tech. Plas., 1973, 14: 766-769
    117 S. S. Rao, A. Kumar. Finite Element Analysis of Cold Strip Rolling. Int. J. Mech. Sci., 1977, 17: 159-168
    118 S. W. Key, D. Kring, K. J. Batte. On The Application of Finite Element Method to Metal Forming Processes-Part I. Comp. Meth. Appl. Mech. Eng., 1979: 597-608
    119 C. Liu, P. Hartly, C. E. N. Sturgess, et al. Finite-Element Modeling of Deformation and Spread in Slab Rolling. International Journal of Mechanical Science, 1987, 29(4): 271-283
    120杜凤山,刘才,连家创.三维弹塑性有限元法模拟薄带轧制过程(I).东北重型机械学院学报, 1991, 15(2): 100-106
    121杜凤山,刘才,连家创.三维弹塑性有限元法模拟板带轧制过程(II).东北重型机械学院学报, 1989, 13(2): 47-53
    122朱有利,康永林,龚永平.采用大变形弹塑性有限元法对带材异步冷轧过程的数值模拟.金属成形工艺, 1995, 13(6): 28-32
    123刘立文,张树堂,武志平.张力对冷轧板带变形的影响.钢铁, 2000, 35(4): 37-39
    124朱光明.板带轧制过程中金属变形机理的非线性有限元法研究. [燕山大学工学博士学位论文]. 2004: 69-91
    125肖宏.三维弹塑性边界元法模拟板带轧制过程的研究. [燕山大学工学博士学位论文]. 1991:20-54
    126 A. Chandra. Simulation of Rolling Processes by the Boundary Element Mothod. Advanced Boundary Element Mothod, Edited by Cruse, T. A., Spring-Verlg, 1987: 93-100
    127 J. Kihara, T. Aizawa, X. P. Ma. Application of BEM to Calculation of the Roll Profile in Flat Rolling. The Science and Technology of Flat Rolling, 4th International Steel Rolling Conference, Deauville, France, 1987, 2(E1): 1-12
    128刘宏民,连家创,段振勇.分条离散法求解带材轧制时的前张力横向分布.冶金设备, 1985, (1): 1-12
    129刘宏民,连家创,段振勇.模拟带材轧制过程的条元法.机械工程学报, 1993, 29(4): 36-42
    130 Liu Hongmin, Lian Jiachuang. Transverse Distribution of Front and Back Tension Stresses in Cold Strip Rolling. Chinese Journal of Metal Science and Technology, 1992, 8(6): 427-434
    131 Liu Hongmin, Lian Jiachuang, Duan Zhenyong. Study of the 3-D Stresses of Cold Strip Rolling Under Center Wave. Chinese Journal of Mechanical Engineering, 1994, 7(2): 91-96
    132 Liu Hongmin, Lian Jiachuang, Duan Zhenyong. Study on the Asymmetrical Cold Strip Rolling Under Large Width to Thickness Ratio. Journal of Material Science and Technology, 1996, 12(3): 232-234
    133 Liu Hongmin, Hu Guodong. Study on Strip and Roll Deformation Coupling of Cold Strip Rolling. Chinese Journal of Mechanical Engineering, 1997, 10(4): 268-274
    134郑振忠,彭艳,刘宏民.求解冷轧带材金属横向流动和前张应力横向分布的一种新型条元变分法.钢铁研究学报, 1999, 11(5): 21-25
    135 Liu Hongmin, Lian Jiachuang, Peng Yan. Third-power Spline Function Strip Element Method and its Simulation of the Three-dimensional Stresses and Deformations of Cold Strip Rolling. Journal of Materials Processing Technology, 2001, 116(2-3): 235-243
    136彭艳,刘宏民.带材轧制过程应力及变形的计算机仿真.机械工程学报, 2004, 40(9): 75-79
    137 Peng Yan, Liu Hongmin. Study on Increasing Calculated Precision and Convergence Speed of Streamline Strip Element Method. Journal of Central South University of Technology, 2004, 11(1): 105-108
    138刘宏民,王英睿,金丹.条层法及其对板带轧制三维变形的仿真.工程力学, 2003, 20(6): 39-45
    139 Liu Hongmin, Jin Dan, Wang Yingrui. Strip Layer Method for Simulation of the Three-dimensional Deformations of Plate and Strip Rolling. Communications in Numerical Methods in Engineering, 2004, 20(3): 183-191
    140 Liu Hongmin, Wang Yingrui. Stream Surface Strip Element Method for Simulation of the Three-dimensional Deformations of Plate and Strip Rolling. International Journal of Mechanical Sciences, 2003, 45(9): 1541-1561
    141 Wang Yingrui, Cui Zhenshan, Wang Yingjie, Liu Hongmin. Complete Mill Simulation of the Rolling Process of 1660mm Hot Strip Continuous Mills. Journal of Materials Science and Technology, 2004, 6(20): 649-656
    142周瑛.辊式成型过程的弹塑性大变形样条有限条模拟. [燕山大学工学博士学位论文]. 1996: 1-88
    143韩志武.基于大变形有限条法的冷弯成型计算机模拟与专家系统技术的研究. [燕山大学工学博士学位论文]. 1998: 2-50
    144周记华,管克智.金属塑性变形阻力.北京:机械工业出版社, 1989: 25-67
    145曹鸿德.塑性变形力学基础与轧制原理.北京:机械工业出版社, 1981: 43-45
    146陈程,尹海清,曲选辉,等.钼塑性变形抗力数学模型的研究.塑性工程学报, 2007, 14(2): 7-10
    147曾文峰,陈贻宏. TRIP800钢变形抗力的试验研究.武汉科技大学学报(自然科学版), 2007, 30(1): 14-16
    148翁宇庆.超细晶钢—钢的细化理论与控制技术.北京:冶金工业出版社, 2003: 48-128
    149 J. H. Beynon, C. M. Sellars. Modelling Microstructure and Its Effects during Multipass Hot Rolling. ISIJ International, 1992, 32(3): 359-367
    150 M. A. Dehghan, M. R. Barnett, P. D. Hodgson. Recrystallization in AISI 304 Austenitic Stainless Steel during and after Hot Deformation. Mater Sci Eng A, 2008, 485(1/2): 664-672
