变形物体的三维统计可变形模型构建及其在物体重建和运动识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三维扫描和捕捉设备以及计算机建模工具的发展,可变形三维物体数据变得容易获取,并在广泛的领域得到应用。怎样对这些可变形三维物体进行统计建模以辅助应用已成为一个研究热点。
     本文提供有效的方法对两种不同形态(包括三维表面形态和三维骨骼形态)的可变形三维物体进行三维统计可变形模型(Statistical Deformable Model, SDM)的构建,并分别用于三维物体重建和三维运动(或动作)识别。
     对于表面形态的三维物体,由于其数据维度高,在建立SDM时往往会碰到小样本问题。为了解决该问题,本文基于分治的思想构建分块的SDM(PSDM),以替代全局单一的SDM。为了构建一个PSDM,其中有两个关键的步骤:(1)将物体表面划分为多个局部小片块;(2)将各个变形后的局部SDM装配成最终的SDM,以形成完整的物体表面。对于两种不同类型的三维表面数据,本文采用两种不同的技术分别为它们建立PSDM。一方面,来源于CT图像的三维医学表面数据有其特殊的分层结构,本文为其构建一个层次化的PSDM,该模型由一个建立在物体表面特征点上的粗略的全局SDM和一组建立在局部片块上的局部SDM组成,其中,全局SDM捕捉物体的全局变形特征,并提供一个框架以辅助物体表面的划分及局部SDM的装配,各局部SDM捕捉物体的局部变形细节。另一方面,一般三维物体表面数据没有特殊的结构,相对较难处理,对于其表面划分问题,本文基于物体表面可变性特征的相似度来进行划分,并提出两种新的度量标准来量化可变性相似度;对于其装配问题,本文采用一种基于约束变形的技术来对变形后的各局部SDM进行无缝粘接。为以上两种类型的三维物体表面数据构建的PSDM均应用于三维物体重建。另外,为了确保整个PSDM的全局形状一致性,本文进一步采用基于多级SDM的技术用于约束这些局部SDM的变形。
     对于骨骼形态的三维物体,如三维动作捕捉数据,本文为每种类型的运动构建一个行为(或类型)特异SDM来提取其共同特征,该行为特异SDM能够捕捉并描述每种类型运动的所有容许变形信息,利用此特性,本文提出根据各个行为特异SDM表达某个新运动的好坏程度(即各个行为特异SDM重建该运动的正确度或重建精度)来进行该运动的分类。本文展示该新方法比传统的基于本征运动的方法更适合于三维运动分类。此外,本文还描述一种新的基于统计变形特征的三维运动相似度度量方法,并将该方法用于三维运动分类。
With the development of3D scanner and capture devices and computer modeling tools, deformable3D objects have become easy to obtain and have been used in a wide spectrum of fields. How to statistically modeling these deformable3D objects for various applications has become an active research topic.
     This thesis proposes sophisticated methods to construct3D Statistical Deformable Models (SDMs) for two different forms (i.e.,3D surface form and3D skeleton form) of deformable3D objects for object reconstruction and motion recognition, respectively.
     For the3D surface form objects, the small sample size problem is frequently encountered when constructing SDM for them, due to their high data dimensions. To address this problem, this thesis constructs piecewise SDM (PSDM) based on divide-and-conquer strategy instead of single global SDM for the objects. To construct a PSDM, two key steps are required:(1) partitioning the surface into multiple components, and (2) assembling the deformed local SDMs to form the final SDM for the object surface. Studying on two different kinds of3D surface data, we propose different techniques for constructing PSDMs for them, respectively. On one hand, the3D medical surface data derived from CT images has a special multi-layer structure that is relatively easier to process. We construct a hierarchical PSDM for it, which consists of a coarse global SDM built on feature points of the surface and a set of local SDMs built on local surface components. The global SDM serves to capture the global variability of the object, and provide a framework for partitioning the surface and also for assembling the local SDMs. The local SDMs serve to capture the local deformation details. On the other hand, the generic3D surface data has no specific structure and is much more difficult to deal with. For the surface partitioning issue, we partition a surface based on the similarity of the surface variability characteristics, and subsequently propose two novel measures for quantifying the variability similarity. For the assembly problem, we employ a technique based on constrained deformation for seamlessly stitching the deformed local SDMs. The PSDMs for the two kinds of3D surface data are both applied to3D object reconstruction. For ensuring the global shape consistency of the entire PSDM, we further propose a multi-level SDM based technique to constrain the deformation of the local SDMs.
