陶瓷/ZA22复合泡沫的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌铝共析合金(ZA22合金)泡沫是最近开发出的一种新的泡沫材料。ZA22泡沫具有良好的力学性能和优异的阻尼特性,在熔体发泡法制备锌铝合金泡沫的过程中加入陶瓷颗粒或陶瓷纤维既能改善液态锌铝合金泡沫的发泡性又能提高锌铝合金泡沫材料的性能。因此,对SiC颗粒增强ZA22复合泡沫和Al_2O_3纤维增强ZA22复合泡沫的制备工艺及性能开展系统的研究,可以推动泡沫金属的生产和应用。
     本文以CaCO_3为发泡剂,通过熔体发泡法制备出SiC颗粒增强ZA22复合泡沫(SiC_p/ZA22复合泡沫)和Al_2O_3纤维增强ZA22复合泡沫(Al_2O_(3f)/ZA22复合泡沫),探索SiC_p/ZA22复合泡沫及Al_2O_(3f)/ZA22复合泡沫的制备工艺,主要包括:研究发泡剂的分解性质、分析发泡温度、发泡剂加入量、发泡时间和冷却条件等因素对液态ZA22泡沫发泡性及成品的影响,探讨SiC陶瓷颗粒的加入量和颗粒粒径及Al_2O_3陶瓷纤维的加入量对泡沫发泡性的影响规律,采用扫描电镜(SEM)观察复合泡沫样品中增强相的分布规律。研究准静态载荷下,SiC_p/ZA22复合泡沫及Al_2O_(3f)/ZA22复合泡沫的压缩性能,探讨相对密度、SiC颗粒体积分数和颗粒粒径、Al_2O_3纤维体积分数对SiC_p/ZA22复合泡沫及Al_2O_(3f)/ZA22复合泡沫准静态压缩性能的影响规律,利用复合球模型建立复合泡沫屈服强度的公式,用于分析复合泡沫的强度。研究动态载荷下,SiC_p/ZA22复合泡沫及Al_2O_(3f)/ZA22复合泡沫的压缩性能,计算ZA22泡沫的应变率敏感指数,分析泡沫的应变率影响因素,探讨应变率、相对密度、SiC颗粒粒径和体积分数、Al_2O_3纤维体积分数对SiC_p/ZA22复合泡沫及Al_2O_(3f)/ZA22复合泡沫动态压缩性能的影响规律。研究SiC_p/ZA22复合泡沫及Al_2O_(3f)/ZA22复合泡沫的能量吸收特性,分析复合泡沫的能量吸收机制。研究相对密度、增强物粒径和增强物体积分数对SiC_p/ZA22复合泡沫和Al_2O_(3f)/ZA22复合泡沫的阻尼性能的影响规律,将BP人工神经网络技术用于泡沫阻尼性能的分析。研究以SiC_p/ZA22复合泡沫和Al_2O_(3f)/ZA22复合泡沫为芯材的夹芯复合板的弯曲性能,探讨了相对密度、增强物体积分数和表层面板厚度对复合板极限载荷的影响规律,观察了夹芯复合板的破坏方式。
Metallic foams have received extensive interest as new structural and functional materials recently with a combination of excellent mechanical performances and outstanding functional properties such as high specific stiffness, better energy absorption and vibration reduction performances, fine sound absorption capacity, excellent heat-resistant and electromagnetism-shield properties. Therefore, they can be widely used in many fields, including aerospace, transportation, metallurgy, and construction industry. Zinc-aluminium eutectoid alloy (ZA22 alloy) foams are new kind of metallic foams which have outstanding mechanical and damping properties. By adding ceramic particles or ceramic fibers into molten ZA22, the foamability of ZA22 molten foams can be improved. And also, it can enhance the properties of the ZA22 foams that the properties of the metal foams and metal matrix composites are banded together. The research on the effect of ceramic on the properties of ZA22 foams was few to date. Therefore, the deep and systemic research on ceramic/ZA22 foams has a promotive effect on the fabrication and application of the metallic foams. The following researches were carried out in this dissertation:
     Firstly, SiC particle reinforced ZA22 composite foams (SiC_p/ZA22 composite foams) and Al_2O_3 fiber reinforced ZA22 composite foams (Al_2O_(3f)/ZA22 composite foams) were fabricated by the melt foaming route using CaCO3 as foaming agent. The effects of the parameters such as the foaming temperature, the amount of the foaming agent, and the foaming time on the fabrication of ZA22 foams were roundly studied. It was found that the foamability of ZA22 foams was improved by adding SiC particles or Al_2O_3 fibers into ZA22 liquid foams.
     Secondly, the quasi-static compressive properties of SiC_p/ZA22 and Al_2O_(3f)/ZA22 composite foams were studied. The effects of the relative density and the reinforcement on the compressive properties of the composite foams were systemically investigated. The deformation mechanisms of the composite foams were observed. The results are as follows:
     1. The stress-strain curves of the composite foams include three stages: the linearly elastic deformation region, the collapse plateau region, and the densification region. The deformation modes of SiC_p/ZA22 and Al_2O_(3f)/ZA22 composite foams were the strain localized and the failure occurred layer by layer under the quasi-static loading. SiC_p/ZA22 composite foams show some brittle characteristic, but Al_2O_(3f)/ZA22 composite foams were charactered by ductibility;
     2. The yield strengths of SiC_p/ZA22 and Al_2O_(3f)/ZA22 composite foams increase with increasing relative density under otherwise equal conditions;
     3. The yield strength of SiC_p/ZA22 composite foams increases with increasing volume fraction and decreasing size of SiC particles when other acting factors are identical;
     4. The yield strength of Al_2O_(3f)/ZA22 composite foams increases with increasing volume fraction of Al_2O_3 fiber when the relative densities of the foams are identical;
     5. The compressive yield strengths of SiC_p/ZA22 composite foams under the quasi-static loading were analyzed by using composite sphere model. The strength formulas which can explain the effects of the relative density and the reinforcement on the compressive properties were educed.