    151张毅,刘平,田保红,等. Cu-Ni-Si-P合金的动态再结晶.中国有色金属学报, 2008, 18(7): 1242-1247
    152 B. Pereda, A. I. Fernandez, B. Lopez, et al. Effect of Mo on Dynamic Recrystallization Behavior of Nb-Mo Microalloyed Steels. ISIJ International, 2007, 47(6): 860-868
    153 ZHANG Zhao-hui, LIU Yong-ning, LIANG Xiao-kai, et al. The Effect of Nb on RecrystallizationBehavior of a Nb Micro-alloyed Steel. Materials Science and Engineering A, 2008, 474(1/2): 254-260
    154 M. Glowacki, R. Kuziak, Z. Malinowski, et al. Modelling of Heat Transfer, Plastic Flow and Microstructural Evolution During Shape Rolling. Journal of Materials Processing Technology, 1995, 53(1-2): 159-166
    155 J. M. Cabrera, A. Al Omar, J. M. Prado, et al. Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel under Hot Working Conditions. Metallurgical and Materials Transactions A, 1997, 28(11): 2233-2244
    156 M. El Wahabi, J. M. Cabrera, J. M. Prado. Hot Working of Two AISI 304 Steels: a Comparative Study. Mater Sci Eng A, 2003, 343: 116-125
    157 A. I. Fernandez, B. Lopez, J. M. Rodriguez-Ibabe. Relationship Between the Austenite Recrystallization Fraction and the Softening Measured From the Interrupted Torsion Test Technique. Scripta Materialia, 1999, 40(5): 543-5490
    158 DU Lin-xiu, ZHANG Zhong-ping, SHE Guang-fu, LIU Xiang-hua, WANG Guo-dong. Austenite Recrystallization and Controlled Rolling of Low Carbon Steels. Journal of Iron and Steel Research, International, 2006, 13(3): 31-35
    159 Matthias Militzer. Computer Simulation of Mirostructure Evolution in Low Carbon Sheet Steels. ISIJ International, 2007, 47(1): 1-15
    160 Y. Lee, S. Choi, P. D. Hodgson. Analytical Model of Pass-by-Pass Strain in Rod (or Bar) Rolling and Its Applications to Prediction of Austenite Grain Size. Mater Sci Eng A, 2002, 336: 177-189
    161 A. I. Fernandez, P. Uranga, B. Lopez, J. M. Rodriguez-Ibabe. Static Recrystallization Behavior of a Wide Range of Austenite Grain Sizes in Microalloyed Steels. ISIJ International, 2000, 40(9): 893-901
    162 Y. Lee, S. Choi, P. D. Hodgson. Analytical Model of Pass-by-Pass Strain in Rod (or Bar) Rolling and Its Applications to Prediction of Austenite Grain Size. Mater Sci Eng A, 2002, 336: 177-189
    163 A. Laasraoui, J. J. Jonas. Recrystallization of Austenite after Deformation at High Temperatures and Strain Rates - Analysis and Modeling. Metall. Trans. A, 1991, 22(1): 151-160
    164 S. F. Medina, J. E. Mancilla. Static Recrystallization Modelling of Hot Deformed Microalloyed Steels at Temperatures below the Critical Temperature. ISIJ international, 1996, 36(8): 1077-1083
    165 M. G. Akben, B. Bacroix, J. J. Jonas. Effect of Vanadium and Molybdenum Addition on High Temperature Recovery, Recrystallization and Precipitation Behavior of Niobium-Based Microalloyed Steels. Acta Metall., 1983, 31(1): 161-174
    166 C. Roucoules, P. D. Hodgson, S. Yue, J. J. Jonas. Softening and Microstructural Change following the Dynamic Recrystallization of Austenite. Metall. Trans. A, 1994, 25(2): 389-400
    167 C. Roucoules, S. Yue, J. J. Jonas. Effect of Alloying Elements on Metadynamic Recrystallization in HSLA Steels. Metall. Trans. A, 1995, 26(1): 181-190
    168 JUNG Kyung-Hwan, LEE Ho-Won, IM Yong-Taek. Numerical Prediction of Austenite Grain Size in a Bar Rolling Process Using an Evolution Model Based on a Hot Compression Test. Mater Sci Eng A, 2009, 519(1/2): 94-104
    169 J. H. Bianchi, L. P. Karjalainen. Modelling of Dynamic and Metadynamic Recrystallisation during Bar Rolling of a Medium Carbon Spring Steel. Journal of Materials Processing Technology, 2005, 160(3): 267-277
    170 LIN Yong-cheng, CHEN Ming-song. Study of Microstructural Evolution during Metadynamic Recrystallization in a Low-alloy Steel. Mater Sci Eng A, 2009, 501(1/2): 229-234
    171王英睿.三维条元法及其对热轧板带轧制过程的仿真. [燕山大学工学博士学位论文]. 2003: 45-61
    172杨利坡.板带轧制三维热力耦合条元法研究及仿真系统开发. [燕山大学工学博士学位论文]. 2006: 17-26
    173 Liu Hongmin, Zheng Zhenzhong, Peng Yan. Streamline Strip Element Method for Analysis of the Three-Dimensional Stresses and Deformations of Strip Rolling. International Journal for Numerical Methods in Engineering, 2001, 50: 1059-1076

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700