钛合金与不锈钢真空热轧形变连接机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金和不锈钢的熔点高、线膨胀系数差异大,焊接时会形成较大的焊接应力,而且在高温下容易反应形成硬度高、脆性大的金属间化合物导致接头脆化,所以连接很困难。本文采用真空热轧形变连接的方法成功实现了TC4钛合金与0Cr18Ni10Ti不锈钢的高强度的连接,利用光学显微镜、SEM、XRD、EPMA、纳米压痕等对接头的微观结构进行了观察和测试,对真空热轧形变连接的机理进行了研究,并对焊接接头的应用情况进行了实验研究。
     钛合金与不锈钢直接真空热轧连接时,焊接温度800℃时连接界面存在未连接的空隙;焊接温度900℃时硬而脆的金属间化合物层尤其是富Cr层在连接界面处形成并导致接头脆化;当焊接温度低于或等于750℃,高于或等于950℃时,钛合金与不锈钢未能形成连接。当焊接温度850℃,压缩率20%时,钛合金与不锈钢直接真空热轧连接接头连接强度达到最大值77.33MPa。
     用铜作为中间层材料实现了钛合金与不锈钢的连接。铜中间层能够完全阻隔母材之间的扩散,连接界面处没有Fe-Ti金属间化合物形成。不锈钢与铜的连接界面为无规则的镶嵌式结构,没有明显的反应层或扩散层。铜与钛合金的连接界面形成了脆性的Cu-Ti金属间化合物层,随着焊接温度的升高其体积分数增大,接头连接强度随之降低。拉伸试样均断裂于金属间化合物层之间或金属间化合物层与铜之间。连接界面扩散层的厚度主要取决于焊接温度,压缩率对其影响不大。当焊接温度780℃,压缩率20%时接头连接强度达到最大值343MPa。
     采用镍中间层实现了钛合金与不锈钢的真空热轧连接。镍能够完全阻隔母材之间的扩散,连接界面处没有Fe-Ti金属间化合物形成。不锈钢与镍的连接界面为无规则的镶嵌式结构,没有明显的反应层或扩散层形成。镍与钛合金的连接界面由机械咬合层和扩散层组成。硬而脆的金属间化合物导致接头脆化,随着焊接温度的升高金属间化合物的体积分数增大,接头连接强度随之降低,试样均断裂于脆性的金属间化合物层之间或金属间化合物层和镍之间。连接界面扩散层的厚度主要取决于焊接温度,压缩率对其影响不大。当焊接温度760℃,压缩率20%时接头连接强度达到最大值440.1MPa。
     采用铌作为中间层材料实现了钛合金与不锈钢的真空热轧连接。铌中间层能够完全阻隔母材之间的扩散,连接界面处没有Fe-Ti金属间化合物形成。不锈钢与铌的连接界面处反应层的厚度随着焊接温度的升高而增大,接头连接强度随之降低。铌与钛合金的连接界面的固溶体层的厚度随着焊接温度的升高而增大。连接界面扩散层的厚度主要取决于焊接温度,压缩率对其影响不大。当焊接温度800℃,压缩率25%时接头连接强度达到最大值430MPa。
     利用有限元软件MSC.Marc对异种材料热轧连接过程的塑性变形行为进行了计算,计算结果表明:轧制过程中材料连接表面扩展形成新生表面,连接表面之间发生了相对滑移,使得界面之间产生轧制方向上的摩擦力,从而使得连接材料表面氧化膜和其它杂质破除并露出新鲜材料表面,新鲜的材料相互接触形成连接,当采用软质中间层材料时连接表面之间的相对滑移程度增大。
     对轧制连接的物理过程进行了研究,认为该过程包括连接材料表面的接触、连接材料表面形成新生表面并发生相对滑移从而使得表面的氧化膜和其它杂质破除、新鲜的材料露出并接触实现连接、连接界面处的元素互扩散、连接界面的整体连接的形成这几个阶段。
     进行了钛合金与不锈钢真空热轧过渡接头的TIG焊接试验。无中间层热轧连接过渡接头在TIG焊接时沿原连接界面开裂;采用铜中间层的过渡接头TIG焊接之后拉伸强度最高约为40.77MPa,Cu-TC4界面沿金属间化合物层开裂;采用镍中间层的过渡接头在TIG焊接之后拉伸强度最高可达431MPa,SS-Ni和Ni-TC4界面结构无明显变化;采用铌中间层的过渡接头TIG焊接之后拉伸强度最高可达421.6MPa,SS-Nb和Nb-TC4界面结构无明显变化。
When titanium alloy directly bonded to stainless steel, various intermetallics formed at bonding interface by inter-diffusion between titanium and stainless steel, which makes embrittlement of the bonding joints. In addition, high internal stress results due to the large difference of linear expansion coefficient between these materials. The paper aims at bonding of titanium alloy and stainless steel by vacuum hot roll bonding. The microstructures of the bonding interfaces were analyzed by optical and scanning electron microscopy, X-Ray Diffraction, energy spectrum analysis and nano-indentation. The bonding mechanism of the vacuum hot roll bonding was investigated.