     Thirdly, the dynamic compressive properties of SiC_p/ZA22 and Al_2O_(3f)/ZA22 composite foams were investigated by using Split Hopkinson Pressure Bar (SHPB). The effects of the strain rate, the relative density and reinforcement on the dynamic compressive properties of SiC_p/ZA22 and Al_2O_(3f)/ZA22 composite foams were systemically investigated. In addition, the strain rate sensitivity of the composite foams wasstudied. The acting factors on the dynamic compressive strength were investigated. The results are as follows:
     1. The compressive yield strengths of SiC_p/ZA22 and Al_2O_(3f)/ZA22 composite foams increase with increasing strain rate when other acting factors are identical. ZA22 foams, SiC_p/ZA22 composite foams and Al_2O_(3f)/ZA22 composite foams are sensitive to the strain rate. This strain rate sensitivity is root in the contribution of the gas pressure in pores and the intrinsic strain rate sensitivity of ZA22 matrix;
     2. The dynamic compressive yield strengths of SiC_p/ZA22 composite foams increase with increasing relative density, volume fraction of SiC particles, and size of SiC particles under otherwise equal conditions;
     3. The compressive dynamic yield strengths of Al_2O_(3f)/ZA22 composite foams increase with increasing relative density and volume fraction of Al_2O_3 fibers when other acting factors are identical.
     Fourthly, the energy absorption characteristics of SiC_p/ZA22 and Al_2O_(3f)/ZA22 composite foams were investigated for the first time. The effects of the relative density, strain rate, and reinforcement on the energy absorption ability and energy absorption efficiency were systemically investigated. The results are as follows:
     1. The energy absorption abilities of SiC_p/ZA22 and Al_2O_(3f)/ZA22 composite foams mainly lie on the yield strength, the length of the collapse plateau region and the strain hard exponent. The energy absorption efficiencies are dependent on the ratio of upper yield strength to lower yield strength, the ratio of the yield strain to the densification strain, and the ratio of the elastic module to the strain hard exponent;
     2. The energy absorption efficiencies of SiC_p/ZA22 composite foams are independent of the relative density,while dependent on the strain rate and the volume fraction of the reinforcement. The energy absorption efficiencies of Al_2O_(3f)/ZA22 composite foams are independent of the relative density and the volume fraction of the reinforcement, while dependent on the strain rate.
     Fifthly, the damping properties of SiC_p/ZA22 and Al_2O_(3f)/ZA22 composite foams were investigated. The effects of the relative density and the reinforcement on the damping properties of the composite foams were investigated. The damping mechanisms of composite foams were studied. The results are as follows:
     1. The damping loss factor of SiC_p/ZA22 and Al_2O_(3f)/ZA22 composite foams increases with decreasing relative density (the increase in porosity). The loss factor of SiC_p/ZA22 composite foams increases with increasing volume fraction of SiC particles and decreasing size of SiC particles. The loss factor of Al_2O_(3f)/ZA22 composite foams increases with increasing volume fraction of Al_2O_3 fibers;
     2. The high damping properties of the composite foams are root in the contribution of the intrinsic damping of ZA22 matrix, the conversion of the stress mode around the pores, the high dislocation density damping and many kinds of interface damping;
     3. The Artificial Neural Network technique was used for analyzing the damping properties of the composite foams. The BP Neural Network method has good precision and perfect fault tolerance ability.
     Finally, the sandwiches with ZA22 foams, SiC_p/ZA22 composite foams and Al_2O_(3f)/ZA22 composite foams cores were prepared for the first time. The bending properties of the sandwiches with the foams cores under three-point bending experiment were studied. The results are as follows:
     1. P-δcurves of the sandwiches with the foams cores under three-point bending condition include three stages: the linear region, the non-linear region and the unsteady region. The failure modes of the sandwiches include the core-yield and the bonding-damage;
     2. The limit load of the sandwiches with ZA22 foams cores increases with increasing relative density and the thickness of the surface panel. The limit load of the sandwiches with SiC_p/ZA22 composite foams core increases with increasing volume fraction of SiC particles and decreasing of the size of SiC particles. The limit load of the sandwiches with Al_2O_(3f)/ZA22 composite foams core increases with increasing volume fraction of Al_2O_3 fibers.
引文
[1] BANHART J. Manufacture, characterization and application of cellular metals and metal foams [J]. Progress in Materials Science, 2001, 46: 559-632.
    [2] DEGISCHER H P. Handbook of Cellular Metals [M]. Foreword: WILEY-VCH Gerlag GmbH, 2002.
    [3]刘培生.多孔材料引论[M].北京:清华大学出版社,2004.
    [4] ANTONIO F, LORENZO L, ARVE G H, et al. Aluminium Foam for automotive applications [J]. Advanced Engineering Materials, 2000, 2(4): 200-204.
    [5] KRETZ R, KLAUS H, BRUNO G. Energy-Absorbing Behavior of Aluminum Foams: Head Impact Tests on the A-pillar of a Car [J]. Advanced Engineering Materials, 2002, 10(4): 781-785.
    [6] BANHART J. Aluminium foams for lighter vehicles [J]. International Journal of Vehicle Design, 2005, 37(2-3): 114-125.
