燃烧合成块体Ti_2AlC的性能表征及MAX相的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元层状可加工Mn+1AXn相陶瓷(简称MAX,其中M为过渡金属,A主要为IIIA和IVA族元素,X为C或N)综合了金属和陶瓷的诸多优异性能,如高韧性、高模量、良好的导电和导热性能、高损伤容限、良好的抗热震和抗氧化性能等。这些优异性能使其成为高温结构和功能应用的潜在材料。本文首先采用一种低成本方法成功制备出Ti_2AlC块体材料,并系统研究了该材料的结构和性能。运用第一性原理方法全面研究了MAX相的性质,着眼于在认识结构与性能内在关系的基础上,为理解实验现象的本质和设计材料提供理论依据,指导后续实验研究工作。
     采用燃烧合成/准等静压工艺(SHS/PHIP)成功制备出高纯致密的块体Ti_2AlC材料,并研究了SHS/PHIP工艺参数的影响。燃烧合成后施加的压力是获得高致密块体Ti_2AlC材料的关键。另外,合成出的材料是C原子缺位的非定原子比Ti_2AlCx(x=0.69)。该材料具有极为细小的晶粒,其平均晶粒尺寸在2.5-3.0μm之间。高分辨投射电子显微镜(HRTEM)观察显示Ti_2AlC晶粒中含有大量的晶格缺陷。同时,制备过程中所发生的高温变形使晶粒方向也发生了连续变化。
     全面研究了SHS/PHIP工艺制备块体Ti_2AlC的性能。该材料具有典型的金属导电行为。在温度高于1050oC时,热膨胀系数显著变大,并且c轴方向的热膨胀高于a轴方向。电子导热在Ti_2AlC热传导中占据关键地位。高密度的晶格缺陷使声子对热导率的贡献极为有限。细小的晶粒使其具有非常高的弯曲强度(606±20MPa)。裂纹在扩展过程中表现出类似于金属的非灾难性破坏特征。而且其断裂功也远高于传统脆性陶瓷材料。弯曲状态下的韧脆转变温度(BDTT)在900-950oC之间,高于压缩状态下的800-900oC。当温度低于BDTT时,强度随温度升高降低很小;但高于BDTT时,强度急剧降低。Ti_2AlC的热震行为表现出原始短裂纹的非连续动态扩展特征。临界抗热震温度估计在300-500oC之间。残余强度随热震次数的增加而不断降低,但降低幅度减小。热震使材料的断裂方式表现出了一种由穿晶断裂向沿晶断裂的转化趋势。
     全面研究了Mn+1AlCn(n=1-3)系列化合物的晶体结构、电子结构、弹性性能、晶格动力学和压缩行为,着重考察了M元素VEC(价电子浓度)和d电子层数的影响。Mn+1AlCn相的晶格常数与M原子直径存在线性关系。理论密度随VEC和M-C层片数(n)的增加几乎呈线性增加。形成能随VEC的增加而增大。详细研究了该系列化合物中键长和键角的变化。
     系统分析了Mn+1AlCn(n=1-3)系列化合物的晶格动力学行为,重点研究了拉曼和红外振动模式。部分化合物中出现了虚频,这些化合物具有以下特征:均是312相和413相;绝大部分都是含VEC为6的过渡金属元素。另外,Nb3AlC2中出现的虚频正是Nb-Al-C体系中出现成分间隙(Nb4AlC3和Nb2AlC存在而Nb3AlC2不存在)的根本原因。最高的红外和拉曼振动频率均对应于C原子沿c轴方向的纵向或剪切振动。
     建立了一个简单模型用于定量研究化学键刚度。M-Al键在各体系中具有最低的化学键刚度。其刚度值约是M-C键刚度值的1/3到1/2。有意思的是,不同体系(M2AlC、M3AlC2和M4AlC3)中同一种化学键具有相近的刚度。VEC会影响体系中化学键刚度随压力的变化。重要的是,体积模量是平均化学键刚度的0.256倍。随着压力的增大,M-Al键向基面移动,而M-C键则向c轴方向移动。结果,沿着c轴方向比沿a轴方向的压缩变得更加困难。
     采用第一性原理计算方法预测了几种典型MAX相化合物(M2InC、Ti_2CdC、Ti_3SnC2和Ti4GaC3)的电子结构、弹性性能、光学性能和压缩行为。A组元素对M2AC的体积模量具有显著影响,其中Zr2InC拥有目前最低的体积模量(113GPa)。而Ti_2CdC具有目前最低的剪切模量(70GPa)。其较低的剪切模量和剪切模量/体积模量比(G/B)预示其具有较低的摩擦系数,是一种潜在的电摩擦材料。在从电磁波到可见光的低频区,Ti_3SnC2的光学行为类似于TiC,也就是说Ti-Sn键只影响高频区的光学性能。较低的G/B值表明Ti_3SnC2具有较高的断裂韧性和损伤容限。键角和键刚度在Ti_3SnC2的压缩行为中均扮演了重要角色。
     提出了一种新的Ti4GaC3晶体结构(γ型),Ti和Ga原子沿c轴方向的堆垛次序为ABCBACBABC。γ-Ti4GaC3在热力学上比β-Ti4GaC3稳定。但β-Ti4GaC3一旦形成,从动力学上看则更加稳定。三种Ti4GaC3多形体均具有典型MAX相化合物的特征,具有相似的电子结构、弹性性能和压缩行为。α-Ti4GaC3中电子几乎占据了所有的成键态,但是β-Ti4GaC3和γ-Ti4GaC3中只有部分的成键态被占据。有意思的是,随着压力的增加所有化学键的变形抗力均增大,并且键刚度越小,增加速率越大,直到键刚度趋向同一值。
A class of layered ternary compounds, with the general formula Mn+1AXn(MAX phases for short) where n=1,2or3, M is early transition metal, A is anA-group element (mostly group13and14), and X is C or N, exhibits a uniquecombination of both metal-and ceramic-like properties: high fracture toughness,high Young’s moduli, good thermal and electrical conductivities, easymachinability, high damage tolerance, excellent thermal shock and oxidationresistance, and so on. These render it potential candidates for high-temperaturestructural and functional applications. This thesis develops a new process tosynthesis Ti_2AlC bulk firstly, and investigates its structures and properties in detail.And First-principle method is used to investigate the properties of MAX phasessystematically, aiming to give the theoretical evidence for understanding origin ofexperimental phenomenon and designing new materials, and guide the followedexperimental work, after realizing structure-property relationship.
     A patented method, self-propagating high temperature combustion synthesiswith pseudo hot isostatic pressing process (SHS/PHIP), was employed for densepolycrystalline Ti_2AlC bulk using elemental reactants, in which the effect ofprocess parameters was also examined. The applied pressure in SHS/PHIP processplays a critical role in the densification of Ti_2AlC. The resultant sample mainlycontains typical plate-like nonstoichiometric Ti_2AlCx(x=0.69) with finemicrostructures (2.5-3.0μm). The as-synthesized Ti_2AlC bulk is rich in the latticedefects. The equal inclination fringes in the local area indicate that Ti_2AlCsynthesized by SHS/PHIP process is deformed under high residual stress.
     The properties of Ti_2AlC bulk synthesized by SHS/PHIP process were studiedin detail. It exhibits a typical metal-like conduction. An abnormal thermalexpansion behavior was observed that the curve of thermal expansion againsttemperature bends up dramatically at around1050oC. There is the higher thermalexpansion along c-axis than a-axis. The electronic component of the thermalconductivity is always the dominant mechanism in the researched temperaturerange. The high-density lattice defects result in the fact that the phononcontribution to thermal conductivity almost can be neglected. The fine microstructures are related to the high flexural strength (606±20MPa).Interestingly, a metal-like non-catastrophic failure is present in the SENB test,with the high work of fracture. The brittle-ductile transition temperature (BDTT)under flexure (900-950oC) is higher than compression (700-800oC). Theflexural and compressive strengths both keep almost unchanged in the zone ofbrittle failure below BDTT, but decrease sharply as the plastic deformationoccurs above BDTT. A behavior of dynamic extension of initial short crack wasobserved in the thermal shock of Ti_2AlC. The critical thermal shock temperature ofTi_2AlC is estimated to be300-500oC. And the fracture mode changes fromtranscrystalline to intercrystalline. With increasing quenching times, the retainedstrength decreases more slowly.
     The crystal structure, electronic structure, elastic properties, lattice dynamics,and compressibility of Mn+1AlCn(n=1-3) phases were systematically investigatedusing First-principle calculations, especially considering effects of VEC (valenceelectronic concentration) and d electronic shell for transition metal M. The latticeconstants of Mn+1AlCnphases are both a linear function of M diameter. Thetheoretical density increases with increasing VEC of M and M-C slabs. Also, theformation energy increases with the increase of VEC. In addition, the bond lengthand bond angle were studied.
     The lattice dynamics of Mn+1AlCnphases was studied in detail, as well asRaman and infrared active modes. The imaginary frequency is present in somecompounds, which are all member of312and413phases, and mostly contain Mwith VEC=6. Moreover, such the imaginary frequency of Nb3AlC2explains why acomposition gap is present in Nb-Al-C system (Nb4AlC3and Nb2AlC exist, butNb3AlC2does not). The highest Raman and infrared frequencies all correspond tolongitudinal or shear vibration of C atoms along c-direction.
