基于球杆仪的高速五轴数控机床综合误差建模与检测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
装配有高速电主轴与直线电机的现代高速机床的热误差检测是当前业内的研究热点问题,尤其电主轴热漂移误差的检测是广受关注的难点问题。结合五轴高速加工中心误差检测项目,本论文研究了转动轴误差检测方法、一体式电主轴系统、直线电机驱动系统热误差检测方法等现代高端机床精度检测难点问题,建立了加工中心综合误差数学模型,完成了对电主轴系统、直线电机系统的有限元热分析,并完成基于球杆仪的机床综合误差检测试验。取得的主要研究成果如下:
     基于齐次坐标变换原理,建立了基于球杆仪检测原理的综合误差模型,该模型包含对加工精度影响较大的工作台旋转轴C轴的四项安装定位误差,主轴热漂移误差,以及直线电机驱动下的三直轴各项几何误差与热误差,据此模型,提出了基于球杆仪测量原理的误差检测方法;
     基于有限元热分析方法,借助商用软件ANSYS的热分析模块完成了机床整体温度场分布,主轴与直线导轨热变形的有限元分析,得出了主轴的三种可能热变形模式与直线导轨的热变形模式;
     构建了针对高速五轴机床的主要误差元素的球杆仪检测模式,完成了各检测模式的球杆仪检测轨迹仿真,据此得出工作台旋转轴C轴的四项安装定位误差、主轴热漂移误差以及直线电机驱动下的三直轴各项几何误差与热误差的球杆仪圆轨迹特征;
     根据机床运动传递链的封闭性原理,提出了基于球杆仪测量数据的几何误差与热误差分离方法,并应用最小二乘法提出了球杆仪自身安装定位误差的分离方法,提高了检测精度;
     综合球杆仪检测数据,绘制主轴热漂移规律曲线,直线导轨上不同位置处热变形规律曲线,并得到出现热误差前后工作空间内工作台平面上的综合误差分布变化规律,提出了机床精度评价方法。
     本文工作对我国高端机床的自主开发及精度提高有重要实用价值,并且本文提出的误差分析检测方法适用于类似结构的五轴机床和高速机床。
This paper aimed at the measurment of the main errors of the 5-axis high speed machine tools, and foused on the key problems concernd for the measurement methods of the errors of rotary axis, the thermal errors of high speed spindle and linear motor systems. This paper based on double-ball-bar(DBB) theory and found the mathematic model including main geometrical errors and thermal errors of the 5-axis machine tools; and thermal-structure coupling analysis for high spindle and linear motor systems was done. Five DBB measurement models were designed for different errors. Lastly, the experiments of DBB for 5-axis machine tools were done. The following in-depth work had been completed.
     The synthesis error model of high speed 5-axis machine tools was founded based on homogeneous coordinate transformation theory, included 4 geometrical errors of C-aixs, thermal drift errors of high speed spindle and geometrical and thermal errors of linear motor systems, then the DBB measurement method was founded according to the error model.
     The FEA analysis for whole machine tools, high speed spindle and linear guide was done by ANSYS, the temperature field of machine tools, the thermal distortion of spindle and linear guide were got, by applying thermal and structural loads on the FEA models.
     The measurement models of DBB was founded and different trajectories of DBB for different errors were simulated, including 4 geometrical errors of C-aixs, thermal drift errors of high speed spindle and geometrical and thermal errors of linear motor systems.
     The method for separating the geometrical and thermal errors from DBB data was proposed based on the closed characteristic of the kinematical chain of 5-axis machine tools, the location errors of DBB could also be separated by using least square method.
     At last, the variation curves of spindle thermal drifting errors and thermal errrors of linear guide were drawn, and the distribution on the worktable surface of synthesis errors were also drawn, then the accuracy of the machine tools was evaluated based on all the analysis mentioned above.
     The outcome of this research had high value for the development of high performance mahine tools, and the methods proposed in the paper were also suitable for the other similar 5-axis and high speed machine tools.
引文
[1]艾兴,高速切削加工技术,北京:国防工业出版社, 2003.
    [2]马贤智,机械产品质量与检验标准手册金属切削机床卷,北京:机械工业出版社, 1994.
    [3]杜正春,批量数控机床热误差实时补偿关键技术研究,上海交通大学学位论文, 2002.