     For the3D skeleton form objects, e.g., the motion capture data, we construct a behavior-specific SDM for each type of the motions in order to capture the common characteristics shared by the motions of that type. The behavior-specific SDM is able to capture and encode all allowable deformation for the type of motions it represents. Taking this property, we propose to classify a new motion based on how well each behavior-specific SDM represents it, i.e., how accurately each behavior-specific SDM can reconstruct the new motion. We show this novel technique is more powerful for3D motion classification compared with the traditional eigen-motions based classification technique. In addition, we also present a novel statistical variation characteristic based measure for quantifying the similarity of3D motions, and apply it to3D motion classification.
引文
Amjoun R, Sondershaus R, and Straβer W.2006. Compression of Complex Animated Meshes[C]. Proceedings of CGI'06, LNCS 4035:606-613.
    Amjoun R and StraBer W.2007. Efficient Compression of 3D Dynamic Mesh Sequences[C]. Proceedings of the 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision.
    Attene M, Falcidieno B, and Spagnuolo M.2006. Hierarchical mesh segmentation based on fitting primitives[J]. The Visual Computer,22:181-193.
    Besl PJ and McKay ND.1992. A method for registration of 3d shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,14(2):239-256.
    Borrel P and Rappoport A.1994. Simple constrained deformations for geometric modelling and interactive design[J]. ACM Transactions on Graphics,13:137-155.
    Brett AD, Hill A, and Taylor CJ.1997. A Method of 3D Surface Correspondence for Automated Landmark Generation[C]. Proceedings of BMVC'97:709-718.
    Butakoff C and Frangi AF.2006. A Framework for Weighted Fusion of Multiple Statistical Models of Shape and Appearance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11):1847-1857.
    Carvalho SR, Boulic R, and Thalmann D.2007. Interactive low-dimensional human motion synthesis by combining motion models and PIK[J]. Comput. Animat. Virtual Worlds, 18(4-5):493-503.
    Chung FRK.1997. Spectral Graph Theory[M]. CBMS Regional Conference Series in Mathematics:American Mathematical Society,92.
    Cohen-Steiner D, Alliez P, and Desbrun M.2004. Variational Shape Approximation[J]. ACM Transactions on Graphics,23(3):905-914.
    Cootes TF, Hill A, Taylor CJ, et al.1994a. The use of active shape models for locating structures in medical images[J]. Image and Vision Computing,12(6):355-366.
    Cootes TF, Taylor CJ, and Lanitis A.1994b. Multi-resolution search with active shape models[C]. Proceedings of the 12th IAPR International Conference on Pattern Recognition,1:610-612.
    Cootes TF and Taylor CJ.1995. Combining point distribution models with shape models based on finite element analysis[J]. Image and Vision Computing,13(5):403-409.
    Cootes TF, Taylor CJ, Cooper DH, et al.1995. Active shape models-their training and application[J]. Computer Vison and Image Understanding,61(1):38-59.
    Cootes TF, Edwards GJ, and Taylor CJ.2001. Active Appearance Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,23(6):681-685.
    Davatzikos C, Tao X, and Shen D.2003. Hierarchical Active Shape Models, Using the Wavelet Transform[J]. IEEE Transactions on Medical Imaging,22(3):414-423.
    Davies RH, Cootes TF, Waterton JC, et al.2001. An Efficient Method for Constructing Optimal Statistical Shape Models[C]. Proceedings of MICCAI'01, LNCS 2208:57-65.
    Davies RH, Twining CJ, Cootes TF, et al.2002a.3D Statistical Shape Models Using Direct Optimisation of Description Length[C]. Proceedings of ECCV 2002, LNCS 2352:3-20.
    Davies RH, Twining CJ, Cootes TF, et al.2002b. A minimum description length approach to statistical shape modeling[J]. IEEE Transactions on Medical Imaging,21(5):525-537.
    de Bruijne M, van Ginneken B, Viergever MA, et al.2003. Adapting Active Shape Models for 3D Segmentation of Tubular Structures in Medical Images [C]. Proceedings of International Conference on Information Processing in Medical Imaging (IPMI), LNCS 2732:136-147.
    Deligianni F, Chung AJ, and Yang G-Z.2006. Nonrigid 2-D/3-D Registration for Patient Specific Bronchoscopy Simulation With Statistical Shape Modeling:Phantom Validation[J]. IEEE Transactions on Medical Imaging,25(11):1462-1471.