     When titanium alloy and stainless steel were directly bonded at bonding temperature 800℃, there were unbonded zones across the interface. At bonding temperature 900℃, intermetallic especially Cr rich zone formed across titanium alloy/stainless steel interface make embrittlement of the bonding joints. When bonding temperature equals to or lower than 750℃, titanium alloy and stainless steel cannot bonded directly, and when temperature equals to or higher than 950℃, they cannot bonded, too. The bonded joints achieve the maximum tensile strength of 77.3MPa when processed at bonding temperature of 850℃and reduction of 20%.
     Vacuum hot roll bonding was carried out between titanium alloy and stainless steel using copper interlayer. Copper interlayer can block the diffusion Fe, Cr and Ni to Ti side and Ti to stainless steel side, and Fe-Ti intermetallics are not formed at the interface. There are no transition layers at SS/Cu interface. The bonding type of Cu-SS is solid solution, and the structure of interface is ruleless inlaid. Brittle Cu-Ti intermetallics are formed at the copper /titanium alloy interface. With the rise in joining temperature, decrease in tensile strength occurs due to incensement of the volume fraction of intermetallics. The tensile specimens fractured at intermetallic layers or between intermetallic layer and Cu interlayer. The thickness of intermetallics at copper/titanium alloy interface depends mainly on bonding temperature, less on reduction. The bonded joints achieve the maximum tensile strength of 343MPa when processed at bonding temperature of 780℃and reduction of 20%.
     Vacuum hot roll bonding was carried out between titanium alloy and stainless steel using nickel interlayer. Nickel interlayer can completely block the diffusion Fe, Cr and Ni to Ti side and Ti to stainless steel side, and Fe-Ti intermetallics are not formed at interface. There are no transition layers at SS/Ni interface. The bonding type of SS-Ni is solid solution, and the structure of interface is ruleless inlaid. Brittle Ni-Ti intermetallics are formed at the nickel/titanium alloy interface. With the rise in bonding temperature, decrease in tensile strength occurs due to increasing of the volume fraction of Ni-Ti intermetallics. The tensile specimens fractured at brittle intermetallic layers or between intermetallic layer and Ni interlayer. The thickness of intermetallic at nickel/titanium alloy interface depends mainly on bonding temperature, less on reduction. The bonded joints achieve the maximum tensile strength of 440.1MPa when processed at bonding temperature of 760℃and reduction of 20%.
     Vacuum hot roll bonding was carried out between titanium alloy and stainless steel using Nb interlayer. Nb interlayer can completely block the diffusion Fe, Cr and Ni to Ti side and Ti to stainless steel side, and Fe-Ti intermetallics are not formed at the interface. With the rise in bonding temperature, decrease in tensile strength occurs due to increasing of the volume fraction of Fe-Nb intermetallics. And with the increasing of bonding temperature, the thickness of solid solution layer increases. The thickness of intermetallic at Fe-Nb interface depends mainly on bonding temperature, less on reduction. The bonded joints achieve the maximum tensile strength of 430MPa when processed at bonding temperature of 800℃and reduction of 20%.