    [4]刘焕劳,李曦,李斌,数控机床的几何误差和热误差补偿关键技术,机械工程师, 2003, 12(2): 12-20.
    [5]倪军,数控机床误差补偿研究的回顾与展望,中国机械工程, 1997, 8(1): 29-33.
    [6]吴玉厚,数控机床电主轴单元技术,北京:机械工业出版社, 2006.
    [7]周龙声,机床精度检测,北京:机械工业出版社, 1982.
    [8]精密机床常见故障诊断与检修丛书编委会编,精密机床常见故障诊断与检修,北京:机械工业出版社, 1998.
    [9]花国梁,精密测量技术,北京:中国计量出版社, 1990.
    [10] Chen Huawei, Zhang Dawei, Tian Yanling,etc. Motion error estimation of 5-axis machine center using DBB method. Chinese journal of mechanical engineering, 2006, 19(2): 276-281.
    [11] Heui Jae Pahk, Young Sam Kim. A New Technique For Volumetric Error Assessment of CNC Machine Tools Incorporating Ball Bar Measurement And 3D Volumetric Error Model. Journal of Mechanical Design, 1997, 37(11): 1583-1596.
    [12] N.Srinivasa, J.C. Ziegert. Spindle thermal drift measurement using the laser ball bar. Precision Engineering, 1996, 18(1): 118-128.
    [13] Minyang Yang, Jaejong Lee. Measurement and prediction of thermal errors of a CNC machining center using two spherical balls. Journal of materials processing technology, 1998, 75(2): 180-189.
    [14] Seung-Han Yang, Ki-Hoon Kim, Yong Kuk Park. Measurement of spindle thermal errors in machine tool using hemispherical ball bar test. International Journal of Machine Tools and Manufacture, 2004, 44(2): 333-340.
    [15] S.H.Yang, K.-H.Kim, Y.K.Park. Error analysis and compensation for the volumetric errors of a vertical machining centre using a hemispherical helix ball bar test . Int J Adv Manuf Technol, 2004, 23(2):495-500.
    [16] Yukio Takeda, Gang Shen, Hiroaki Funabashi. A DBB-Based Kinematic Calibration Method for In-Parallel Actuated Mechanisms Using a Fourier Series. Journal of Mechanical Design, September 2004, 12(6): 846-857.
    [17]胡西平,张虎,陈吉红,基于球杆仪的数控机床误差识别与补偿,组合机床与自动化加工技术, 2001, 24(8): 87-95.
    [18]商鹏,阮宏慧,张大卫,基于球杆仪的三轴数控机床热误差检测方法,天大学报, 2006, 39(11): 1336-1340.
    [19]赵俊伟,徐振高,范光照,三维激光球杆测量装置及其应用,华中科技大学学报, 2001, 38(10): 108-113.
    [20]张虎,周云飞,唐小琦,等.数控机床空间误差球杆仪识别和补偿.机械工程学报, 2002, vol.38(10): 108-113.
    [21]洪振宇,可重构混联机械手模块—TriVariant的精度设计与运动学标定方法研究,天津大学博士学位论文, 2007.
    [22] Pei-Lum Tso, San-Yeng Yang. The compensation of geometrical errors on CNC mahine tools. Journal of Materials Processing Technology , 1998, 73 (1): 82–88.
    [23]冯之敬,制造工程与技术原理,北京:清华大学出版社, 2004.
    [24] Bryan J. International status of thermal error research. Annals of CIRP, 1990, 39(2): 645-656.
    [25] Cheng-Hsien Wu, Yu-Tai Kung. Thermal analysis for the feed drive system of a CNC machine center. International Journal of Machine Tools and Manufacture, 2003, 43(12): 1521-1528.
    [26] Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics. 1995, 21(5): 215-221.
    [27] D.S. Lee, J.Y. Choi. ICA based thermal source extraction and thermal distortion compensation method for a machine tool. International Journal of Machine Tools and Manufacture, 2003, 43(4): 589-597.
    [28] Jong-Jin Kim, Young Hun Jeong, Dong-Woo Cho. Thermal behavior of a machine tool equipped with linear motors. International Journal of Machine Tools and manufacture, 2004, 44(10): 749-758.
    [29] P. Vanherck, J. Dehaes, M. Nuttin. Compensation of thermal deformations in machine tools with neural nets. Computers in industry, 1997, 33(1): 119-125.