    Feng J, He Q, and Ip HHS.2008a. Data recovery for medical organs based on a joint Statistical Deformable Model that incorporates prior knowledge of the missing data[C]. Proceedings of 5th International Conference on Visual Information Engineering (VIE 2008):397-402.
    Feng J, Ip HHS, Lai LY, et al.2008b. Robust Point Correspondence Matching and Similarity Measuring for 3D Models by Relative Angle-Context Distributions[J]. Image and Vision Computing,26:761-775.
    Feng J and Ip HHS.2009a. A multi-resolution statistical deformable model (MISTO) for soft-tissue organ reconstruction[J]. Pattern Recognition,42(7):1543-1558.
    Feng J and Ip HHS.2009b. A statistical assembled deformable model (SAMTUS) for vasculature reconstruction [J]. Computers in Biology and Medicine,39(6):489-500.
    Fleute M and Lavallee S.1998. Building a Complete Surface Model from Sparse Data Using Statistical Shape Models:Application to Computer Assisted Knee Surgery[C]. Proceedings of MICCAI'98, LNCS 1496:879-887.
    Forbes K and Fiume E.2005. An Efficient Search Algorithm for Motion Data Using Weighted PCA[C]. Proceedings of Eurographics/ACM SIGGRAPH Symposium on Computer Animation.
    Frangi AF, Rueckert D, Schnabel JA, et al.2002. Automatic construction of multiple-object three-dimensional statistical shape models:application to cardiac modeling[J]. IEEE Transactions on Medical Imaging,21(9):1151-1166.
    Fripp J, Warfield SK, Crozier S, et al.2006. Automatic Segmentation of the Knee Bones using 3D Active Shape Models[C]. Proceedings of ICPR'06,1:171-174.
    Funkhouser T, Kazhdan M, Shilane P, et al.2004. Modeling by example[J]. ACM Transactions on Graphics,23(3):652-663.
    Garland M, Willmott A, and Heckbert PS.2001. Hierarchical Face Clustering on Polygonal Surfaces[C]. Proceedings of ACM Symposium on Interactive 3D Graphics (i3D'01):49-58.
    Gelfand N and Guibas LJ.2004. Shape segmentation using local slippage analysis[C]. Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP'04):214-223.
    Gilbert JR, Miller GL, and Teng S-H.1998. Geometric mesh partitioning:implementation and experiments[J]. SIAM J. SCI. COMPUT,19(6):2091-2110.
    Ginneken Bv, Frangi AF, Staal JJ, et al.2002. Active Shape Model Segmentation with Optimal Features[J]. IEEE Transactions on Medical Imaging,21(8):924-933.
    Glardon P, Boulic R, and Thalmann D.2004a. A Coherent Locomotion Engine Extrapolating Beyond Experimental Data[C]. Proceedings of CASA'04.
    Glardon P, Boulic, R, and Thalmann D.2004b. PCA-based walking engine using motion capture data. Proceedings of CGI'04.
    Gregory A, State A, Lin MC, et al.1999. Interactive surface decomposition for polyhedral morphing[J]. The Visual Computer,15:453-470.
    Hall P, Marshall D, and Martin R.2000. Merging and Splitting Eigenspace Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,22(9):1042-1049.
    He Q, Feng J, Ip HHS, et al.2008. An Integration of Statistical Deformable Model and Finite Element Method for Bone-Related Soft Tissue Prediction in Orthognathic Surgery Planning Medical Imaging and Augmented Reality[C]. Proceedings of 4th International Workshop on Medical Imaging and Augmented Reality, LNCS 5128:31-39.
    He Q, Ip HHS, Feng J, et al.2009. Mr-SDM:a novel statistical deformable model for object deformation[J]. The Visual Computer,25(5):609-616.
    Heimann T, Wolf I, and Meinzer H-P.2006a. Active Shape Models for a Fully Automated 3D Segmentation of the Liver-An Evaluation on Clinical Data[C]. Proceedings of MICCAI'06, LNCS 4191:41-48.
    Heimann T, Wolf I, and Meinzer H-P.2006b. Optimal Landmark Distributions for Statistical Shape Model Construction[C]. Proceedings of SPIE Medical Imaging:Image Processing, 6144:518-528.
    Heimann T and Meinzer H-P.2009. Statistical shape models for 3D medical image segmentation: A review[J]. Medical Image Analysis,13(4):543-563.