     A simple model is established to investigate bond stiffness quantificationally.M-Al bond has the lowest bond stiffness, approximately1/3~1/2of M-C bondstiffness. Interestingly, the same bonds in different systems (M2AlC, M3AlC2andM4AlC3) have the similar stiffness. VEC affects the bond stiffness as a function ofpressure. Of most importance, B is0.256that of average bond stiffness. Withincreasing pressure, M-Al bond shifts towards to basal plane, but M-C bond shiftsalong c-axis. As a result, the compression becomes more difficult along c-axis.
     Using First-principle calculation, the electronic structure, elastic and opticalproperties, and compressibility of some typical MAX compounds (M2InC, Ti_2CdC,Ti_3SnC2and Ti4GaC3) were predicted. A-group element has an obvious effect onbulk moduli (B) of M2AC, in which Zr2InC has the lowest B (113GPa) in211phases. Correspondingly, the lowest shear moduli (70GPa, G) appears in Ti_2CdC.The low G and G/B ratio of Ti_2CdC indicate the low friction coefficient, whichrends Ti_2CdC as a potential electrical-friction material. In the low frequency rangefrom radio waves to visible light, Ti_3SnC2behaves similarly with TiC. In otherword, Ti-Sn bond only affect the optical properties in the high frequency range. Thelow G/B ratio partially explains why Ti_3SnC2is relatively soft and damage tolerant.Both bond stiffness and bond angles play roles in the compressibility.
     A new Ti4GaC3polymorph (γ-type) was proposed according to the reportedexperimental results, with the Ti and Ga (underlined) atomic arrangements ofABCBACBABC. Since the α-to γ-phase transition only involves shuffling of theA-atoms, it occurs much more easily than those to β-Ti4GaC3despite the factthat the latter is thermodynamically less stable than γ-Ti4GaC3. Threepolymorphs have similar electronic structures, elastic properties, andcompressibility. The electrons occupy all the bonding states for α-Ti4GaC3, but thebonding states are partially occupied for both β-and γ-Ti4GaC3. In general, withincreasing pressure, all the bonds become stronger, and the rate of increase inbond stiffness also increases.
引文
[1]周玉.陶瓷材料学[M].北京:科学出版社,2004.
    [2]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1988.
    [3] Etzkorn J, Ade M, Hillebrecht H. Ta3AlC2and Ta4AlC3-Single-crystalinvestigations of two new ternary carbides of tantalum synthesized by themolten metal technique[J]. Inorg. Chem.,2007,46:1410-1418.
    [4] Etzkorn J, Ade M, Hillebrecht H. V2AlC, V4AlC3-x(x approximate to0.31), and V12Al3C8: Synthesis, crystal growth, structure, andsuperstructure[J]. Inorg. Chem.,2007,46:7646-7653.
    [5] Hu CF, Li FZ, Zhang J, Wang JM, Wang JY, Zhou YC. Nb4AlC3: A newcompound belonging to the MAX phases[J]. Scr. Mater.,2007,57:893-896.
    [6] Eklund P, Palmquist JP, Howing J, Trinh DH, El-Raghy T, Hogberg H,Hultman L. Ta4AlC3: Phase determination, polymorphism anddeformation[J]. Acta Mater.,2007,55:4723-4729.
    [7] Lin ZJ, Zhuo MJ, Zhou YC, Li MS, Wang JY. Structural characterizationof a new layered-ternary Ta4AlC3ceramic (vol21, pg2587,2006)[J]. J.Mater. Res.,2007,22:816-816.
    [8] Magnuson M, Mattesini M, Wilhelmsson O, Emmerlich J, Palmquist JP,Li S, Ahuja R, Hultman L, Eriksson O, Jansson U. Electronic structureand chemical bonding in Ti4SiC3investigated by soft x-ray emissionspectroscopy and first-principles theory[J]. Phys. Rev. B,2006,74:205102.
    [9] Etzkorn J, Ade M, Kotzott D, Kleczek M, Hillebrecht H. Ti2GaC, Ti4GaC3and Cr2GaC-Synthesis, crystal growth and structure analysis of Ga-containing MAX-phases Mn+1GaCnwith M=Ti, Cr and n=1,3[J]. J. SolidState Chem.,2009,182:995-1002.
    [10] Hogberg H, Eklund P, Emmerlich J, Birch J, Hultman L. Epitaxial Ti2GeC,Ti3GeC2, and Ti4GeC3MAX-phase thin films grown by magnetronsputtering[J]. J. Mater. Res.,2005,20:779-782.
    [11] Dubois S, Cabioc'h T, Chartier P, Gauthier V, Jaouen M. A new ternarynanolaminate carbide: Ti3SnC2[J]. J. Am. Ceram. Soc.,2007,90:2642-2644.
    [12] Barsoum MW. The MN+1AXNphases: A new class of solids;Thermodynamically stable nanolaminates[J]. Prog. Solid State Chem.,2000,28:201-281.
    [13] Gupta S, Barsoum MW. On the tribology of the MAX phases and theircomposites during dry sliding: A review[J]. Wear,2011,271:1878-1894.
    [14]林志军.几种三元层状陶瓷的合成、微观结构与性能研究[D].北京:中国科学院研究生院,2007.
    [15] Barsoum MW, Salama I, El-Raghy T, Golczewski J, Porter WD, Wang H,Seifert HJ, Aldinger F. Thermal and electrical properties of Nb2AlC,(Ti,Nb)2AlC and Ti2AlC[J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.,2002,33:2775-2779.
    [16] Wang XH, Zhou YC. Solid-liquid reaction synthesis and simultaneousdensification of polycrystalline Ti2AlC[J]. Z. Metallk.,2002,93:66-71.
    [17] Wang XH, Zhou YC. Intermediate-temperature oxidation behavior ofTi2AlC in air[J]. J. Mater. Res.,2002,17:2974-2981.
    [18] Wang XH, Zhou YC. High-temperature oxidation behavior of Ti2AlC inair[J]. Oxid. Met.,2003,59:303-320.
    [19] Sundberg M, Malmqvist G, Magnusson A, El-Raghy T. Alumina forminghigh temperature silicides and carbides[J]. Ceram. Int.,2004,30:1899-1904.
    [20] Byeon JW, Liu J, Hopkins M, Fischer W, Garimella N, Park KB, BradyMP, Radovic M, El-Raghy T, Sohn YH. Microstructure and residual stressof alumina scale formed on Ti2AlC at high temperature in air[J]. Oxid.Met.,2007,68:97-111.
    [21] Lopacinski M, Puszynski J, Lis J. Synthesis of ternary titanium aluminumcarbides using self-propagating high-temperature synthesis technique[J]. J.Am. Ceram. Soc.,2001,84:3051-3053.
    [22] Ge ZB, Chen KX, Guo JM, Zhou HP, Ferreira JMF. Combustion synthesisof ternary carbide Ti3AlC2in Ti-Al-C system[J]. J. Eur. Ceram. Soc.,2003,23:567-574.
    [23] Liu GH, Chen KX, Zhou HP, Guo JM, Ren KG, Ferreira JMF. Layeredgrowth of Ti2AlC and Ti3AlC2in combustion synthesis[J]. Mater. Lett.,2007,61:779-784.
    [24]廖婷.高性能层状陶瓷的力学性能和缺陷行为的第一性原理研究[D].北京:中国科学院研究生院,2009.
    [25] Jeitschko W, Nowotny H, Benesovsky F. Kohlenstoffhaltige tern reVerbindungen (H-Phase)[J]. Monatshefte für Chemie/Chemical Monthly,1963,94:672-676.
    [26] Zhou YC, Sun ZM. Electronic structure and bonding properties of layeredmachinable Ti2AlC and Ti2AlN ceramics[J]. Phys. Rev. B,2000,61:12570-12573.
    [27] Hug G, Fries E. Full-potential electronic structure of Ti2AlC andTi2AlN[J]. Phys. Rev. B,2002,65:113104.
    [28] Sun ZM, Ahuja R, Li S, Schneider JM. Structure and bulk modulus ofM2AlC (M=Ti, V, and Cr)[J]. Appl. Phys. Lett.,2003,83:899-901.
    [29] Sun ZM, Li S, Ahuja R, Schneider JM. Calculated elastic properties ofM2AlC (M=Ti, V, Cr, Nb and Ta)[J]. Solid State Commun.,2004,129:589-592.
    [30] Lofland SE, Hettinger JD, Harrell K, Finkel P, Gupta S, Barsoum MW,Hug G. Elastic and electronic properties of select M2AX phases[J]. Appl.Phys. Lett.,2004,84:508-510.
    [31] Liao T, Wang JY, Zhou YC. Deformation modes and ideal strengths ofternary layered Ti2AlC and Ti2AlN from first-principles calculations[J].Phys. Rev. B,2006,73:214109.
    [32] Music D, Houben A, Dronskowski R, Schneider JM. Ab initio study ofductility in M2AlC (M=Ti, V, Cr)[J]. Phys. Rev. B,2007,75:174102.
    [33] Wang JY, Zhou YC, Liao T, Zhang J, Lin ZJ. A first-principlesinvestigation of the phase stability of Ti2AlC with Al vacancies[J]. Scr.Mater.,2008,58:227-230.
    [34] Tomoshige R, Matsushita T. Production of titanium-aluminum-carbonternary composites with dispersed fine TiC particles by combustionsynthesis and their microstructure observations[J]. J. Ceram. Soc. Jpn.,1996,104:94-100.