     The behavior of plastic deformation of dissimilar materials experienced during the rolling process was calculated by finite element software MSC.Marc. The calculation results show that the metal plastically deforms and extends, but the oxide is brittle and can respond to stress only by fracturing. During rolling process, the oxide film will therefore be fractured and fragmented, and this allows metal-metal contact and bond. Using soft material as interlayer the extent of mutual slipping across interfaces becomes bigger.
     The physical process of roll bonding has been investigated. The results showed that bonding of materials is not depend on atomic diffusion but realizes during the process of rolling. The process of the vacuum hot roll bonding was composed of five steps: the bonding surface contact, the fracture of the surface oxide layer and impurity, the extrusion of fresh metal through cracks in rolling and bonding of metals, the inter-diffusion at interface after rolling and the bonding of whole surface.
     The bonding between titanium alloy and stainless steel transition joint and titanium alloy or stainless steel by TIG welding was carried out. Titanium alloy/stainless steel transition joint bonded directly cracked at their interface while it experiences TIG welding. Transition joint using Cu interlayer after TIG welding, micro-cracks formed on these regions of Cu/TC4 interface between different intermetallic layers and between intermetallic layer and Cu, so the maximum tensile strength of them achieve only 40.77MPa; Transition joint using Ni or Nb interlayer after TIG welding, the microstructure of interfaces does not change significantly, and the maximum tensile strength of them achieve 431MPa and 421.6MPa, respectively.
引文
1И.Н.Потапов,В.Н.Лебедев,А.Г.Кобелев,Е.В.Кузнецов.СлоистыеМеталлическиеКомпозиции.Металлургия, 1986:4~5
    2陈振华.钛与钛合金.化学工业出版社, 2006:3
    3陈振华.钛与钛合金.化学工业出版社, 2006:296~302
    4李梁,孙健科,孟祥军.钛合金的应用现状及发展前景.钛工业进展. 2004, 21(6):25~29
    5张汇文,岳鑫,张九海,冯吉才.钛合金与不锈钢的钎焊和扩散焊技术研究现状及发展趋势.焊接. 2006, (1):45~47
    6李文平.钛合金的应用现状及发展前景.轻金属. 2002, 5:53~55
    7井上好章. 21世纪紀の溶接接合工学.溶接学会志. 1996, 65(1):1038~ 1039
    8林千歳.チタン系材料の制品に關すゐ進展.富山縣工業技術センタ一研究报告研究報告. 1997, (11):149~151
    9于家兴. 21世纪钛工业复苏.钛工业进展. 1995, (2):53~58
    10 G. Cam. Fracture Behavior of the Diffusion Bonding Titanium Alloy. DVS Ber. 1998, (192):297~300
    11森ロ康夫.航空機用チタン材料材料の現牀と課題. 1997, 67(6):45~48
    12西本和俊.材料科学の成果と展望.日本金属学会会报. 1997, 36(9): 933~936
    13 R.L. Zhou, J.H. Zhang and X.T. Tian. The Effect of Thermal Cycle on Joint of Ti/Stainless Steel Phase Transformation Diffusion Bonding. China Welding. 2001, 10(1):14~18
    14 U. K. Mudali, B.M. Ananda, K. Shanmugam, R. Natarajan, B. Raj. Corrosion and Microstructural Aspects of Dissimilar Joints of Titanium and Type 304L Stainless Steel. Journal of Nuclear Materials. 2003, 321:40~48
    15 P. Manikandan, K. Hokamoto, M. Fujita, K. Raghukandan, R. Tomoshige. Control of Energetic Conditions by Employing Interlayer of Different Thickness for Explosive Welding of Titanium/304 Stainless Steel. Journal of Materials Processing Technology. 2008, 195:232~240