    [7] KITAZONO K, TAKIGUCHI Y. Strain rate sensitivity and energy absorption of Zn-22Al foams [J]. Scripta Materialia, 2006, 55: 501-504.
    [8] CASOLCO S R, DOMINGUEZ G, SANDOVAL D. Processing and mechanical behavior of Zn-Al-Cu porous alloys [J]. Materials Science and Engineering A, 2007, 471: 28–33.
    [9]王海滨,梁淑华.稀土对泡沫锌铝合金组织和阻尼性能的影响[J].中国有色金属学报,2007,17(10):1685-1688.
    [10] DAOUD A. Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting [J]. Materials Science and Engineering A, 2008, 488: 281-295.
    [11] SOSNICK B. Process for making foamlike mass of metal. US Patent [P], 2434775, 1948.
    [12] ELLIOT J C. Method of producing metal foam. US Patent [P], 2751289, 1956.
    [13]上野英俊,秋山茂. Affects of calcium addition on the foam ability of molten Al [J].轻金属,1987,37(1):42-45.
    [14] SMITH H B, BASTAWROS A F, MUMM D R, et al. Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-Ray tomography and surface strain mapping[J]. Acta Materialia, 1998, 46: 3583-3592.
    [15] SIMONE A E, GIBSON L J. Efficient structural components using porousmetals [J]. Material Science and Engineering A, 1997, 229: 55-62.
    [16] OLURIN O B, FLECK N A, ASHBY M F. Deformation and fracture of aluminum foams [J]. Materials Science and Engineering A, 2000, 291: 136-146.
    [17] BANHART J, BRINKRS W. Fatigue behavior of aluminum foams [J]. Journal of Materials Science Letters, 1999, 18: 617-619.
    [18] YAMADA Y, SHIMOJIMA K, SAKAGUCHI Y, et al. Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05 g/cm3 [J]. Journal of Materials Science Letter, 1999, 18: 1477–1480.
    [19] THORNTON P H, MAGEE C L. The deformation of aluminum foams [J]. Metallurgy Transaction, 1975, 6A(6): 1253-1263.
    [20] THORNTON P H, MAGEE C L. Deformation characteristics of Zinc foam [J]. Metallurgy Transaction, 1975, 6A(9): 1801-1807.
    [21] DAVIES G J, SHU Z. Metallic foams: their production, properties and applications [J]. Journal of Materials Science, 1983, 18: 1899-1911.
    [22] GIBSON L J, ASHBY M F. Cellular Solids: Structure and Properties [M]. UK, Cambridge: Cambridge University Press, 1997.
    [23] Ashby M F, Evans A G, Fleck N A, et al. Metal Foams: A Design Guide [M]. Elsevier INC. 2000.
    [24] BANHART J, ASHBY M F, FLECK N A, eds. Metal Foams and Porous Metal Structures 1st International Conference[C]. Bremen, MIT-Verlag, 1999.
    [25] BAUMELSTER J. Aluminum foams for transport industry [J]. Materials & Design, 1997, 18: 217-220.
    [26] ZOU YI, HE DEPING, JIANG JIAQIAO. New type of spherical pore Al alloy foam with low porosity and high strength [J]. Science in China B, 2004, 47(5): 407-413.
    [27]谌立新.我国超轻多孔金属材料获重大突破[J].科技信息,2006,3(6):51.
    [28]姚广春.泡沫铝材料制备工程化研究[C]. 2006年材料科学与工程新进展——“2006北京国际材料周”论文集,2006,北京.
    [29] BANHART J. Metal Foams: Production and Stability [J]. Advanced Engineering Materials, 2006, 8(9): 781-794.
    [30] SIGIMURA Y, MEYER J, HE M Y, et al. On the Mechanical Perfoemance of Closed Cell Al Alloy Foams [J]. Acta Materialia. 1999, 45: 5245-5259.
    [31]桂满昌,吴洁君,袁广江,王殿斌.泡沫SiC颗粒增强铝基复合材料的制备工艺和拉伸强度[J].材料工程,2001,(1):26-27.
    [32]王松林,凤仪,徐屹,张学斌,沈剑. SiCP增强泡沫铝基复合材料的制备工艺研究[J].金属功能材料,2005,12(6)22-26.
    [33] CAO ZHUO KUN, LI BING, YAO GUANG CHUN, WANG YONG. Fabrication of aluminum foam stabilized by copper-coated carbon fibers [J]. Materials Science and Engineering A, 2008, 486: 350–356.
    [34]曹卓坤,李兵,姚广春.直接发泡法制备碳纤维增强泡沫铝[C]. 2006年材料科学与工程新进展——“2006北京国际材料周”论文集, 2006,北京.
    [35] BABCSáN N, BANHART J, LEITLMEIER D. Metal foams-manufacture and physics of foaming[C]. International Conference“Advanced Metallic Materials”. Smolenice, Slovakia, 2003.
    [36] IP S W, WANG Y, TOGURI J M. Aluminum foam stabilization by solid particles [J]. Canadian Metallurgical Quarterly, 1999, 38(1): 81-92.
    [37] BABCSáN N, LEITLMEIER D, DEGISCHER H P. Foamability of Particle Reinforced Aluminum Melt [J]. Materwiss U.Werstofftechn, 2003, 34: 22–29.
    [38] WANG DEQING, SHI ZIYUAN. Effect of ceramic particles on cell size and wall thickness of aluminum foam [J]. Materials Science and Engineering A, 2003, 361: 45–49.
    [39] KENNEDY A R, ASAVAVISITCHAI S. Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams [J]. Scripta Materialia, 2004, 50: 115–119.