    [35] Tanaka H, Tomoshige R, Imamura K, Chiba A, Kato A. Hot-shockconsolidation and mechanical/thermal properties of Ti-Al-C compositesusing explosive shock energy and combustion synthesis[J]. J. Ceram. Soc.Jpn.,1998,106:676-681.
    [36] Zhou AG, Wang CA, Ge ZB, Wu LF. Preparation of Ti3AlC2and Ti2AlCby self-propagating high-temperature synthesis[J]. J. Mater. Sci. Lett.,2001,20:1971-1973.
    [37]郭俊明,陈克新,葛振斌,刘光华,周和平,宁晓山.碳含量对Ti-Al-C系燃烧合成Ti3AlC2粉体的影响[J].金属学报,2003,39:409-413.
    [38]郭俊明,陈克新,葛振斌,周和平,宁晓山.添加TiC对燃烧合成Ti2AlC粉体的影响[J].金属学报,2003,39:315-319.
    [39]郭俊明,陈克新,葛振斌,周和平,宁晓山.燃烧合成三元碳化合物Ti2AlC1-x[J].稀有金属材料与工程,2003,32:1029-1032.
    [40]郭俊明,陈克新,葛振斌,周和平,宁晓山.不同钛碳摩尔比和铝含量对Ti-Al-C体系燃烧合成Ti3AlC2粉体的影响[J].稀有金属材料与工程,2003,32:561-565.
    [41]郭俊明,陈克新,刘光华,周和平,宁晓山.燃烧温度对燃烧合成Ti3AlC2和Ti2AlC的影响[J].功能材料,2004,35:763-765.
    [42]郭俊明,刘贵阳,王锐,何英,王宝森,陈克新. TiAl对燃烧合成Ti2AlC的影响[J].硅酸盐学报,2010,38:1489-1492.
    [43] Yeh CL, Shen YG. Effects of TiC and Al4C3addition on combustionsynthesis of Ti2AlC[J]. J. Alloy. Compd.,2009,470:424-428.
    [44] Wilhelmsson O, Palmquist JP, Nyberg T, Jansson U. Deposition of Ti2AlCand Ti3AlC2epitaxial films by magnetron sputtering[J]. Appl. Phys. Lett.,2004,85:1066-1068.
    [45] Magnuson M, Wilhelmsson O, Palmquist JP, Jansson U, Mattesini M, Li S,Ahuja R, Eriksson O. Electronic structure and chemical bonding in Ti2AlCinvestigated by soft x-ray emission spectroscopy[J]. Phys. Rev. B,2006,74:195108.
    [46] Wilhelmsson O, Palmquist JP, Lewin E, Emmerlich J, Eklund P, PerssonPOA, Hogberg H, Li S, Ahuja R, Eriksson O, Hultman L, Jansson U.Deposition and characterization of ternary thin films within the Ti-Al-Csystem by DC magnetron sputtering[J]. J. Cryst. Growth,2006,291:290-300.
    [47] Walter C, Martinez C, El-Raghy T, Schneider JM. Towards large areaMAX phase coatings on steel[J]. Steel Res. Int.,2005,76:225-228.
    [48] Frodelius J, Eklund P, Beckers M, Persson POA, Hogberg H, Hultman L.Sputter deposition from a Ti2AlC target: Process characterization andconditions for growth of Ti2AlC[J]. Thin Solid Films,2010,518:1621-1626.
    [49] Rosen J, Ryves L, Persson POA, Bilek MMM. Deposition of epitaxialTi2AlC thin films by pulsed cathodic arc[J]. J. Appl. Phys.,2007,101:056101.
    [50] Rosen J, Persson POA, Ionescu M, Kondyurin A, McKenzie DR, BilekMMM. Oxygen incorporation in Ti2AlC thin films[J]. Appl. Phys. Lett.,2008,92:064102.
    [51] Dahlqvist M, Alling B, Abrikosov IA, Rosen J. Phase stability of Ti2AlCupon oxygen incorporation: A first-principles investigation[J]. Phys. Rev.B,2010,81.
    [52] Persson POA, Rosen J, McKenzie DR, Bilek MMM. Formation of theMAX-phase oxycarbide Ti2AlC1-xOxstudied via electron energy-lossspectroscopy and first-principles calculations[J]. Phys. Rev. B,2009,80:092102.
    [53] Tucker MD, Persson POA, Guenette MC, Rosen J, Bilek MMM,McKenzie DR. Substrate orientation effects on the nucleation and growthof the Mn+1AXnphase Ti2AlC[J]. J. Appl. Phys.,2011,109:014903.
    [54] Barsoum MW, Brodkin D, El-Raghy T. Layered machinable ceramics forhigh temperature applications[J]. Scr. Mater.,1997,36:535-541.
    [55] Hong XL, Mei BC, Zhu JQ, Zhou WB. Fabrication of Ti2AIC by hotpressing of Ti, TiC, Al and active carbon powder mixtures[J]. J. Mater.Sci.,2004,39:1589-1592.
    [56] Zhu JF, Gao JQ, Yang JF, Wang F, Niihara K. Synthesis andmicrostructure of layered-ternary Ti2AlC ceramic by high energy millingand hot pressing[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct.Process.,2008,490:62-65.
    [57] Barsoum MW, Ali M, El-Raghy T. Processing and characterization ofTi2AlC, Ti2AlN, and Ti2AlC0.5N0.5[J]. Metall. Mater. Trans. A-Phys.Metall. Mater. Sci.,2000,31:1857-1865.
    [58] Zhou WB, Mei BC, Zhu JQ, Hong XL. Rapid synthesis of Ti2AlC byspark plasma sintering technique[J]. Mater. Lett.,2005,59:131-134.
    [59] Hashimoto SB, Takeuchi M, Inoue K, Honda S, Awaji H, Fukuda KC,Zhang SW. Pressureless sintering and mechanical properties of titaniumaluminum carbide[J]. Mater. Lett.,2008,62:1480-1483.
    [60] Lin ZJ, Zhuo MJ, Zhou YC, Li MS, Wang JY. Microstructuralcharacterization of layered ternary Ti2AlC[J]. Acta Mater.,2006,54:1009-1015.
    [61] Manoun B, Zhang FX, Saxena SK, El-Raghy T, Barsoum MW. X-rayhigh-pressure study of Ti2AlN and Ti2AlC[J]. J. Phys. Chem. Solids,2006,67:2091-2094.
    [62] Radovic M, Barsoum MW, Ganguly A, Zhen T, Finkel P, Kalidindi SR,Lara-Curzio E. On the elastic properties and mechanical damping ofTi3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2and Ti2AlC in the300-1573Ktemperature range[J]. Acta Mater.,2006,54:2757-2767.
    [63] Zhou YC, Wang XH. Deformation of polycrystalline Ti2AlC undercompression[J]. Mater. Res. Innov.,2001,5:87-93.
    [64] Barsoum MW, El-Raghy T. A progress report on Ti3SiC2, Ti3GeC2, andthe H-phases, M2BX[J]. J. Mater. Synth. Process,1997,5:197-216.
    [65] Barsoum MW. Oxidation of Tin+1AlXn(n=1-3and X=C, N)-I.Model[J]. J. Electrochem. Soc.,2001,148: C544-C550.
    [66] Barsoum MW, Tzenov N, Procopio A, El-Raghy T, Ali M. Oxidation ofTin+1AlXn(n=1-3and X=C, N)-II. Experimental results[J]. J.Electrochem. Soc.,2001,148: C551-C562.
    [67] Barsoum MW, Farber L, Levin I, Procopio A, El-Raghy T, Berner A.High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2revisited[J]. J. Am. Ceram. Soc.,1999,82:2545-2547.
    [68] Rawn CJ, Barsoum MW, El-Raghy T, Procipio A, Hoffmann CM,Hubbard CR. Structure of Ti4AlN3-a layered Mn+1AXnnitride[J]. Mater.Res. Bull.,2000,35:1785-1796.
    [69] Emmerlich J, Hogberg H, Sasvari S, Persson POA, Hultman L, PalmquistJP, Jansson U, Molina-Aldareguia JM, Czigany Z. Growth of Ti3SiC2thinfilms by elemental target magnetron sputtering[J]. J. Appl. Phys.,2004,96:4817-4826.
    [70] Du YL, Sun ZM, Hashimoto H, Tian WB. First-principles study ofpolymorphism in Ta4AlC3[J]. Solid State Commun.,2008,145:461-464.
    [71] Lin ZJ, Zhuo MJ, Zhou YC, Li MS, Wang JY. Structural characterizationof a new layered-ternary Ta4AlC3ceramic[J]. J. Mater. Res.,2006,21:2587-2592.
    [72] Lu W, Deng XH, Wang H, Huang HT, He LL. Electronic structure andchemical bonding of α-and β-Ta4AlC3phases: Full-potentialcalculation[J]. J. Mater. Res.,2008,23:2350-2356.
    [73] Manoun B, Saxena SK, El-Raghy T, Barsoum MW. High-pressure x-raydiffraction study of Ta4AlC3[J]. Appl. Phys. Lett.,2006,88:201902.
    [74] Hu CF, Zhang J, Wang JM, Li FZ, Wang JY, Zhou YC. Crystal structureof V4AlC3: A new layered ternary carbide[J]. J. Am. Ceram. Soc.,2008,91:636-639.