    Hill A and Taylor CJ.1994. Automatic landmark generation for Point Distribution Models[C]. Proceedings of Conference on British Machine Vision. Univ. of York, York, United Kingdom: BMVA Press,2:429-438.
    Hill A, Taylor CJ, and Brett AD.2000. A framework for automatic landmark identification using a new method of nonrigid correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,22(3):241-251.
    Hotelling H.1933. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology,24:417-441,498-520.
    Howe NR, Levention ME, and Freeman WT.2000. Bayesian reconstruction of 3d human motion from single-camera vide[J]. Advances in Neural Information Processing Systems,12:820-826.
    Jackson JE.1991. A user's guide to principal components[M]. New York:Wiley.
    James DL and Twigg CD.2005. Skinning Mesh Animations[J]. ACM Transactions on Graphics, 24(3):399-407.
    Jolliffe IT.1986. Principal Component Analysis[M]. New York:Springer.
    Kalvin A and Taylor R.1996. Superfaces:Polygonal mesh simplification with bounded error[J]. IEEE Computer Graphics and Applications,16(3).
    Karni Z and Gotsman C.2000. Spectral compression of mesh geometry[C]. Proceedings of SIGGRAPH'00:279-286.
    Kass M, Witkin A, and Terzopoulos D.1988. Snakes:active contour models[J]. International Journal of Computer Vision,1(4):321-331.
    Katz S and Tal A.2003. Hierarchical mesh decomposition using fuzzy clustering and cuts[J]. ACM Transactions on Graphics,22(3):954-961.
    Katz S, Leifman G, and Tal A.2005. Mesh segmentation using feature point and core extraction[J]. The Visual Computer,21:649-658.
    Kaus MR, Pekar V, Lorenz C, et al.2003. Automated 3-D PDM construction from segmented images using deformable models[J]. IEEE Transactions on Medical Imaging,22(8):1005-1013.
    Kervrann C and Heitz F.1999. Statistical Deformable Model-Based Segmentation of Image Motion[J]. IEEE Transactions on Image Processing,8(4):583-588.
    Kim DH, DongYun I, and Lee SU.2006. Boundary-trimmed 3D triangular mesh segmentation based on iterative merging strategy[J]. Pattern Recognition,39:827-838.
    Kotcheff ACW and Taylor CJ.1998. Automatic construction of eigenshape models by direct optimization[J]. Medical Image Analysis,2(4):303-314.
    Lai YK, Zhou QY, Hu SM, et al.2006. Feature Sensitive Mesh Segmentation[C]. Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling:17-25.
    Lai YK, Hu SM, Martin RR, et al.2009. Rapid and effective segmentation of 3D models using random walks[J]. Computer Aided Geometric Design,26(6):665-679.
    Lamecker H, Lange T, and Seebass M.2002. A Statistical Shape Model for the Liver[C]. Proceedings of MICCAI'02, LNCS 2489:412-427.
    Lamecker H, Lange T, and Seebass M.2004. Segmentation of the liver using a 3D statistical shape model[J]. Technical report.
    Lanitis A, Taylor CJ, and Cootes TF.1997. Automatic interpretation and coding of face images using flexible models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):743-756.
    Lavoue G, Dupont F, and Baskurt A.2005. A new cad mesh segmentation method based on curvature tensor analysis[J]. Computer Aided Design,37(10):975-987.
    Lee TY, Lin PH, Yan SU, et al.2005. Mesh decomposition using motion information from animation sequences[J]. Computer Animation and Virtual Worlds,16:519-529.
    Lee TY, Wang YS, and Chen TG.2006. Segmenting a deforming mesh into near-rigid components[J]. The Visual Computer,22:729-739.
    Lekadir K, Merrifield R, and Yang GZ.2007. Outlier Detection and Handling for Robust 3-D Active Shape Models Search[J]. IEEE Transactions on Medical Imaging,26(2):212-222.
    Lekadir K and Yang GZ.2008. Optimal Feature Point Selection and Automatic Initialization in Active Shape Model Search[C]. Proceedings of MICCAI'08, LNCS 5241:434-441.
    Levy B, Petitjean S, Ray N, et al.2002. Least squares conformal maps for automatic texture atlas generation[C]. Proceedings of SIGGRAPH'02:362-371.
    Li X, Toon T, Tan T, et al.2001. Decomposing polygon meshes for interactive applications[C]. Proceedings of the 2001 symposium on Interactive 3D graphics (i3D'01):35-42.
    Lin HYS, Liao HYM, and Lin JC.2007. Visual Salience-Guided Mesh Decomposition[J]. IEEE Transactions on Multimedia,9(1):46-57.