    [40] ESMAEELZADEH S, SIMCHI A, LEHMHUS D. Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam [J]. Materials Science and Engineering A, 2006, 424: 290–299.
    [41] MARCO HAESCHE, JORG WEISE, FRANCISCO GARCIA-MORENO, J. BANHART. Influence of particle additions on the foaming behaviour of AlSi11/TiH2 composites made by semi-solid processing [J]. Materials Science and Engineering A, 2008, 480: 283–288.
    [42] PARKASH O, SANG H, EMBURY J D. Structure and properties of Al/SiC foam [J]. Materials Science and Engineering A, 1995, 199(2): 195-203.
    [43] GUI M C, WANG D B, WU G J, et al. Deformation and damping behaviors of foamed Al-Si-SiCp composite [J]. Materials Science and Engineering A, 2000, 28: 282-288.
    [44]王松林,凤仪,徐屹,张学斌,沈剑.碳化硅增强泡沫铝层合圆管的制备及力学性能研究[J].中国机械工程,2006,17(18):1959-1963.
    [45] YU SIRONG, LUO YANRU, LIU JIAAN. Strain rate and SiC particle effects on the compressive property of SiCp/AlSi9Mg composite foams [J]. Materials Science and Engineering A, 2008, 487: 394–399.
    [46] LUO YANRU, YU SIRONG, LI WEN, LIU JIAAN, WEI MING. Compressive behavior of SiCp/AlSi9Mg composite foams [J]. Journal ofAlloys and Compounds, 2008, 460: 294–298.
    [47] GUDEN M, YüKSEL S. SiC-particulate aluminum composite foams produced from powder compacts: foaming and compression behavior [J]. Journal of Materials Science, 2006, 41: 4075–4084.
    [48] WU JIEJUN, LI CHENGGONG, WANG DIANBIN, GUI MANCHANG. Damping and souabsorption properties of paticle reinforced Al matrix composite foams [J]. Composite Science and Technology, 2003, 63: 569–574.
    [49]于思荣,罗彦茹,张英波,刘家安. SiCp/ZL104泡沫复合材料的阻尼性能[J].复合材料学报,2007,24(1):65-69.
    [50] MISHRA R S, MURTY G S. Stress-strain rate behavior of superplastic Zn-Al eutectoid alloy [J]. Journal of Materials Science, 1988, 23: 593-597.
    [51] TORISAKA Y, KOJIMA S. Superplasticity and internal friction of a superplastic Zn-22%Al eutectoid alloy [J]. Acta Metal Materialia, 1991, 39: 947-954.
    [52]韩福生,朱震刚,石纯义,王月.泡沫Al阻尼性能研究[J].物理学报,1998,47(7):1161-1170.
    [53]杨留栓,沙全友,刘亚民等. ZA27泡沫金属基高阻尼复合材料[J].特种铸造及有色合金,1999,1:53-54.
    [54] LU T J, HESS A, ASHBY M F. Sound absorption in metallic foams [J]. Journal of Applied Physics, 1999, 85(11): 7528-7539.
    [55] FENG YI, ZHENG HAIWU, ZHU ZHENGANG, et al. The microstructure and electrical conductivity of aluminum alloy foams [J]. Materials Chemistry and Physics, 2002, 78: 196–201.
    [56]吕艳凤,程和法,王强等.开孔泡沫铝导电性的研究[J].金属功能材料,2006,13(3):4-8.
    [57] LU T J, STONE H A, ASHBY M F. Heat transfer in open-cell metal foams [J]. Acta Materialia, 1999, 46(10): 3619-3635.
    [58]凤仪,朱震刚,陶宁等.闭孔泡沫铝的导热性能[J].金属学报,2003,39(8):817-820.
    [59] EVANS A G, HUTCHINSON J W, ASHBY M F. Multifunctionality of cellular metal systems [J]. Progress in Materials Science, 1999, 43: 171-221.
    [60]尉海军,姚广春,李兵. Al-Si闭孔泡沫铝电磁屏蔽效能[J].功能材料,2006,8:1239-1241.
    [61]凤仪,郑海务,朱震刚等.闭孔泡沫铝的电磁屏蔽性能[J].中国有色金属学报,2004,14:33-36.
    [62] YANMAGUCHI J. Compound alloy piston improves diesel performancedurability [J]. Automotive Engineering, 1986, 94(9): 81-82.
    [63] HANUSA H G. Reticular Structures and Methods of Producing Same. US Patent [P], 3549505, 1970.
    [64] ARBUZOVA L A, SHMAKOV Y V, ZENINA M V, et al. Foamed aluminium as the new prospective material for air-planes, automobiles and ship [J]. Tsveth Metal, 1997, 2: 62-65.
    [65] NAOE M. Vibration damping composite aluminum alloy shape and foamed damping material [J]. Sumitomo Light Metal Technical Reports, 1994, 35(3/4): 105-111.
    [66]余根新.电池纤维基板的发展与应用[J].电池,1996,26(2):86-90.
    [67] BAN S, SHINOYAMA E, SHINOZAKI Q, et al. Development of porous metal for diesel particulate film [J]. SAE Transaction Journal of Material Manufacture, 1995, 104: 700-706.
    [68]肖华星,陈光,崔鹏.定向凝固多孔金属制造人工骨的前景展望[J].特种铸造及有色合金,2001,2:88-89.
    [69] TETSUJI, MIYOSHI, ITOH M, et al. ALPORAS aluminum foam: production process, properties, and applications [J]. Advanced Engineering Materials, 2000, 2(4): 179-183.