    [30] Ferreira, P. M. Liu, C. R. A method for estimating and compensating quasistatic errors of machine tools. Journal of Engi neering for Industry, 1993, 115(1): 149-159.
    [31] Gao Y, Zhang D W, Yu C W. Dynamic modeling of a novel workpiece table for active surface grinding control. International Journal of Machine Tools and Manufacture, 2001, 41(4): 609–624.
    [32] G.H.J.Florussen, F.L.M.Delbressine, P.H.J. Schellekens. Assessing Thermally Induced Errors of Machine Tools by 3D Length Measurernents. International Journal of Machine Tools and Manufacture, 2003, 27(5): 105-109.
    [33] Han-Taw Chen, Xin-Yi Wu, Yuan-San Hsiao. Estimation of surface condition from the theory of dynamic thermal stresses. International Journal of Scinces, 2004, 43(1): 95-104.
    [34] Jae-Youl lee, Sang-Won Kang. A characterization of the thermal parameters of thermally driven polysilicon microbridge actuators using electrical impedance analysis. Sensors and Actuators, 1999, 75(1): 86-92.
    [35] J.S. Chen, G. Chiou. Quick testing and modeling of thermally-induced errors of CNC mahine tools. International Journal of Machine Tools and Manufacture, 1995, 35(7): 1063-1074.
    [36] J.S. Chen. Fast calibration and modeling of thermally-induced machine tool errors in real machine. International Journal of Machine Tools and Manufacture, 1997, 37(2):159-169.
    [37] M.H. Attia, S. Fraser, M.O.M. Osman. On-line estimation of time-variant thermal load applied to machine tool structures using a s-domain inverse solution. International Journal of Machine Tools and Manufacture, 1999, 39(5): 985-1000.
    [38] M.H. Attia, S. Fraser. A generalized modelling methodology for optimized realtime compensation of thermal deformation of machine tools and CMM structures. International Journal of Machine Tools and Manufacture, 1999, 39(6): 1001-1016.
    [39] Narayan Srinivasa, John C. Ziegert. Automated measurement and compensation of thermally induced error maps in machine tools. Precision Engineering, 1996, 19(1): 112-132.
    [40]詹友基,机床热变形误差及其误差补偿技术,机电技术, 2004, 2(9): 64-67.
    [41] K. Okushima, K. Iwata and T. Kurimoto, A Study of machinability of metals-Effect of microstructure of metals on tool life and surface finish. Wear, 1964, 7(5): 475-479.
    [42] M.H. Attia, S. Fraser. A generalized modelling methodology for optimized realtime compensation of thermal deformation of machine tools and CMM structures. International Journal of Machine Tools and Manufacture, 1999, 39(6): 1001-1016.
    [43] A.K. Srivastava, S.C. Veldhuis.Modelling geometric and thermal errors in a five-axis CNC machine tool. International Journal of Machine Tools and Manufacture, 1995, 35(9): 1321-1337.
    [44] Debra A. Krulewich. Temperature integration model and measurement point selection for thermally induced machine tool errors. Mechatronics, 1998, 8(4): 395-412.
    [45] Christopher D. Mize, John C. Ziegert. Neural network thermal error compensation of a machining center. Journal of the International Societies for Precision Engineering and Nanotechnology, 2000, 24(3): 338-346.
    [46] C. Okafor, Yalcin M. Ertekin. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. International Journal of Machine Tools and Manufacture, 2000, 40(11): 1199-1213.
    [47] R. Ramesh, M.A. Mannan, A.N. Poo. Error compensation in machine tools—a review Part I: geometric, cutting-force induced and fixturedependent errors. International Journal of Machine Tools and Manufacture, 2000, 40(9): 1235-1256.
    [48] R. Ramesh, M.A. Mannan, A.N. Poo. Error compensation in machine tools—a review Part II: thermal errors. International Journal of Machine Tools and Manufacture, 2000, 40(9): 1257-1284.
    [49] R. Ramesh, M.A. Mannan, A.N. Poo. Thermal error measurement and modelling in machine tools.Part I. Influence of varying operating conditions. International Journal of Machine Tools and Manufacture, 2003,43(3): 391-404.
    [50] R. Ramesh, M.A. Mannan, A.N. Poo. Thermal error measurement and modelling in machine tools.Part II. Hybrid Bayesian network-support vector machine model. International Journal of Machine Tools and Manufacture, 2003,43(4): 405-419.