    Liu R and Zhang H.2004. Segmentation of 3D meshes through spectral clustering[C]. Proceedings of PG'04:298-305.
    L6tj6nen J, Antila K, Lamminmaki E, et al.2005. Artificial Enlargement of a Training Set for Statistical Shape Models:Application to Cardiac Images[C]. Proceedings of Functional Imaging and Modeling of the Heart 2005 (FIMH'05), LNCS 3504:92-101.
    Mangan AP and Whitaker RT.1999. Partitioning 3D Surface Meshes Using Watershed Segmentation[J]. IEEE Transactions on Visualization and Computer Graphics,5(4):308-321.
    Mei L, Figl M, Darzi A, et al.2008a. Sample Sufficiency and PCA Dimension for Statistical Shape Models[C]. Proceedings of ECCV'08, LNCS 5305:492-503.
    Mei L, Figl M, Rueckert D, et al.2008b. Sample Sufficiency and Number of Modes to Retain in Statistical Shape Modelling[C]. Proceedings of MICCAI'08, LNCS 5241:425-433.
    Nikou C, Bueno G, Heitz F, et al.2001. A Joint Physics-Based Statistical Deformable Model for Multimodal Brain Image Analysis[J]. IEEE Transactions on Medical Imaging, 20(10):1026-1037.
    Oja E.1983. Subspace methods of pattern recognition[M]. England:Research Studies Press, and USA:Wiley.
    Okada T, Shimada R, Sato Y, et al.2007. Automated Segmentation of the Liver from 3D CT Images Using Probabilistic Atlas and Multi-level Statistical Shape Model[C]. Proceedings of MICCAI'07, LNCS 4791:86-93.
    Page D, Koschan A, and Abidi M.2003. Perception-based 3D triangle mesh segmentation using fast marching watersheds[C]. Proceedings of CVPR'03,2:27-32.
    Paulsen R, Larsen R, Nielsen C, et al.2002. Building and Testing a Statistical Shape Model of the Human Ear Canal[C]. Proceedings of MICCAI'02, LNCS 2489:373-380.
    Pearson K.1901. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine,2:14.
    Rajamani KT, Styner MA, Talib H, et al.2007. Statistical deformable bone models for robust 3D surface extrapolation from sparse data[J]. Medical Image Analysis,11(2):99-109.
    Rivilin E and Weiss I.1995. Local Invariants For Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,17(3):226-238.
    Rousson Me, Paragios N, and Deriche R.2004. Implicit Active Shape Models for 3D Segmentation in MR Imaging[C]. Proceedings of MICCAI'04, LNCS3216:209-216.
    Rueckert D, Frangi F, and Schnabel JA.2001. Automatic construction of 3D statistical defomation models using nonrigid registration[C]. Proceedings of MICCAI'01:77-84.
    Rueckert D, Frangi AF, and Schnabel JA.2003. Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration[J]. IEEE Transactions on Medical Imaging,22(8):1014-1025.
    Ruiz-Correa S, Shapiro LG, and Melia M.2001. A New Signature-Based Method for Efficient 3-D Object Recognition[C]. Proceedings of CVPR'01,1:769-776.
    Safonova A, Hodgins JK, and Pollard NS.2004. Synthesizing Physically Realistic Human Motion in Low-Dimensional, Behavior-Specic Spaces[C]. Proceedings of SIGGRAPH'04:514-521.
    Sattler M, Sarlette R, and Klein R.2005. Simple and efficient compression of animation sequences[C]. Proceedings of Eurographics/ACM SIGGRAPH Symposium on Computer Animation:209-217.
    Seise M, McKenna SJ, Ricketts IW, et al.2007. Learning Active Shape Models for Bifurcating Contours[J]. IEEE Transactions on Medical Imaging,26(5):666-677.
    Shamir A.2004. A Formulation of Boundary Mesh Segmentation[C]. Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'04):82-89.
    Shamir A.2008. A survey on Mesh Segmentation Techniques[J]. Computer Graphics forum, 27(6):1539-1556.
    Shapira L, Shamir A, and Cohen-Or D.2008. Consistent mesh partitioning and skeletonisation using the shape diameter function[J]. The Visual Computer,24:249-259.
    Shen D and Davatzikos C.2000. An adaptive-focus deformable model using statistical and geometric information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:906-913.