    [70] GERGELY V, CLYNE T W. The FORMGRIP process: foaming of reinforced metals by gas release in precursors [J]. Advanced Engineering Materials, 2000, 2: 175-178.
    [71] CONDE Y, DESPOIS J F, GOODALL R, et al. Replication Processing of Highly Porous Materials [J]. Advanced Engineering Materials, 2006, 8(9): 795-803.
    [72]张勇.泡沫铝的低压渗流工艺及常见缺陷分析[J].铸造技术,2004,25(8):596-599.
    [73] MA L Q, SONG Z L, HE D P. Cellular structure controllable aluminium foams produced by high pressure infiltration process [J]. Scripta Materialia, 1999, 41(7): 785-789.
    [74]王月,付自来.真空渗流法制备的通孔泡沫铝的吸声性能[J].材料开发与应用,2000,15(3):12-15.
    [75]赵万祥,赵乃勤,郭新权.新型功能材料泡沫铝的研究进展[J].金属热处理,2004,29(6):7-11.
    [76] SHAPOVALOV V. Method of Manufacturing Porous Articles. US Patent [P], 1993, NO. 5181549.
    [77] BONACCORSI L, PROVERBIO E. Powder compaction effect on foaming behavior of uni-axial pressed PM precursors [J]. Advanced EngineeringMaterials, 2006, 8(9): 864-889.
    [78] LIU P S, LIANG K M. Functional materials of porous metals made by P/M, electroplating and some other techniques [J]. Journal of materials science, 2001, 36: 5059-5072.
    [79] ZHAO Y Y, SUN D X. A novel sintering-dissolution process for manufacturing Al Foam [J]. Scripta Materialia, 2001, 44: 105-110.
    [80] MAKOTO K, NAOYUKI K. Processing of intermetallic foam by combustion reaction [J]. Advanced Engineering Materials, 2002, 4(10): 745-747.
    [81]罗彦茹,于思荣.陶瓷颗粒增强泡沫铝基复合材料的制备与性能[J].中国材料科技与设备,2006,2:5-8.
    [82]罗洪杰,姚广春,张晓明等.闭孔泡沫铝材料制备过程中气泡的形成与演化[J].中国有色金属学报,2004,24(8):1377-1381.
    [83]刘希泉.熔体发泡法制备泡沫铝工艺研究[D].中南大学硕士论文,2007.
    [84] ESMAEELZADEH S, SIMCHI A. Foamability and compressive properties of AlSi7–3 vol. % SiC–0.5 wt. % TiH2 powder compact [J]. Materials Letters, 2008, 62: 1561–1564.
    [85] ZHENLUN SONG, STEVEN NUTT. Expansion mechanisms in foaming aluminum melts [J]. Metallurgical and Materials Transactions A. 2008, 39: 2215-2227.
    [86] CHASE M W J, NIST JANAF. Thermochemical tables [M]. Gai thersburg, Maryland, USA: American Chemical Society and American Institute of Physics, 1998.
    [87] SONG ZHENLUN, ZHU JINSONG, MA LI-UN, HE DEPING. Evolution of foamed aluminum structure in foaming process [J]. Materials Science and Engineering A, 2001, 298: 137–143.
    [88]王斌,王健,耿晓燕,何德坪.泡沫铝合金在凝固过程中熔体的孔隙率变化[J].东南大学学报(自然科学版). 2000,30(6):57-61.
    [89]杨国俊,王兴明,姚广春.泡沫铝工程化生产中某些技术问题的探讨及对策[J].材料与冶金学报. 2007,6(2):118-121.
    [90] YANG C C, NAKAE H. Foaming characteristics control during production of aluminum alloy foam [J]. Journal of Alloys and Compounds, 2000, 313: 188-191.
    [91] YANG C C, NAKAE H. The effects of viscosity and cooling conditions on the foam ability of aluminum alloy [J]. Journal of Materials Processing Technology, 2003, 41: 202-206.
    [92] WANG JUN, GUO QIXIN, MITSUHIRO NISHIO, et al. The apparent viscosity of fine particle reinforced composite melt [J]. Journal of MaterialsProcessing Technology, 2003, 136: 60–63.
    [93]韩福生,朱震刚,刘长松.泡沫Al压缩形变及能量吸收特征[J].物理学报,1998,47(3):520-528.
    [94] HAN FUSHENG, ZHU ZHENGANG, GAO JUNCHANG. Compressive Deformation and Energy Absorbing Characteristic of Foamed Aluminum [J]. Metallurgical and Materials Transaction A, 1998, 29: 2497-2502.
    [95] ELBIR S, SYILMAZ, TOLOSOY A K, et al. SiC-particulate aluminum composite foams produced by powder compacts: foaming and compression behavior [J]. Journal of Materials Science, 2003, 38: 4745-4755.
    [96] KOVá?IK J, SIMAN?íK F. Aluminium foam modulus of elasticity and electrical conductivity according to percolation theory [J]. Scripta Materialia, 1998, 39(2): 239-246.
    [97] KOVá?IK J, SIMAN?íK F. Comparison of Zinc and Aluminium foam behaviour [J]. KovovéMateriály, 2004, 42: 70—90.
    [98] KOVá?IK J. The Tensile Behaviour of Porous Metals Made by GASAR Process [J]. Acta Materialia. 1998, 46(5): 5413-5422.
    [99] BANHART J, BAUMEISTER J. Deformation characteristics of metal foams [J]. Journal of Materials Science, 1998, 33: 1431-1440.
    [100] CAO XIAO QING, WANG ZHI HUA, MA HONG WEI, et al. Effects of heat treatment on dynamic compressive properties and energy absorption characteristics of open-cell aluminum alloy foams [J]. Transaction Nonferrous Metal Social China, 2006, 16: 159-163.