    [75] Hu CF, Li FZ, He LF, Liu MY, Zhang J, Wang JM, Bao YW, Wang JY,Zhou YC. In situ reaction synthesis, electrical and thermal, andmechanical properties of Nb4AlC3[J]. J. Am. Ceram. Soc.,2008,91:2258-2263.
    [76] Wang JM, Wang JY, Zhou YC, Hu CF. Phase stability, electronicstructure and mechanical properties of ternary-layered carbide Nb4AlC3:An ab initio study[J]. Acta Mater.,2008,56:1511-1518.
    [77] Medvedeva NI, Novikov DL, Ivanovsky AL, Kuznetsov MV, Freeman AJ.Electronic properties of Ti3SiC2-based solid solutions[J]. Phys. Rev. B,1998,58:16042-16050.
    [78] Wang JY, Zhou YC. Recent Progress in Theoretical Prediction,Preparation, and Characterization of Layered Ternary Transition-MetalCarbides[J]. Ann. Rev. Mater. Res.,2009,39:415-443.
    [79] Wang JY, Zhou YC. Ab initio investigation of the electronic structure andbonding properties of the layered ternary compound Ti3SiC2at highpressure[J]. J. Phys.-Condes. Matter,2003,15:1983-1991.
    [80] Wang JY, Zhou YC. Dependence of elastic stiffness on electronic bandstructure of nanolaminate M2AlC (M=Ti,V,Nb, and Cr) ceramics[J]. Phys.Rev. B,2004,69:214111.
    [81] Wang JY, Zhou YC. Polymorphism of Ti3SiC2ceramic: First-principlesinvestigations[J]. Phys. Rev. B,2004,69:144108.
    [82] Music D, Sun ZM, Voevodin AA, Schneider JA. Electronic structure andshearing in nanolaminated ternary carbides[J]. Solid State Commun.,2006,139:139-143.
    [83] Liao T, Wang JY, Zhou YC. Superior mechanical properties of Nb2AsC tothose of other layered ternary carbides: a first-principles study[J]. J.Phys.-Condes. Matter,2006,18: L527-L533.
    [84] Sun ZM, Ahuja R, Schneider JM. Theoretical investigation of thesolubility in (MxM'2-x)AlC (M and M'=Ti,V,Cr)[J]. Phys. Rev. B,2003,68:224112.
    [85] Kumar RS, Rekhi S, Cornelius AL, Barsoum MW. Compressibility ofNb2AsC to41GPa[J]. Appl. Phys. Lett.,2005,86:111904.
    [86] Hug G. Electronic structures of and composition gaps among the ternarycarbides Ti2MC[J]. Phys. Rev. B,2006,74:184113.
    [87] Liao T, Wang JY, Zhou YC. Chemical bonding and mechanical propertiesof M2AC (M=Ti, V, Cr, A=Al, Si, P, S) ceramics from first-principlesinvestigations[J]. J. Mater. Res.,2009,24:556-564.
    [88] Farber L, Levin I, Barsoum MW, El-Raghy T, Tzenov T. High-resolutiontransmission electron microscopy of some Tin+1AXncompounds (n=1,2;A=Al or Si; X=C or N)[J]. J. Appl. Phys.,1999,86:2540-2543.
    [89] Yu R, Zhan Q, He LL, Zhou YC, Ye HQ. Polymorphism of Ti3SiC2[J]. J.Mater. Res.,2002,17:948-950.
    [90] Wang ZW, Zha CS, Barsoum MW. Compressibility and pressure-inducedphase transformation of Ti3GeC2[J]. Appl. Phys. Lett.,2004,85:3453-3455.
    [91] Eklund P, Beckers M, Jansson U, Hogberg H, Hultman L. The Mn+1AXnphases: Materials science and thin-film processing[J]. Thin Solid Films,2010,518:1851-1878.
    [92] Yu R, Zhang XF, He LL, Ye HQ. Topology of charge density and elasticanisotropy of Ti3SiC2polymorphs[J]. J. Mater. Res.,2005,20:1180-1185.
    [93] Rawn CJ, Payzant EA, Hubbard CR, Barsoum MW, El-Raghy T. Structureof Ti3SiC2. In: Delhez R, Mittemeijer EJ, editors. European PowderDiffraction, Pts1and2, vol.321-3. Zurich-Uetikon: Trans TechPublications Ltd,2000. p.889-892.
    [94] Onodera A, Hirano H, Yuasa T, Gao NF, Miyamoto Y. Static compressionof Ti3SiC2to61GPa[J]. Appl. Phys. Lett.,1999,74:3782-3784.
    [95] Jordan JL, Sekine T, Kobayashi T, Li X, Thadhani NN, El-Raghy T,Barsoum MW. High pressure behavior of titanium-silicon carbide(Ti3SiC2)[J]. J. Appl. Phys.,2003,93:9639-9643.
    [96] Liao T, Wang J, Zhou Y. Basal-plane slip systems and polymorphic phasetransformation in Ti2AlC and Ti2AlN: a first-principles study[J]. J. Phys.-Condes. Matter,2006,18:6183-6192.
    [97] Wang JY, Wang JM, Zhou YC, Lin ZJ, Hu CF. Ab initio study ofpolymorphism in layered ternary carbide M4AlC3(M=V, Nb and Ta)[J].Scr. Mater.,2008,58:1043-1046.
    [98] Deng XH, Fan BB, Lu W. First-principles investigations on elasticproperties of α-and β-Ta4AlC3[J]. Solid State Commun.,2009,149:441-444.
    [99] Holm B, Ahuja R, Li S, Johansson B. Theory of the ternary layeredsystem Ti-Al-N[J]. J. Appl. Phys.,2002,91:9874-9877.
    [100] Palmquist JP, Li S, Persson POA, Emmerlich J, Wilhelmsson O, HogbergH, Katsnelson MI, Johansson B, Ahuja R, Eriksson O, Hultman L, JanssonU. Mn+1AXnphases in the Ti-Si-C system studied by thin-film synthesisand ab initio calculations[J]. Phys. Rev. B,2004,70:165401.
    [101] Zhou YC, Meng FL, Zhang J. New MAX-Phase compounds in the V-Cr-Al-C system[J]. J. Am. Ceram. Soc.,2008,91:1357-1360.
    [102] Lee HD, Petuskey WT. New ternary nitride in the Ti-Al-N system[J]. J.Am. Ceram. Soc.,1997,80:604-608.
    [103] Procopio AT, Barsoum MW, El-Raghy T. Characterization of Ti4AlN3[J].Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.,2000,31:333-337.
    [104] Palmquist JP, Jansson U, Seppanen T, Persson POA, Birch J, Hultman L,Isberg P. Magnetron sputtered epitaxial single-phase Ti3SiC2thin films[J].Appl. Phys. Lett.,2002,81:835-837.
    [105] Grechnev A, Li S, Ahuja R, Eriksson O, Jansson U, Wilhelmsson O.Layered compound Nb3SiC2predicted from first-principles theory[J].Appl. Phys. Lett.,2004,85:3071-3073.
    [106] Li CL, Kuo JL, Wang BA, Li YS, Wang R. A new layer compoundNb4SiC3predicted from first-principles theory[J]. J. Phys. D-Appl. Phys.,2009,42:5.
    [107] Fang CM, Ahuja R, Eriksson O. Prediction of MAX phases, VN+1SiCN(N=1,2), from first-principles theory[J]. J. Appl. Phys.,2007,101:013511.
    [108] Cover MF, Warschkow O, Bilek MMM, McKenize DR. A comprehensivesurvey of M2AX phase elastic properties[J]. J. Phys.-Condes. Matter,2009,21:305403.
    [109] Bouhemadou A. First-principles study of structural, electronic and elasticproperties of Nb4AlC3[J]. Braz. J. Phys.,2010,40:52-57.
    [110] Keast VJ, Harris S, Smith DK. Prediction of the stability of the Mn+1AXnphases from first principles[J]. Phys. Rev. B,2009,80.
    [111] Dahlqvist M, Alling B, Rosen J. Stability trends of MAX phases from firstprinciples[J]. Phys. Rev. B,2010,81.
    [112]殷声.燃烧合成[M].北京:冶金工业出版社,1999.
    [113] Schr dinger E. Quantisierung als Eigenwert problem[J]. Annalen derPhysik,1926,385:437-490.
    [114] Born M, Huang K. Dynamical Theory of Crystal Lattices (first ed)[M].Oxford: Oxford University Press,1962.
    [115] Jones RO, Gunnarsson O. THE DENSITY FUNCTIONAL FORMALISM,ITS APPLICATIONS AND PROSPECTS[J]. REVIEWS OF MODERNPHYSICS,1989,61:689-746.
    [116] Pople JA, Nesbet RK. Self-Consistent Orbitals for Radicals[J]. J. Chem.Phys.,1954,22:571-574
    [117] Martin R. Electronic structure: basic theory and practical methods[M].Cambridge: Cambridge University Press,2004.
    [118] Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ,Payne MC. First-principles simulation: ideas, illustrations and theCASTEP code[J]. J. Phys.-Condes. Matter,2002,14:2717-2744.
    [119] Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterativeminimization techniques for ab initio total-energy calculations: moleculardynamics and conjugate gradients[J]. Reviews of Modern Physics,1992,64:1045-1097.
    [120] Pfrommer BG, Cote M, Louie SG, Cohen ML. Relaxation of crystals withthe quasi-Newton method[J]. J. Comput. Phys.,1997,131:233-240.