    Shen D, Herskovits EH, and Davatzikos C.2001. An Adaptive-Focus Statistical Shape Model for Segmentation and Shape Modeling of 3-D Brain Structures[J]. IEEE Transactions on Medical Imaging,20(4):257-270.
    Shen D, Zhan Y, and Davatzikos C.2003. Segmentation of Prostate Boundaries From Ultrasound Images Using Statistical Shape Model [J]. IEEE Transactions on Medical Imaging, 22(4):539-551.
    Shi Y, Qi F, Xue Z, et al.2008. Segmenting Lung Fields in Serial Chest Radiographs Using Both Population-Based and Patient-Specific Shape Statistics[J]. IEEE Transactions on Medical Imaging,27(4):481-494.
    Shlafman S, Tal A, and Katz S.2002. Metamorphosis of Polyhedral Surfaces using Decomposition[J]. Proceedings of EUROGRAPHICS'02,21(3):219-228.
    Simari P, Kalogerakis E, and Singh K.2006. Folding meshes:Hierarchical mesh segmentation based on planar symmetry[C]. Proceedings of Eurographics Symposium on Geometry Processing (SGP'06):111-119.
    Souza A and Udupa JK.2005. Automatic Landmark Selection for Active Shape Models[C]. Proceedings of SPIE Medical Imaging 2005,5747:1377-1383.
    Spiegel M, Hahn DA, Daum V, et al.2009. Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration[J]. Computerized Medical Imaging and Graphics,33(1):29-39.
    Sukno FM, Ordas S, Butakoff C, et al.2007. Active Shape Models with Invariant Optimal Features:Application to Facial Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,29(7):1105-1117.
    Sun Y, Page DL, Paik JK, et al.2002. Triangle mesh-based edge detection and its application to surface segmentation and adaptive surface smoothing[C]. Proceedings of International Conference on Image Processing (ICIP'02),3:825-828.
    Syrkina E, Ballester MAG, and Szekely G.2007. Correspondence Establishment in Statistical Modeling of Shapes with Arbitrary Topology[C]. Proceedings of IEEE 11th International Conference on Computer Vision (ICCV 2007):1-7.
    Theobalt C, Rossl C, Aguiar Ed, et al.2007. Animation Collage[C]. Proceedings of Eurographics/ ACM SIGGRAPH Symposium on Computer Animation:271-280.
    Troje NF.2002. Decomposing biological motion:A framework for analysis and synthesis of human gait patterns[J]. Journal of Vision:371-387.
    van Assen HC, Danilouchkine MG, Dirksen MS, et al.2008. A 3-D Active Shape Model Driven by Fuzzy Inference:Application to Cardiac CT and MR[J]. IEEE Transactions on Information Technology in Biomedicine,12(5):595-605.
    Ward AD and Hamarneh G. 2007. Statistical shape modeling using MDL incorporating shape, appearance, and expert knowledge[C]. Proceedings of MICCAI'07. Brisbane, Australia: Springer-Verlag, LNCS 4791:278-285.
    Wu K and Levine M.1997.3D part segmentation using simulated electrical charge distributions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,19(11):1223-1235.
    Wuhrer S and Brunton A.2010. Segmenting animated objects into near-rigid components[J]. The Visual Computer,26:147-155.
    Yamauchi H, Gumhold S, Zayer R, et al.2005. Mesh Segmentation Driven by Gaussian Curvature[J]. The Visual Computer,21:659-668.
    Yan HB, Hu SM, Martin RR, et al.2008. Shape deformation using a skeleton to drive simplex transformations[J]. IEEE Transactions on Visualization and Computer Graphics,14(3):693-706.
    Yan Z, Kumar S, and Kuo C.2001. Error resilent coding of 3D graphic models via adaptive mesh segmentation[J]. IEEE Trans. Circuit Syst. Video Technol,11:860-873.
    Zhao Z, Aylward SR, and Teoh EK.2005. A Novel 3D Partitioned Active Shape Model for Segmentation of Brain MR Images[C]. Proceedings of MICCAI'05, LNCS 3749:221-228.
    Zhao Z and Teoh EK.2008. A new scheme for automated 3D PDM construction using deformable models[J]. Image and Vision Computing,26(2):275-288.
    Zhou Y and Huang Z.2004. Decomposing polygon meshes by means of critical points[C]. Proceedings of the 10th International Multimedia Modelling Conference (MMM'04):187-195.
    Zuckerberger E, Tal A, and Shlafman S.2002. Polyhedral surface decomposition with applications[J]. Computers & Graphics,26(5):733-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700