    [101]杨东辉.氢化钛热分解反应动力学与铝合金熔体泡沫化过程研究[D].东南大学博士学位论文,2004.
    [102] WANG MIN, HU XIAOFANG, WU XIAOPING. Internal microstructure evolution of aluminum foams under compression [J]. Materials Research Bulletin, 2006, 41: 1949–1958.
    [103] SIMONE A E, GIBSON L J. Aluminum Foams Produced by Liquid-state Processes [J]. Acta Materialia, 1998, 46: 3109-3123.
    [104] MCDONALD S A, MUMMERY P M, JOHNSON G, WTTHERS P J. Characterization of the three-dimensional structure of a metallic foam during compressive deformation [J]. Journal of Microscopy, 2006, 223: 150–158.
    [105] MARKAKI A E, CLYNE T W. The Effect of Cell Wall Microstructure on The Deformation and Fracture of Aluminium-based Foams [J]. Acta Materialia, 2001, 49: 1677–1686.
    [106] GEORGE E, DIETER. Mechanical Metallurgy [M]. International Student Edition, McGraW-Hill Publication, 1983.
    [107] MONDAL D P, DAS S, SURESH K S, RAMAKRISHNAN N. Compressivedeformation behaviour of coarse SiC particle reinforced composite: Effect of age-hardening and SiC content [J]. Materials Science and Engineering A, 2007, 460: 550–560.
    [108]魏建锋,宋余九.颗粒增强纯铝基复合材料的增强机制[J].稀有金属材料与工程,1994,23(3):17-22.
    [109] OROWAN E. Internal stress in metals and alloys [M]. The Institute of Metals, 1948.
    [110] ARSENAULT R J, TAYA M. Thermal residual stress in metal matrix composite [J]. Acta Metallurgica, 1987, 35: 651-659.
    [111] TAYA M, MORIB T. Dislocations punched-out around a short fiber in a short fiber metal matrix composite subjected to uniform temperature change [J]. Acta Metallurgica, 1987, 35: 155-162.
    [112] ASHBY M F. The Deformation of Plastically Non-Homogeneous Materials [J], Philosophical Magazine, 1970, 21: 399–424.
    [113] LIU L F, DAI L H, YANG G W. Strain gradient effects on deformation strengthening behavior of particle reinforced metal matrix composites [J]. Materials Science and Engineering A. 2003, 345: 190-196.
    [114]刘龙飞,戴兰宏,杨国伟. SiCp颗粒增强金属基6151Al复合材料中的增强颗粒尺寸效应.湘潭大学自然科学学报[J]. 2001,3(4):46-50.
    [115] KELLY A, TYSON W R. High strength materials [M], New York: John Wiley & Sons, 1965.
    [116] TAYA M. Strengthening mechanisms of metal matrix composites [J]. Materials Transactions, JIM, 1991, 32: 1-19.
    [117] NARDONE V C, PREWO K M. On the strength of discontinuous silicon carbide reinforced aluminum composites [J]. Scripta Metalluricica, 1986, 20(1): 43-48.
    [118] MILLER W S, HUMPHREYS F J. Strengthening mechanisms in particulate metal matrix composites [J]. Scripta Metalluricica Materialia, 1991, 25: 33–8.
    [119] RAMALRISHNANN. Ananalytical study on the strengthening of particulate reinforced metal matrix composites [J]. Acta Materialia, 1996, 44(1): 69-77.
    [120] ZHANG Q, CHEN D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scripta Materiallia, 2006, 54: 1321-1326.
    [121]张维平,金俊泽,胡汉起. SiCp/ZA22复合材料的结构与性能[J].大连理工大学学报,1999,38:648-652.
    [122] ARSENAULT R J, SHI N. Dislocation generation due to differences between the coefficients of thermal expansion [J]. Materials Science and Engineering A, 1986, 81: 175–187.
    [123] LUSTER J W, THUMANN M, BAUMANN R. Mechanical properties of Al alloy 6061-Al2O3 composites [J]. Material Science and Technology, 1993, 9: 853–62.
    [124] TEDESCO J W, ROSS C A, KUFTNNEN S T. Strain Rate Effect on the compressive foam [J]. Materials Science and Engineering A, 2000, 281(1/2): 1-7.
    [125] OTHMAN R, GARY G. Testing aluminum alloy from quasi-static to dynamic strain-rates with a modified Split Hopkinson Bar method [J]. Experimental Mechanics, 2007, 47(2): 295-299.
    [126] RUANA D, LU G, CHEN F L, SIORES E. Compressive behaviour of aluminium foams at low and medium strain rates [J]. Composite Structures, 2002, 57: 331–336.
    [127] DESHPANDE V S, FLECK N A. High strain rate compressive behavior of aluminum foam alloy foams [J]. International Journal of Impact Engineering, 2000, 24(3): 277-298.
    [128] KATHRYN, DANNEMANN A, JAMES L JR. High strain rate compression of closed-cell aluminum foams [J]. Materials Science and Engineering A, 2000, 293(1/2): 157-164.
    [129] WANG ZHIHUA, MA HONGWEI, ZHAO LONGMAO, YANG GUITONG. Studies on the dynamic compressive properties of open-cell aluminum alloy foams [J]. Scripta Materialia, 2006, 54: 83–87.
    [130] ROBERTO MONTANINI. Measurement of strain rate sensitivity of aluminium foams for energy dissipation [J]. International Journal of Mechanical Sciences, 2005, 47: 26-42.
    [131]胡时胜,王悟,潘艺.泡沫材料的应变率效应[J].爆炸与冲击,2003,43:13-18.