    [121] Hedin L, Lundqvist BI. Explicit local exchange-correlation potentials[J].Journal of Physics C: Solid State Physics,1971,4:2064.
    [122] Ceperley DM, Alder BJ. Ground State of the Electron Gas by a StochasticMethod[J]. Phys. Rev. Lett.,1980,45:566-569.
    [123] Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ,Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of thegeneralized gradient approximation for exchange and correlation[J]. Phys.Rev. B,1992,46:6671-6687.
    [124] Vanderbilt D. Soft self-consistent pseudopotentials in a generalizedeigenvalue formalism[J]. Phys. Rev. B,1990,41:7892-7895.
    [125] Hamann DR, Schlüter M, Chiang C. Norm-ConservingPseudopotentials[J]. Phys. Rev. Lett.,1979,43:1494-1497.
    [126] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54:11169-11186.
    [127] Thomas LH. The calculation of atomic fields[J]. MathematicalProceedings of the Cambridge Philosophical Society,1927,23:542-548.
    [128] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys. Rev. B,1964,136:864-871
    [129] Mermin ND. Thermal Properties of the Inhomogeneous Electron Gas[J].Physical Review,1965,137: A1441-A1443.
    [130] Kohn W, Sham LJ. Self-Consistent Equations Including Exchange andCorrelation Effects[J]. Physical Review,1965,140: A1133-A1138.
    [131] Srivastava GP, Weaire D. THE THEORY OF THE COHESIVEENERGIES OF SOLIDS[J]. Advances In Physics,1987,36:463-517.
    [132] Bachelet GB, Hamann DR, Schlüter M. Pseudopotentials that work: FromH to Pu[J]. Phys. Rev. B,1982,26:4199-4228.
    [133] Kerker GP. Non-singular atomic pseudopotentials for solid stateapplications[J]. Journal of Physics C: Solid State Physics,1980,13: L189.
    [134] Troullier N, Martins JL. EFFICIENT PSEUDOPOTENTIALS FORPLANE-WAVE CALCULATIONS[J]. Phys. Rev. B,1991,43:1993-2006.
    [135] Louie SG, Froyen S, Cohen ML. Nonlinear ionic pseudopotentials in spin-density-functional calculations[J]. Phys. Rev. B,1982,26:1738-1742.
    [136] Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD.ITERATIVE MINIMIZATION TECHNIQUES FOR ABINITIO TOTAL-ENERGY CALCULATIONS-MOLECULAR-DYNAMICS ANDCONJUGATE GRADIENTS[J]. REVIEWS OF MODERN PHYSICS,1992,64:1045-1097.
    [137] Chadi DJ. Special points for Brillouin-zone integrations[J]. Phys. Rev. B,1977,16:1746-1747.
    [138] Pack JD, Monkhorst HJ."Special points for Brillouin-zoneintegrations"—a reply[J]. Phys. Rev. B,1977,16:1748-1749.
    [139]吴代鸣.固体物理基础[M].北京:高等教育出版社,2007.
    [140]郝爱民. Hg系硫化物的高压电学和光学性质研究[D].长春:吉林大学,2007.
    [141] Milman V, Warren MC. Elasticity of hexagonal BeO[J]. J. Phys.-Condes.Matter,2001,13:241-251.
    [142] Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P. Phonons and relatedcrystal properties from density-functional perturbation theory[J].REVIEWS OF MODERN PHYSICS,2001,73:515-562.
    [143] Ackland GJ, Warren MC, Clark SJ. Practical methods in ab initio latticedynamics[J]. J. Phys.-Condes. Matter,1997,9:7861-7872.
    [144] Togo A, Chaput L, Tanaka I, Hug G. First-principles phonon calculationsof thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2[J]. Phys. Rev. B,2010,81.
    [145] Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J. Ageneralized synchronous transit method for transition state location[J].Comput. Mater. Sci.,2003,28:250-258.
    [146] Halgren TA, Lipscomb WN. The synchronous-transit method fordetermining reaction pathways and locating molecular transition states[J].Chem. Phys. Lett.,1977,49:225-232.
    [147] Khoptiar Y, Gotman I. Ti2AlC ternary carbide synthesized by thermalexplosion[J]. Mater. Lett.,2002,57:72-76.
    [148] Luo YM, Zheng ZM, Mei XN, Xu CH. Growth mechanism of Ti3SiC2single crystals by in-situ reaction of polycarbosilane and metal titaniumwith CaF2additive[J]. J. Cryst. Growth,2008,310:3372-3375.
    [149] Zhou YC, Sun ZM. Microstructure and mechanism of damage tolerancefor Ti3SiC2bulk ceramics[J]. Mater. Res. Innov.,1999,2:360-363.
    [150] Barsoum MW, El-Raghy T. Synthesis and characterization of aremarkable ceramic: Ti3SiC2[J]. J. Am. Ceram. Soc.,1996,79:1953-1956.
    [151]Tzenov NV, Barsoum MW. Synthesis and characterization of Ti3AlC2[J]. J.Am. Ceram. Soc.,2000,83:825-832.
    [152] Barsoum MW, Radovic M. Elastic and Mechanical Properties of the MAXPhases[J]. Ann. Rev. Mater. Res.,2011,41:195-227.
    [153] El-Raghy T, Barsoum MW, Zavaliangos A, Kalidindi SR. Processing andmechanical properties of Ti3SiC2: II, effect of grain size and deformationtemperature[J]. J. Am. Ceram. Soc.,1999,82:2855-2860.
    [154] Farber L, Barsoum MW, Zavaliangos A, El-Raghy T, Levin I.Dislocations and stacking faults in Ti3SiC2[J]. J. Am. Ceram. Soc.,1998,81:1677-1681.
    [155] Kuroda Y, Low IM, Barsoum MW, El-Raghy T. Indentation responses anddamage characteristics of hot isostatically pressed Ti3SiC2[J].2001,37:95-102.
    [156] Barsoum MW. The Mn+1AXnPhases and their Properties. In: Riedel RR,Chen I-W, editors. Ceramics Science and Technology, vol.2. Weinheim,Germany: Wiley-VCH Verlag GmbH&Co,2010. p.299-348.
    [157] Barsoum MW, Farber L, El-Raghy T. Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2[J]. Metall. Mater. Trans. A-Phys. Metall.Mater. Sci.,1999,30:1727-1738.
    [158] Barsoum MW, Zhen T, Kalidindi SR, Radovic M, Murugaiah A. Fullyreversible, dislocation-based compressive deformation of Ti3SiC2to1GPa[J]. Nat. Mater.,2003,2:107-111.
    [159] Barsoum MW, Zhen T, Zhou A, Basu S, Kalidindi SR. Microscalemodeling of kinking nonlinear elastic solids[J]. Phys. Rev. B,2005,71:134101.
    [160] Tian WB, Wang PL, Zhang GJ, Kan YM, Li YX, Yan DS. Synthesis andthermal and electrical properties of bulk Cr2AlC[J]. Scr. Mater.,2006,54:841-846.
    [161] Hu CF, He LF, Zhang J, Bao YW, Wang JY, Li MS, Zhou YC.Microstructure and properties of bulk Ta2AlC ceramic synthesized by anin situ reaction/hot pressing method[J]. J. Eur. Ceram. Soc.,2008,28:1679-1685.
    [162] Barsoum MW, El-Raghy T, Rawn CJ, Porter WD, Wang H, Payzant EA,Hubbard CR. Thermal properties of Ti3SiC2[J]. J. Phys. Chem. Solids,1999,60:429-439.
    [163] Barsoum MW, Yoo HI, Polushina IK, Rud VY, Rud YV, El-Raghy T.Electrical conductivity, thermopower, and hall effect of Ti3AlC2, Ti4AlN3,and Ti3SiC2[J]. Phys. Rev. B,2000,62:10194-10198.
    [164] Tzenov NV, Barsoum MW. Synthesis and characterization of Ti3AlC2(vol83, pg825,2000)[J]. J. Am. Ceram. Soc.,2000,83:1551-1551.
    [165] Finkel P, Barsoum MW, Hettinger JD, Lofland SE, Yoo HI. Low-temperature transport properties of nanolaminates Ti3AlC2and Ti4AlN3[J].Phys. Rev. B,2003,67:235108.
    [166] Scabarozi T, Ganguly A, Hettinger JD, Lofland SE, Amini S, Finkel P, El-Raghy T, Barsoum MW. Electronic and thermal properties ofTi3Al(C0.5,N0.5)2, Ti2Al(C0.5,N0.5) and Ti2AlN[J]. J. Appl. Phys.,2008,104:073713.
    [167] Barsoum MW, Yaroschuk G, Tyagi S. Fabrication and characterization ofM2SnC (M=Ti, Zr, Hf and Nb)[J]. Scr. Mater.,1997,37:1583-1591.
    [168] El-Raghy T, Chakraborty S, Barsoum MW. Synthesis and characterizationof Hf2PbC, Zr2PbC and M2SnC (M=Ti, Hf, Nb or Zr)[J]. J. Eur. Ceram.Soc.,2000,20:2619-2625.
    [169] Li JF, Sato F, Watanabe R. Synthesis of Ti3SiC2polycrystals by hot-isostatic pressing of the elemental powders[J]. J. Mater. Sci. Lett.,1999,18:1595-1597.