    [51] Robert Grejda, Eric Marsh, Ryan Vallance. Techniques for calibrating spindles with nanometer error motion. Precision Engineering, 2005, 29(1): 113-123.
    [52] S.K. Kim, D.W. Cho. Real-time estimation of temperature distribution in a ball-screw system. International Journal of Machine Tools and Manufacture, 1997, 37(4): 451-464.
    [53] Shyh-Chour Huang. Analysis of model to forecast thermal deformation of ball screw feed drive systems. International Journal of Machine Tools and Manufacture, 1995, 35(8): 1099-1304.
    [54] Won Soo Yun, Soo Kwang Kim, Dong Woo Cho. Thermal error analysis for a CNC lathe feed drive system. International Journal of Machine Tools and Manufacture, 1999, 39(9): 1087-1101.
    [55] Chih-Hao LO, Yuan J X, Ni J. An application of real-time error compensation on a turning center. International Journal of Machine Tools and Manufacture, 1995, 35(12): 1669-1682.
    [56] Chunhe Gong, Jingxia Yuan, Jun Ni. Nongeometric error identification and compensation for robotic system by inverse calibration. International Journal of Machine Tools and Manufacture, 2000, 40(11): 2119-2137.
    [57] Hong Yang, Jun Ni. Dynamic modeling for machine tool thermal error compensation. Journal of manufacturing science and engineering, 2003, 125(2): 245-254.
    [58] Hong Yang, Jun Ni. Dynamic neural network modeling for nonlinear nonstationary machine tool thermally induced error. International Journal of Machine Tools and Manufacture, 2005, 45(4-5): 455-465.
    [59] Jingxia Yuan, Jun Ni. The real-time error compensation technique for CNC machining systems. Mechatronics, 1998, 8(4): 359-380.
    [60] S.Yang, J.Yuan, J. Ni. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network. International Journal of Machine Tools and Manufacture, 1996, 36(4): 527-537.
    [61] Yang H, Ni J. Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy. International Journal of Machine Tools and Manufacture, 2005, 45(1): 1-11.
    [62] S.Yang, J.Yuan, J. Ni. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network. International Journal of Machine Tools and Manufacture, 1996, 36(4): 527-537.
    [63] J.G.Yang, Y.Q.Ren, Z.C.Du. An application of real-time error compensation on a NC twin-spindle lathe. Journal of materials processing technology, 2002, 129(1-3): 474-479.
    [64] Jianguo Yang, Jingxia Yuan, Jun Ni. Thermal error mode analysis and robust modeling for error compensation on a CNC turning center. International Journal of Machine Tools and Manufacture, 1999, 39(12): 1367-1381.
    [65] Z.C. Du, J.G. Yang, Z.Q. Yao, B.Y. Xue. Modeling approach of regression orthogonal experiment design for the thermal error compensation of a CNC turning center. Journal of Materials Processing Technology, 2002, 129 (4): 619–623.
    [66] Zhao Haitao, Yang Jianguo,Shen Jinhua. Simulation of thermal behavior of a CNC machine tool spindle. International Journal of Machine Tools and Manufacture, 2006, 47(5): 1003-1010.
    [67]邓卫国,杨建国,任永强等,精密车削中心热误差测试和优化建模,机械制造, 1995, 44(2): 589-597.
    [68] Li S H, Zhang Y Q, Zhang G X. A study of pre-compensation for thermal errors of NC machine tools. International Journal of Machine Tools and Manufacture, 1997, 37(12): 1715-1719.
    [69] Yiding Wang, Guoxiong Zhang, Kee S. Moon. Compensation for the thermal error of a multi-axis machining center. Journal of materials processing technology, 1998, 75(1):45-53.
    [70]陈兆年,陈子辰,机床热态特性学基础,机械工业出版社, 1989.
    [71]傅建中,陈子辰,精密机械热动态误差模糊神经网络建模研究,制造技术与机床, 2004, 38(6): 742-746.
    [72]刘又午,章青,赵晓松,基于多体理论模型的加工中心热误差补偿技术,机械工程学报, 2002, 38(1): 127-130.
    [73]章青,刘又午,加工中心误差参数辨识和智能补偿技术,动态分析与测试技术, 1993, 11(4): 59-63.
    [74]章青,数控机床定位误差建模、参数辨识及补偿技术的研究,天津大学博士学位论文, 1995.