    [132]郑明军,何德坪.动态载荷下胞状铝合金的压缩行为[J].铸造,2004,53:22-25.
    [133] FENG YI, ZHENGANG ZHU, FANGQIOU ZU. Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams [J]. Materials Characterization, 2001, 47(5): 417-422.
    [134] HAN FUSHENG, CHENG HEFA, LI ZHIBIN, WANG QIANG. The Strain Rate Effect of an Open Cell Aluminum Foam [J]. Metallurgical and Materials Taansections A, 2005, 36: 645-650.
    [135] MUKAI T, KANAHASHI H, MIYOSHI T, et al. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading [J]. Scripta Materialia, 1999, 40(8): 921–927.
    [136] MUKAI T, KANAHASHI H, YAMADA Y, et al. Dynamic Compressivebehavior of an ultralight weight magnesium foam [J]. Scripta Materialia, 1999, 41: 365–371.
    [137] SUN D X, ZHAO Y Y. Static and dynamic energy absorption of Al foams produced by sintering and dissolution process [J]. Metallurgical Transactions B, 2003, 34: 69-74.
    [138] LINDHOLM U S. High Strain Tate Test-Measurement of Mechanical Properties [M]. New York: Interscience, 1969.
    [139] NEMAT NASSER S. Introduction to high strain rate testing [M]. ASM Handbook, 2000.
    [140] KOLSKY H. An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading [J]. Proceedings of the Physical Society of London B, 1949, 62: 676-700.
    [141]王礼立,余同希,李永池.冲击动力学进展[J].合肥:中国科技大学出版社,1992,379-409.
    [142] DAVIES R M, HUNTER S C. The dynamic compression test of solid by the method of the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1963, 11: 155-167.
    [143]胡时胜.霍普金森压杆技术[J].兵器材料科学与工程,1991,122:40-47.
    [144] BERTHOLF L D, KARNES C H. Two-dimensional analysis of the split Hopkinson pressure bar system [J]. Journal of the Mechanics of Physical Solids 1975, 23: 1–19.
    [145] KLEPACZKO J, MALINOWSKI Z ED, KAWATA K, SHIORII J. High Velocity Deformation of Solids [M]. Berlin: Springer-Verlag, 1978.
    [146] PAUL A, RAMAMURTY U. Strain rate sensitivity of a closed-cell aluminum foam [J]. Materials Science and Engineering A, 2000, 281: 1–7.
    [147]陈平昌等.材料成形原理[M].北京:机械工业出版社,2005.
    [148] ASHBY M F, MEDALIST R F. The mechanical properties of cellular solids [J]. Metallurgical Transactions A, 1983, 14: 1755-1769.
    [149] GENT A N, THOMAS A G. Mechanics of foamed elastic materials [J]. Rubber Chemistry and Technology, 1963, 36: 597-610.
    [150] OOSTERKAMP L D, IVANKOVIC A, VERIZELOS G. High strain rate properties of selected aluminum alloys [J]. Materials Science and Engineering A, 2000, 278: 225-235.
    [151] KLINTWORTH J W, STRONGE W J. Elasto-plastic yield limits and deformation laws for transversely crushed honey combs [J]. International Journal of Mechanical Science, 1988, 30: 273-292.
    [152] REI S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19: 531-570.
    [153] SIEBELS J E. In: Metal Foams and Porous Metal Structures [M]. Eds.: BANHART J, ASHBY M F, FLECK N A. Bremen, MIT-Verlag Publishing 1999.
    [154] SONG H W, FAN Z J, YU G, et al. Partition energy absorption of axially crushed aluminum foam-filled hat sections [J]. International Journal of Solid Structures, 2005, 42(10): 2575-2600.
    [155] MILTZ J, GRUENBAUM G. Evaluation of cushion properties of plastic foams compressive measurements [J]. Ploymer Engineering and Science, 1981, 21: 1010-1014.
    [156]曾斐,潘艺,胡时胜.泡沫铝缓冲吸能评估及其特性[J].爆炸与冲击,2002,22:358-362.
    [157] LEHMHUS D, MARSCHNER C, BANHART J. Influence of heat treatment on compression fatigue of aluminium foams [J]. Journal of Material Science, 2002, 37: 3447–3451.
    [158]田漪,李秀臣,刘正堂.金属物理性能[M].北京:航空工业出版社,1994.
    [159] NUTTALL K. The damping characteristic of a superplastic Zn-Al eutectoid alloy [J]. Journal of the Institute of Metals, 1971, 99: 266- 270.
    [160] WEI JIANNING, CHENG HEFA, LI GONGCHEN, Grain Boundary Peak in a Foamed Zn-Al Eutectoid Alloy [J]. Chinese Physics Letter, 2002, 3: 381-384.
    [161]沙全友. ZA27泡沫金属基高阻尼复合材料的制备工艺及阻尼力学性能研究[D].洛阳工学院硕士论文,1999.
    [162] WEI J N, LI Z B, HAN F S. Damping Behavior and Mechanism of Foamed Zn-Al Eutectoid Alloy [J]. Physica Status Solidi (a), 2002, 191(2): 435-444.
    [163] ZHANG J, PEREZ R J, LAVERNIA E J. Dislocation-induced damping in metal matrix composites [J]. Journal of Materials Science, 1993, 28(3): 835-846.
    [164]张小农,吴人洁,张荻.金属基复合材料的阻尼机制与性能[J].机械工程学报,1996,20:1-5.
    [165] WANG J, ZHANG Z, YANG G. The dependence of damping capacity of PMMCs on strain amplitude [J]. Computational Materials Science, 2000, 18: 205-211.