    16 E. Atasoy, N. Kahraman. Diffusion Bonding of Commercially Pure Titaniumto Low Carbon Steel Using a Silver Interlayer. Materials Characterization. (Accepted)
    17 N. Orhan, M. Aksoy, M. Eroglu. A New Model for Diffusion Bonding and its Application to Duplex Alloys. Materials Science and Engineering A. 1999, 271: 458~468
    18 G.B. Kale, R.V. Patil, P.S. Gawade. Interdiffusion Studies in Titanium-304 Stainless Steel System. Journal of Nuclear Materials. 1998, 257:44~50
    19 S.D. Chen, A.K. Soh, F.J. Ke. Molecular Dynamics Modeling of Diffusion Bonding. Scripta Materialia. 2005, 52:1135~1140
    20森野.接合·复合をめぐる最近の动向.塑性と加工. 1997, 38(440): 902~905
    21张宏善.新型耐蚀管材-钛钢复合管.钛工业进展. 1992, (1):19~21
    22 M.F. Islam. Interface Characteristics of Isostatic Diffusion between Dissimilar Titanium Alloy. Titanium Process. 1996:175~186
    23张英才.钛/钢复合材料热等静压扩散焊的研究.稀有金属. 1994, 18(6): 463~466
    24郑远谋.爆炸焊接和金属复合材料及其工程应用.中南大学出版社. 2002:683~687
    25李亚江,王娟,刘鹏.异种难焊材料的焊接及应用.化学工业出版社, 2004:1~6
    26李标峰.钛与钢及钛复合钢板的焊接性研究(?).材料开发与应用. 2004, 19(1):41~44
    27李标峰.钛与钢及钛复合钢板的焊接性研究(Ⅲ).材料开发与应用. 2004, 19(3):41~46
    28李标峰.钛与钢及钛复合钢板的焊接性研究(Ⅳ).材料开发与应用. 2004, 19(4):44~46
    29 R.N.Correia. Microstructure of Diffusion Zr Titanium and Zr. Journal of Material Science. 1998, 33(1): 215~221
    30 M.F.Islam. Effect of Surface Finish and Sheet Thickness on Isostatic Diffusion Bonding of Superplastic Ti-6Al-4V. Mater Science Technology. 1997, 13(12):1045~1050
    31张启运,庄鸿寿.钎焊手册.机械工业出版社, 1999:273~274
    32杨静,王飞. Ag95CuNiLi钎料钎焊钛合金与不锈钢异种金属的性能分析.焊接学报. 2004, 25(1):48~50
    33薛忠明,王奇娟.钛合金与不锈钢高频感应钎焊工艺试验研究.航天制造技术. 2004, (6):31~35
    34 R.K. Shiue, S.K. Wu, C.H. Chan. The Interfacial Reactions of Infrared Brazing Cu and Ti with Two Silver-based Braze Alloys. Journal of Alloys and Compounds. 2004, 372:148~157
    35 X. Yue, P. He, J.C. Feng, J.H. Zhang, F.Q. Zhu. Microstructure and Interfacial Reactions of Vacuum Brazing titanium Alloy to Stainless Steel Using an AgCuTi Filler Metal. Materials Characterization. (Accepted)
    36 A. Durgutlu, B. Gu¨lenc, F. Findik. Examination of Copper/Stainless Steel Joints Formed by Explosive Welding. Materials and Design. 2005, 26: 497~507
    37 C.A. Zimmerly, O.T. Inal. Explosive Welding of a Near-Equiatomic Nickel-Titanium Alloy to Low Carbon Steel. Materials Science and Engineering A. 1984, 188:251~254
    38 S.A.A. Akbari Mousavi, S.T.S. Hassani. Numerical and Experimental Studies of the Mechanism of the Wavy Interface Formations in Explosive/Impact Welding. Journal of the Mechanics and Physics of Solids. 2005, 53:2501~2528
    39 S.A.A. Akbari Mousavi, P. F. Sartangi. Effect of Post Weld Heat Treatment on the Interface Microstructure of Explosively Welded Titanium/Stainless Steel Composite. Materials Science and Engineering A. (Accepted)
    40方吉祥,赵康,刘继峰,谷臣清.钛/不锈钢爆炸焊接接头退火性能的研究.材料热处理学报. 2002, 23(2):4~7
    41 N. Kahraman, B. Gulenc, F. Findik. Joining of Titanium/Stainless Steel by Explosive Welding and Effect on Interface. Journal of Materials Processing Technology. 2005, 169:127~133