    [75] Ho-sang Kim, Eui-Jung Kim. Feed-forward control of fast tool servo for real-time correction of spindle error in diamond turning of flat surfaces. International Journal of Machine Tools and Manufacture, 2003, 43(9): 1177-1183.
    [76] Tae Jo Ko, Tae-weon Gim, Jae-yong Ha. Particular behavior of spindle thermal deformation by thermal bending. International Journal of Machine Tools and Manufacture, 2003, 43(1): 17-23.
    [77]何令辉,数控机床主轴结构优化设计的研究及应用.天津大学研究生毕业论文, 1993.
    [78] Jenq-Shyong Chen, Kwan-Wen Chen. Bearing load analysis and control of a motorized high speed spindle. International Journal of Machine Tools and Manufacture, 2005, 45(11): 1487–1493.
    [79] Jenq-Shyong Chen, Wei-Yao Hsu. Characterizations and models for the thermal growth of a motorized high speed spindle. International Journal of Machine Tools and Manufacture, 2003, 43(11): 1163-1170.
    [80]项伟宏,郑力等.机床主轴热误差建模.制造技术与机床, 2000, 11(1): 12-15.
    [81]杨庆东, Van Dan Bergh C, Venherck P,神经网络补偿机床热变形误差的机器学习技术,机械工程学报, 2000, 36(1): 92-95.
    [82]张伯霖,郭军,肖曙红,赵虎,电机后置式电主轴热态特性的分析与研究,组合机床与自动化加工技术,2004, 12(12): 18-20.
    [83]张伯霖,高速切削技术及其应用,北京:机械工业出版社, 2000.
    [84]中华人民共和国机械工业部, JB/T4368.4-96,中华人民共和国机械行业标准, .北京:机械工业部机械标准化研究所, 1996-10.
    [85]曹麟祥,王丙甲,圆度检测技术,北京:国防工业出版社, 1998.
    [86]江建鹏,洪迈生,曲征洪,数控机床运动精度的有效诊断检测,机械工程学报, 2000, 434(38): 34-42.
    [87]齐宝玲,几何精度设计与检测基础,北京:北京理工大学出版社, 1999.
    [88] Placid M.Ferreira, C.Richard Liu. An analytical quadratic model for the geometric error of a machine tool. Journal of Manufacturing Systerms, 1998, 189(5): 51-63.
    [89] Y. Abbaszadeh-Mir, J.R.R. Mayer, C. Fortin. Methodology and simulation of the calibration of a five-axis machine tool link geometry and motion errors using polynomial modeling and a telescoping magnetic ball-bar. Proceeding of the Sixth Laser Metrology and Machine Performance Conference. 2003, 11(3): 527–543.
    [90]唐国宝, Stewart平台运动学标定方法研究,天津大学硕士学位论文, 2002.
    [91]赵俊伟,串并联机床精度分析及检测装置研究,华中科技大学博士学位论文,2001.
    [92] W.T. Lei , M.P. Sung, W.L. Liu, Y.C. Chuang. Double ballbar test for the rotary axes of five-axis CNC machine tools. International Journal of Machine Tools and Manufacture. 2007,47 (3) 273–285
    [93] W.T.Lei, Y.Y.Hsu. Error measurement of five-axis CNC machine with 3D probe-ball. Journal of Materials Processing Technology, 2003, vol.139(2): 127-133.
    [94]李亚, 3-HSS并联机床精度设计与运动学标定方法研究,博士论文,天津大学, 2002.
    [95] Ryoshu Furutani,Kotaro Kamahora, Development of a new artifact for the calibration of large scale instruments, Measurement , 2001,30(4):139-143.
    [96] G.H.J.Florussen, F.L.M.Delbressine, P.H.J. Schellekens. Assessing Thermally Induced Errors of Machine Tools by 3D Length Measurernents. International Journal of Machine Tools and Manufacture, 2003, 27(5): 105-109.
    [97]熊有伦,机器人技术基础,武汉:华中科技大学出版社,1996.8.
    [98]熊有伦,机器人学,北京:机械工业出版社, 1993.
    [99]机械制造工艺,机械工程手册,电机工程手册编委会,机械工程手册第7卷,北京:机械工业出版社, 1982.
    [100]王先逵,精密加工技术实用手册,北京:机械工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700