    [170] Scabarozi TH, Amini S, Leaffer O, Ganguly A, Gupta S, Tambussi W,Clipper S, Spanier JE, Barsoum MW, Hettinger JD, Lofland SE. Thermalexpansion of select Mn+1AXn(M=early transition metal, A=A groupelement, X=C or N) phases measured by high temperature x-raydiffraction and dilatometry[J]. J. Appl. Phys.,2009,105:013543.
    [171] Kulkarni SR, Merlini M, Phatak N, Saxena SK, Artioli G, Amini S,Barsoum MW. Thermal expansion and stability of Ti2SC in air and inertatmospheres[J]. J. Alloy. Compd.,2009,469:395-400.
    [172] Kulkarni SR, Merlini M, Phatak N, Saxena SK, Artioli G, Gupta S,Barsoum MW. High-temperature thermal expansion and stability ofV2AlC up to950oC[J]. J. Am. Ceram. Soc.,2007,90:3013-3016.
    [173] Manoun B, Saxena SK, Liermann HP, Barsoum MW. Thermal expansionof polycrystalline Ti3SiC2in the25o-1400oC temperature range[J]. J. Am.Ceram. Soc.,2005,88:3489-3491.
    [174] Liao T, Wang JY, Zhou YC. Ab initio modeling of the formation andmigration of monovacancies in Ti2AlC[J]. Scr. Mater.,2008,59:854-857.
    [175] Wang XH, Zhou YC. Solid-liquid reaction synthesis of layeredmachinable Ti3AlC2ceramic[J]. J. Mater. Chem.,2002,12:455-460.
    [176] Mei BC, Xu XW, Zhu JQ, Liu J. Study on the fabrication, microstructureand properties of Ti3AlC2sintered by hot-pressing[J]. Rare Metal Mat.Eng.,2005,34:684-687.
    [177] Scabarozi TH, Amini S, Finkel P, Leaffer OD, Spanier JE, Barsoum MW,Drulis M, Drulis H, Tambussi WM, Hettinger JD, Lofland SE. Electrical,thermal, and elastic properties of the MAX-phase Ti2SC[J]. J. Appl. Phys.,2008,104:033502.
    [178] Barsoum MW, Rawn CJ, El-Raghy T, Procopio AT, Porter WD, Wang H,Hubbard CR. Thermal properties of Ti4AlN3[J]. J. Appl. Phys.,2000,87:8407-8414.
    [179] Barsoum MW, El-Raghy T, Porter WD, Wang H, Ho JC, Chakraborty S.Thermal properties of Nb2SnC[J]. J. Appl. Phys.,2000,88:6313-6316.
    [180] Zhang W, Travitzky N, Hu CF, Zhou YC, Greil P. Reactive Hot Pressingand Properties of Nb2AlC[J]. J. Am. Ceram. Soc.,2009,92:2396-2399.
    [181] Finkel P, Seaman B, Harrell K, Palma J, Hettinger JD, Lofland SE,Ganguly A, Barsoum MW, Sun Z, Li S, Ahuja R. Electronic, thermal, andelastic properties of Ti3Si1-xGexC2solid solutions[J]. Phys. Rev. B,2004,70:085104.
    [182] Hettinger JD, Lofland SE, Finkel P, Meehan T, Palma J, Harrell K, GuptaS, Ganguly A, El-Raghy T, Barsoum MW. Electrical transport, thermaltransport, and elastic properties of M2AlC (M=Ti, Cr, Nb, and V)[J]. Phys.Rev. B,2005,72:115120.
    [183] Hu CF, Lin ZJ, He LF, Bao YW, Wang JY, Li MS, Zhou YC. Physical andmechanical properties of bulk Ta4AIC3ceramic prepared by an in situreaction Synthesis/Hot-Pressing method[J]. J. Am. Ceram. Soc.,2007,90:2542-2548.
    [184] Barsoum MW, Golczewski J, Seifert HJ, Aldinger F. Fabrication andelectrical and thermal properties of Ti2InC, Hf2InC and (Ti,Hf)2InC[J]. J.Alloy. Compd.,2002,340:173-179.
    [185]田莳.材料物理性能[M].北京:北京航空航天大学出版社,2001.
    [186] Taylor RE. Thermal Conductivity of Titanium Carbide at HighTemperatures[J]. J. Am. Ceram. Soc.,1961,44:525-525.
    [187] Lengauer W, Binder S, Aigner K, Ettmayer P, Guillou A, Debuigne J,Groboth G. Solid state properties of group IVb carbonitrides[J]. J. Alloy.Compd.,1995,217:137-147.
    [188] Li SB, Yu WB, Zhai HX, Song GM, Sloof WG, van der Zwaag S.Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics[J]. J. Eur. Ceram. Soc.,2011,31:217-224.
    [189] Zhou AG, Barsoum MW, Basu S, Kalidindi SR, El-Raghy T. Incipient andregular kink bands in fully dense and10vol.%porous Ti2AlC[J]. ActaMater.,2006,54:1631-1639.
    [190] Murugaiah A, Barsoum MW, Kalidindi SR, Zhen T. Sphericalnanoindentations and kink bands in Ti3SiC2[J]. J. Mater. Res.,2004,19:1139-1148.
    [191] Kalidindi SR, Zhen T, Barsoum MW. Macroscale constitutive modeling ofkinking nonlinear elastic solids[J]. Mater. Sci. Eng. A-Struct. Mater. Prop.Microstruct. Process.,2006,418:95-98.
    [192] Hu CF, He LF, Liu MY, Wang XH, Wang JY, Li MS, Bao YW, Zhou YC.In Situ Reaction Synthesis and Mechanical Properties of V2AlC[J]. J. Am.Ceram. Soc.,2008,91:4029-4035.
    [193] Tian WB, Wang PL, Zhang GJ, Kan YM, Li YX. Mechanical properties ofCr2AlC ceramics[J]. J. Am. Ceram. Soc.,2007,90:1663-1666.
    [194] Tian WB, Sun ZM, Hashimoto H, Du YL. Compressive deformationbehavior of ternary compound Cr2AlC[J]. J. Mater. Sci.,2009,44:102-107.
    [195] Ashby MF, Embury JD. The influence of dislocation density on theductile-brittle transition in BCC metals[J]. Scripta Metallurgica,1985,19:557-562.
    [196] Faulkner RG, Riddle N. Control of ductile to brittle transition temperaturein ferritic pressure vessel steel[J]. Mater. Sci. Technol.,2011,27:300-304.
    [197] Tian WB, Sun ZM, Du YL, Hashimoto H. Mechanical properties of pulsedischarge sintered Cr2AlC at25-1000oC[J]. Mater. Lett.,2009,63:670-672.
    [198] Li JF, Pan W, Sato F, Watanabe R. Mechanical properties ofpolycrystalline Ti3SiC2at ambient and elevated temperatures[J]. ActaMater.,2001,49:937-945.
    [199] Wang XH, Zhou YC. Microstructure and properties of Ti3AlC2preparedby the solid-liquid reaction synthesis and simultaneous in-situ hotpressing process[J]. Acta Mater.,2002,50:3141-3149.
    [200] Ganguly A, Zhen T, Barsoum MW. Synthesis and mechanical propertiesof Ti3GeC2and Ti3(SixGe1-x)C2(x=0.5,0.75) solid solutions[J]. J. Alloy.Compd.,2004,376:287-295.
    [201] Barsoum MW. Fundamentals of Ceramics[M]. New York Taylor&Francis,2002.
    [202] Santos Sérgio Francisco d, Rodrigues José de A. Correlation betweenfracture toughness, work of fracture and fractal dimensions of Alumina-mullite-zirconia composites [J]. Mat. Res.,2003,6:219-226.
    [203] Barsoum MW, Radovic M. Elastic and Mechanical Properties of the MAXPhases[J]. Ann. Rev. Mater. Res.,2011,41:195-227.
    [204] Fraukiewicz M, Zhou AG, Barsoum MW. Mechanical damping in porousTi3SiC2[J]. Acta Mater.,2006,54:5261-5270.
    [205] Sun ZM, Murugaiah A, Zhen T, Zhou A, Barsoum MW. Microstructureand mechanical properties of porous Ti3SiC2[J]. Acta Mater.,2005,53:4359-4366.
    [206] Low IM. Vickers contact damage of micro-layered Ti3SiC2[J]. J. Eur.Ceram. Soc.,1998,18:709-713.
    [207] Lis J, Miyamoto Y, Pampuch R, Tanihata K. Ti3SiC2-BASEDMATERIALS PREPARED BY HIP-SHS TECHNIQUES[J]. Mater. Lett.,1995,22:163-168.
    [208] Lis J, Pampuch R, Piekarczyk J, Stobierski L. NEW CERAMICS BASEDON TI3SiC2[J]. Ceram. Int.,1993,19:219-222.
    [209] El-Raghy T, Barsoum MW. Processing and mechanical properties ofTi3SiC2: I, reaction path and microstructure evolution (vol82, pg2849,1999)[J]. J. Am. Ceram. Soc.,2000,83:679-679.
    [210] El-Raghy T, Zavaliangos A, Barsoum MW, Kalidindi SR. Damagemechanisms around hardness indentations in Ti3SiC2[J]. J. Am. Ceram.Soc.,1997,80:513-516.
    [211] Bao YW, Wang XH, Zhang HB, Zhou YC. Thermal shock behavior ofTi3AlC2from between200oC and1300oC[J]. J. Eur. Ceram. Soc.,2005,25:3367-3374.