    [166] GOLOVIN I S, SINNING H R. Damping in some cellular metallic materials [J]. Journal of Alloys and Compounds, 2003, 355: 2–9.
    [167]王月.舰船舱室减震降噪用泡沫金属铝的室温内耗性能研究[J].船舶力学,2005,9(1):111-114.
    [168]余兴泉,何德坪.泡沫金属机械阻尼性能研究[J].机械工程材料,1994,18(2):26-32.
    [169] HAN F S, ZHU Z G, LIU C S. Nonlinear internal friction character of foamed aluminum [J]. Chinese Physics Letter, 1998, 15(1): 52-53.
    [170] GOLOVIN I S, SINNING H R, ARHIPOV I K, et al. Damping in some cellular metalic materials due to microplasticity [J]. Materials Science and Engineering A, 2004, 370: 531–536.
    [171] BANHART J, BAUMEISTER J. Damping properties of aluminium foams [J]. Materials Science and Engineering A, 1996, 205: 221-228.
    [172]戴德沛.阻尼技术的工程应用[M].北京:清华大学出版社,1991.
    [173]魏健宁,黄天成,胡孔刚等.泡沫铝材料的阻尼机制[J].机械工程材料,2007,31:27-29.
    [174] GU J H, ZHANG X N, GU M Y, et al. Damping behavior of aluminium matrix composites [J]. Materials Science and Technology, 2004, 20(9): 1211-1214.
    [175]游志勇,林万明,赵浩峰.材料阻尼及ZA合金阻尼性能的研究现状[J].铸造设备研究,2003,3:23-26.
    [176]张小农,吴人洁,张荻等.高阻尼金属基复合材料的发展途径[J].材料工程,1997,79 :34-37.
    [177]吴人洁.复合材料[M].天津:天津大学出版社,2000.
    [178] ZHANG J, PEREZ R J, LAVERNIS E J. Effect of SiC and graphite particulates on the damping behavior of metal matrix composites [J]. Acta Metallurgica et Materialia, 1994, 42(2): 395-409.
    [179]葛庭燧.固体内耗理论基础[M].北京:科学出版社,2000.
    [180] GRANATO A, LüCKE K. Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies [J]. Journal of Applied Physics, 1956, 27: 789-805.
    [181]罗彦茹.泡沫SiCp/ZL104复合材料的制备及性能研究[D].吉林大学博士论文,2007.
    [182] WEI J N, CHENG H F, ZHANG Y F, et al. Effects of macroscopic graphite particulates on the damping behavior of commercially pure aluminum [J]. Materials Science and Engineering A, 2002, 325: 444-453.
    [183] WANG C, ZHU Z G. Internal friction at medium temperature in an Al matrix composite reinforced by SiC particles [J]. Scripta Materialia, 1998, 38(12): 1739-1745.
    [184] LEDERMAN W A. The damping properties of composite materials [D]. The University of Wisconsin, 1991.
    [185] GU J H, ZHANG X N, QIU Y F, et al. Damping behaviors of magnesiummatrix composites reinforced with Cu-coated and uncoated SiC particulates [J]. Composites Science and Technology, 2005, 65: 1736-1742.
    [186]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1989.
    [187]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [188] HECHT NIELSEN. Theory of the back propagation neural network [C]. In: Proc of the IEEE 1st ICNN. IEEE Press, 1987, 3: 453-462.
    [189] ALLEN H G. Analysis and design of structural sandwich panels [M]. Pergamon Press, Oxford, 1969.
    [190] XIE M, CHAPMAN J C. Developments in sandwich construction [J]. Journal of Constructional Steel Research, 2006, 62: 1123–1133.
    [191] BITZER T. Honeycomb technology [M]. U. K. London: Chapman & Hall. 1997.
    [192] DAVIES J M. Lightweight Sandwich Construction [M]. U. K. Cornwall: Black well Science Ltd. 2001.
    [193] CHEN C, HARTE A M, FLECK N A. The plastic collapse of sandwich beams with a metallic foam core [J]. International Journal of Mechanical Sciences, 2001, 43(6): 1483-1506.
    [194] YANG M J, QIAO P Z. Impact and Damage Prediction of Sandwich Beams with Flexible Core Considering Arbitrary Boundary Effects [J]. Journal of Sandwich Structures and Materials, 2007, 9(5): 411-444.
    [195] YU J L, WANG X, WEI Z G, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with aluminium-foam core [J]. International Journal of Impact Engineering, 2003, 283: 331-347.
    [196]张林,何德坪.球形孔泡沫铝合金三明治梁的三点弯曲变形[J].材料研究学报,2005,19:361-368.
    [197]尚金堂,何德坪.泡沫铝层合梁的三点弯曲变形[J].材料研究学报, 2003,17(1):31?38.
    [198]张敏,祖国胤,姚广春.新型泡沫铝三明治板的弯曲性能[J].过程工程学报. 2007,7:628-631.
    [199]查海波,凤仪,朱琪琪等.泡沫铝层合梁的弯曲性能[J].中国有色金属学报,2007,17:290-295.
    [200]王军,邓艳民,樊泽臣.泡沫铝在城市轨道车辆上的应用[J].铁道车辆,2009,47(3):23-25.
    [201]张敏,陈长军,姚广春.泡沫铝夹芯板的制备[J].技术材料导报,2008,22:85-89.
    [202] MCCORMACK T M, MILLER R, KESLER O, GIBSON L J. Failure of sandwich beams with metallic foam cores [J]. International Journal of Solids and Structures, 2001, 38(29): 4901-4920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700