    [212] Singh AK, Hou XM, Chou KC. The oxidation kinetics of multi-walledcarbon nanotubes[J]. Corrosion Sci.,2010,52:1771-1776.
    [213] Wang XH, Zhou YC. Oxidation behavior of Ti3AlC2at1000-1400oC inair[J]. Corrosion Sci.,2003,45:891-907.
    [214] Wang XH, Zhou YC. Stability and selective oxidation of aluminum innano-laminate Ti3AlC2upon heating in argon[J]. Chem. Mat.,2003,15:3716-3720.
    [215] Li SB, Cheng LF, Zhang LT. Oxidation behavior of Ti3SiC2at hightemperature in air[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct.Process.,2003,341:112-120.
    [216] Chakraborty S, El-Raghy T, Barsoum MW. Oxidation of Hf2SnC andNb2SnC in air in the400-600oC temperature range[J]. Oxid. Met.,2003,59:83-96.
    [217] Wang XH, Zhou YC. Oxidation behavior of Ti3AlC2powders in flowingair[J]. J. Mater. Chem.,2002,12:2781-2785.
    [218] Sun ZM, Zhou YC, Li MS. Oxidation behaviour of Ti3SiC2-based ceramicat900-1300oC in air[J]. Corrosion Sci.,2001,43:1095-1109.
    [219] Sun Z, Zhou Y, Li M. High temperature oxidation behavior of Ti3SiC2-based material in air[J]. Acta Mater.,2001,49:4347-4353.
    [220] Qian XK, He XD, Li YB, Sun Y, Li H, Xu DL. Cyclic oxidation ofTi3AlC2at1000-1300oC in air[J]. Corrosion Sci.,2011,53:290-295.
    [221] Wang QM, Renteria AF, Schroeter O, Mykhaylonka R, Leyens C, GarkasW, to Baben M. Fabrication and oxidation behavior of Cr2AlC coating onTi6242alloy[J]. Surf. Coat. Technol.,2010,204:2343-2352.
    [222] Qian XK, Li YB, Sun Y, He XD, Zhu CC. Cyclic oxidation behavior ofTiC/Ti3AlC2composites at550-950oC in air[J]. J. Alloy. Compd.,2010,491:386-390.
    [223] Amini S, McGhie AR, Barsoum MW. Isothermal Oxidation of Ti2SC inAir[J]. J. Electrochem. Soc.,2009,156: P101-P106.
    [224] Tian WB, Wang PL, Kan YM, Zhang GJ. Oxidation behavior of Cr2AlCceramics at1100and1250oC[J]. J. Mater. Sci.,2008,43:2785-2791.
    [225] Lin ZJ, Li MS, Wang JY, Zhou YC. High-temperature oxidation and hotcorrosion of Cr2AlC[J]. Acta Mater.,2007,55:6182-6191.
    [226] Lee DB, Nguyen TD, Han JH, Park SW. Oxidation of Cr2AlC at1300oCin air[J]. Corrosion Sci.,2007,49:3926-3934.
    [227] Gupta S, Hoffman EN, Barsoum MW. Synthesis and oxidation of Ti2InC,Zr2InC,(Ti0.5,Zr0.5)2InC and (Ti0.5,Hf0.5)2InC in air[J]. J. Alloy. Compd.,2006,426:168-175.
    [228] Gupta S, Ganguly A, Filimonov D, Barsoum MW. High-temperatureoxidation of Ti3GeC2and Ti3Ge0.5Si0.5C2in air[J]. J. Electrochem. Soc.,2006,153: J61-J68.
    [229] Gupta S, Filimonov D, Barsoum MW. Isothermal oxidation of Ta2AlC inair[J]. J. Am. Ceram. Soc.,2006,89:2974-2976.
    [230] Gupta S, Barsoum MW. Synthesis and oxidation of V2AlC and (Ti0.5,V0.5)2AlC in air[J]. J. Electrochem. Soc.,2004,151: D24-D29.
    [231] Li JJ, Li MS, Xiang HM, Lu XP, Zhou YC. Short-term oxidationresistance and degradation of Cr2AlC coating on M38G superalloy at900-1100oC[J]. Corrosion Sci.,2011,53:3813-3820.
    [232] Ahuja R, Eriksson O, Wills JM, Johansson B. Electronic structure ofTi3SiC2[J]. Appl. Phys. Lett.,2000,76:2226-2228.
    [233] Zhou YC, Sun ZM, Wang XH, Chen SQ. Ab initio geometry optimizationand ground state properties of layered ternary carbides Ti3MC2(M=Al,Si and Ge)[J]. J. Phys.-Condes. Matter,2001,13:10001-10010.
    [234] Sun ZM, Music D, Ahuja R, Li S, Schneider JM. Bonding andclassification of nanolayered ternary carbides[J]. Phys. Rev. B,2004,70:092102.
    [235] Sun ZM, Music D, Ahuja R, Schneider JM. Theoretical investigation ofthe bonding and elastic properties of nanolayered ternary nitrides[J]. Phys.Rev. B,2005,71:193402.
    [236] Daoudi B, Yakoubi A, Beldi L, Bouhafs B. Full-potential electronicstructure of Hf2AlC and Hf2AlN[J]. Acta Mater.,2007,55:4161-4165.
    [237] Du YL, Sun ZM, Hashimoto H, Tian WB. Elastic properties of Ta4AlC3studied by first-principles calculations[J]. Solid State Commun.,2008,147:246-249.
    [238] Li S, Ahuja R, Barsoum MW, Jena P, Johansson B. Optical properties ofTi3SiC2and Ti4AlN3[J]. Appl. Phys. Lett.,2008,92:221907.
    [239] Hug G, Jaouen M, Barsoum MW. X-ray absorption spectroscopy, EELS,and full-potential augmented plane wave study of the electronic structureof Ti2AlC, Ti2AlN, Nb2AlC, and (Ti0.5Nb0.5)2AlC[J]. Phys. Rev. B,2005,71:024105.
    [240] Pietzka M, Schuster J. Summary of constitutional data on the Aluminum-Carbon-Titanium system[J]. Journal of Phase Equilibria,1994,15:392-400.
    [241] Schuster JC, Nowotny H, Vaccaro C. The ternary systems: Cr-Al-C, V-Al-C, and Ti-Al-C and the behavior of H-phases (M2AlC)[J]. J. Solid StateChem.,1980,32:213-219.
    [242] Schneider JM, Mertens R, Music D. Structure of V2AlC studied by theoryand experiment[J]. J. Appl. Phys.,2006,99:013501.
    [243]Schuster J, Nowotny H. Investigations of the Ternary Systems (Zr, Hf, Nb,Ta)-Al-Carbon and Studies on Complex Carbides [J]. Z. Metallk.,1980,71:341-346.
    [244] Salama I, El-Raghy T, Barsoum MW. Synthesis and mechanical propertiesof Nb2AlC and (Ti,Nb)2AlC[J]. J. Alloy. Compd.,2002,347:271-278.
    [245] Lin ZJ, Zhou YC, Li MS, Wang JY. In-situ hot pressing/solid-liquidreaction synthesis of bulk Cr2AlC[J]. Z. Metallk.,2005,96:291-296.
    [246] Lin ZJ, Zhuo MJ, Zhou YC, Li MS, Wang JY. Atomic scalecharacterization of layered ternary Cr2AlC ceramic[J]. J. Appl. Phys.,2006,99:076109.
    [247] Ying GB, He XD, Li MW, Han WB, He F, Du SY. Synthesis andmechanical properties of high-purity Cr2AlC ceramic[J]. Mater. Sci. Eng.A-Struct. Mater. Prop. Microstruct. Process.,2011,528:2635-2640.
    [248] Ganguly A, Barsoum MW, Doherty RD. Interdiffusion between Ti3SiC2-Ti3GeC2and Ti2AlC-Nb2AlC diffusion couples[J]. J. Am. Ceram. Soc.,2007,90:2200-2204.
    [249] Music D, Sun ZM, Voevodin AA, Schneider JM. Ab initio study of basalslip in Nb2AlC[J]. J. Phys.-Condes. Matter,2006,18:4389-4395.
    [250] Salama I, El-Raghy T, Barsoum MW. Oxidation of Nb2AlC and(Ti,Nb)2AlC in air[J]. J. Electrochem. Soc.,2003,150: C152-C158.
    [251] Hu CF, Sakka Y, Tanaka H, Nishimura T, Grasso S. Fabrication ofTextured Nb4AlC3Ceramic by Slip Casting in a Strong Magnetic Fieldand Spark Plasma Sintering[J]. J. Am. Ceram. Soc.,2011,94:410-415.
    [252] Hu CF, Sakka Y, Grasso S, Nishimura T, Guo SQ, Tanaka H. Shell-likenanolayered Nb4AlC3ceramic with high strength and toughness[J]. Scr.Mater.,2011,64:765-768.
    [253] Hua CF, Sakka Y, Tanaka H, Nishimura T, Grasso S. Low temperaturethermal expansion, high temperature electrical conductivity, andmechanical properties of Nb4AlC3ceramic synthesized by spark plasmasintering[J]. J. Alloy. Compd.,2009,487:675-681.
    [254] Amer M, Barsoum MW, El-Raghy T, Weiss I, Leclair S, Liptak D. TheRaman spectrum of Ti3SiC2[J]. J. Appl. Phys.,1998,84:5817-5819.
    [255] Spanier JE, Gupta S, Amer M, Barsoum MW. Vibrational behavior of theMn+1AXnphases from first-order Raman scattering (M=Ti,V,Cr, A=Si,X=C,N)[J]. Phys. Rev. B,2005,71:012103.
    [256] Presser V, Naguib M, Chaput L, Togo A, Hug G, Barsoum MW. First-order Raman scattering of the MAX phases: Ti2AlN, Ti2AlC0.5N0.5,Ti2AlC,(Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2[J]. Journal ofRaman Spectroscopy,2011: n/a-n/a.
    [257] Castiglioni C, Negri F, Tommasini M, Di Donato E, Zerbi G. Ramanspectra and structure of sp(2) carbon-based materials: Electron-phononcoupling, vibrational dynamics and Raman activity[J]. Carbon: The FutureMaterial for Advanced Technology Applications,2006,100:381-402.
    [258] Leaffer OD, Gupta S, Barsoum MW, Spanier JE. On Raman scatteringfrom selected M2AC compounds[J]. J. Mater. Res.,2007,22:2651-2654.
    [259] Mercier F, Chaix-Pluchery O, Ouisse T, Chaussende D. Raman scatteringfrom Ti3SiC2single crystals[J]. Appl. Phys. Lett.,2011,98.
    [260] Wang JY, Zhou YC, Lin ZJ, Meng FL, Li F. Raman active phonon modesand heat capacities of Ti2AlC and Cr2AlC ceramics: first-principles andexperimental investigations[J]. Appl. Phys. Lett.,2005,86:101902.
    [261] Lane NJ, Naguib M, Presser V, Hug G, Hultman L, Barsoum MW. First-order Raman scattering of the MAX phases Ta4AlC3, Nb4AlC3, Ti4AlN3,and Ta2AlC[J]. Journal of Raman Spectroscopy,2011: n/a-n/a.
    [262]吴刚.材料结构表征及应用[M].北京:化学工业出版社,2002.
    [263] Music D, Ahuja R, Schneider JM. Theoretical study of nitrogen vacanciesin Ti4AIN3[J]. Appl. Phys. Lett.,2005,86:031911.
    [264] Manoun B, Leaffer OD, Gupta S, Hoffman EN, Saxena SK, Spanier JE,Barsoum MW. On the compression behavior of Ti2InC,(Ti0.5, Zr0.5)2InC,and M2SnC (M=Ti, Nb, Hf) to quasi-hydrostatic pressures up to50GPa[J]. Solid State Commun.,2009,149:1978-1983.
    [265] Kulkarni SR, Vennila RS, Phatak NA, Saxena SK, Zha CS, El-Raghy T,Barsoum MW, Luo W, Ahuja R. Study of Ti2SC under compression up to47GPa[J]. J. Alloy. Compd.,2008,448: L1-L4.
    [266] Manoun B, Zhang FX, Saxena SK, Gupta S, Barsoum M. On thecompression behaviour of (Ti0.5,V0.5)2AlC and (Ti0.5, Nb0.5)2AlC to quasi-hydrostatic pressures above50GPa[J]. J. Phys.-Condes. Matter,2007,19:246215.
    [267] Manoun B, Amini S, Gupta S, Saxena SK, Barsoum MW. On thecompression behavior of Cr2GeC and V2GeC up to quasi-hydrostaticpressures of50GPa[J]. J. Phys.-Condes. Matter,2007,19:456218.
    [268] Manoun B, Gulve RP, Saxena SK, Gupta S, Barsoum MW, Zha CS.Compression behavior of M2AlC (M=Ti, V, Cr, Nb, and Ta) phases toabove50GPa[J]. Phys. Rev. B,2006,73:024110.
    [269] Manoun B, Saxena SK, Liermann HP, Gulve RP, Hoffman E, BarsoumMW, Hug G, Zha CS. Compression of Zr2InC to52GPa[J]. Appl. Phys.Lett.,2004,85:1514-1516.
    [270] Manoun B, Liermann HP, Gulve RP, Saxena SK, Ganguly A, BarsoumMW, Zha CS. Compression of Ti3Si0.5Ge0.5C2to53GPa[J]. Appl. Phys.Lett.,2004,84:2799-2801.
    [271] Emmerlich J, Music D, Houben A, Dronskowski R, Schneider JM.Systematic study on the pressure dependence of M2AlC phases(M=Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,W)[J]. Phys. Rev. B,2007,76:224111.
    [272] Manoun B, Saxena SK, Hug G, Ganguly A, Hoffman EN, Barsoum MW.Synthesis and compressibility of Ti3(Al,Sn0.2)C2and Ti3Al(C0.5,N0.5)2[J]. J.Appl. Phys.,2007,101:113523.
    [273] Birch F. Finite Elastic Strain of Cubic Crystals[J]. Physical Review,1947,71:809.
    [274] Bouhemadou A. Structural, electronic and elastic properties of Ti2TlC,Zr2TlC and Hf2TlC[J]. Cent. Eur. J. Phys.,2009,7:753-761.
    [275] Bortolozo AD, Sant'Anna OH, dos Santos CAM, Machado AJS.Superconductivity in the hexagonal-layered nanolaminates Ti2InCcompound[J]. Solid State Commun.,2007,144:419-421.
    [276] Jeitschko W, Nowotny H, Benesovsky F. Die H-Phasen: Ti2CdC, Ti2GaC,Ti2GaN, Ti2InN, Zr2InN und Nb2GaC [J]. Monatshefte für Chemie/Chemical Monthly,1964,95:178-179.
    [277] Farber L, Levin I, Barsoum MW. High-resolution transmission electronmicroscopy study of a low-angle boundary in plastically deformedTi3SiC2[J]. Philos. Mag. Lett.,1999,79:163-170.
    [278] Haddad N, Garcia-Caurel E, Hultman L, Barsoum MW, Hug G. Dielectricproperties of Ti2AlC and Ti2AlN MAX phases: The conductivityanisotropy[J]. J. Appl. Phys.,2008,104:023531.
    [279] Kanoun MB, Jaouen M. Structure of the ternary carbide Ti3SnC2from abinitio calculations[J]. J. Phys.-Condes. Matter,2008,20:085211.
    [280] Bouhemadou A. Prediction study of structural and elastic properties underpressure effect of M2SnC (M=Ti, Zr, Nb, Hf)[J]. Physica B,2008,403:2707-2713.
    [281]Kanoun MB, Goumri-Said S, Reshak AH. Theoretical study of mechanical,electronic, chemical bonding and optical properties of Ti2SnC, Zr2SnC,Hf2SnC and Nb2SnC[J]. Comput. Mater. Sci.,2009,47:491-500.
    [282] Holm B, Ahuja R, Johansson B. Ab initio calculations of the mechanicalproperties of Ti3SiC2[J]. Appl. Phys. Lett.,2001,79:1450-1452.
    [283] Finkel P, Barsoum MW, El-Raghy T. Low temperature dependencies ofthe elastic properties of Ti4AlN3, Ti3Al1.1C1.8, and Ti3SiC2[J]. J. Appl.Phys.,2000,87:1701-1703.
    [284] Music D, Emmerlich J, Schneider JM. Phase stability and elasticproperties of Tan+1AlCn(n=1-3) at high pressure and elevatedtemperature[J]. J. Phys.-Condes. Matter,2007,19:136207.
    [285] Tromas C, Villechaise P, Gauthier-Brunet V, Dubois S. Slip line analysisaround nanoindentation imprints in Ti3SnC2: a new insight into plasticityof MAX-phase materials[J]. Philos. Mag.,2011,91:1265-1275.
    [286] Tromas C, Ouabadi N, Gauthier-Brunet V, Jaouen M, Dubois S.Mechanical Properties of Nanolaminate Ti3SnC2Carbide Determined byNanohardness Cartography[J]. J. Am. Ceram. Soc.,2010,93:330-333.
    [287] El-Raghy T, Zavaliangos A, Barsoum MW, Kalidindi SR. Damagemechanisms around hardness indentations in Ti3SiC2[J]. J. Am. Ceram.Soc.,1997,80:513-516.
    [288] El-Raghy T, Barsoum MW. Processing and mechanical properties ofTi3SiC2: I, reaction path and microstructure evolution[J]. J. Am. Ceram.Soc.,1999,82:2849-2854.
    [289] Sun ZM. Progress in research and development on MAX phases: a familyof layered ternary compounds[J]. International Materials Reviews,2011,56:143-166.
    [290] Wang XH, Zhou YC. Layered Machinable and Electrically ConductiveTi2AlC and Ti3AlC2Ceramics: a Review[J]. J. Mater. Sci. Technol.,2010,26:385-416.
    [291] Li CL, Wang B, Li YS, Wang R. First-principles study of electronicstructure, mechanical and optical properties of V4AlC3[J]. J. Phys. D-Appl.Phys.,2009,42:5.
    [292] Li C, Wang Z. First-principles study of structural, electronic, andmechanical properties of the nanolaminate compound Ti4GeC3underpressure[J]. J. Appl. Phys.,2010,107:123511-7.
    [293] Manoun B, Saxena SK, Barsoum MW. High pressure study of Ti4AlN3to55GPa[J]. Appl. Phys. Lett.,2005,86:101906.
    [294] Kulkarni SR, Phatak NA, Saxena SK, Fei YW, Hu JZ. High pressurestructural behavior and synthesis of Zr2SC[J]. J. Phys.-Condes. Matter,2008,20:135211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700