    42К.А.Юшенко.Соединениетитанаинержавеющейсталивзрывнойсваркой.АвтоматическаяСварка. 1982, (3):24-27
    43 M. Ghosh, S. Chatterjee, B. Mishra. The Effect of Intermetallics on the Strength Properties of Diffusion Bonds Formed between Ti–5.5Al–2.4V and 304 Stainless Steel. Materials Science and Engineering A. 2003, 363: 268~274
    44黄文展,盛光敏,秦斌.纳米镀镍层做中间层的钛合金与不锈钢的扩散焊接.钢铁钒钛. 2006, 27(3):21~25
    45 P. He, X. Yue, J.H. Zhang. Hot Pressing Diffusion Bonding of a Titanium Alloy to a Stainless Steel with an Aluminum Alloy Interlayer. Materials Science and Engineering A. 2008, 486:171~176
    46 X.J. Yuan, G.M. Sheng, B. Qin, W.Z. Huang, B. Zhou. Impulse Pressuring Diffusion Bonding of Titanium Alloy to Stainless Steel. Materials Characterization. 2008, 59:930~936
    47袁新建,盛光敏,秦斌,黄文展.钛合金/镍箔/不锈钢脉冲加压扩散连接界面结构及接合强度.稀有金属材料与工程. 2007, 36(9):1617~1622
    48秦斌,盛光敏,袁新建,黄文展.钛-钢扩散焊的特点及焊接方法. Welding Technology. 2007, 36(3):7~9
    49 S. Kundu, S. Chatterjee. Diffusion Bonding between Commercially Pure Titanium and Micro-duplex Stainless Steel. Materials Science and Engineering A. 2008, 480:316~322
    50 B. Aleman, I. Gutierrez. The Use of Kirkendall Effect for Calculating Intrinsic Diffusion Coefficients in a 316L/Ti6242 Diffusion Bonded Couple. Scripta Materialia. 1997, 36(5):509~515
    51周荣林,何鹏,李小强,张九海,田锡唐.钛合金/不锈钢网的扩散连接.宇航材料工艺. 1999, (1):46~50
    52 M. Ghosh, S. Chatterjee. Characterization of Transition Joints of Commercially Pure Titanium to 304 Stainless Steel. Materials Characterization. 2002, 48:393~399
    53 M. Ghosh, K. Bhanumurthy, G.B. Kale, J. Krishnan, S. Chatterjee. Diffusion Bonding of Titanium to 304 Stainless Steel. Journal of Nuclear Materials. 2003, 322:235~241
    54 M. Ghosh, S. Chatterjee. Diffusion Bonded Transition Joints of Titanium to Stainless Steel with Improved Properties. Materials Science and Engineering A. 2003, 358:152~158
    55 M. Ghosh, S. Chatterjee. Effect of Interface Microstructure on the Bond Strength of the Diffusion Welded Joints between Titanium and Stainless Steel. Materials Characterization. 2005, 54:327~337
    56 M. Ghosh, S. Das, P.S. Banarjee, S. Chatterjee. Variation in the ReactionZone and its Effects on the Strength of Diffusion Bonded Titanium–Stainless Steel Couple. Materials Science and Engineering A. 2005, 390:217~226
    57 S. Kundu, M. Ghosh, S. Chatterjee. Diffusion Bonding of Commercially Pure Titanium and 17-4 Precipitation Hardening Stainless Steel. Materials Science and Engineering A. 2006, 428:18~23
    58 N. Orhan, T.I. Khan. Diffusion Bonding of a Microduplex Stainless Steel to Ti-6Al-4V. Scripta Materialia. 2001, 45:441~446
    59孙荣禄,张九海.钛合金-镍-不锈钢接头中元素的扩散及其对性能的影响.材料科学与工艺. 1996, 4(4):63~67
    60 S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G.B. Kale, S. Chatterjee. Diffusion Bonding of Commercially Pure Titanium to 304 Stainless Steel Using Copper Interlayer. Materials Science and Engineering A. 2005, 407:154~160
    61 S. Kundu, S. Chatterjee. Effect of Temperature on Formation Reaction Products and Strength Properties of Titanium and Stainless Steel Joints Using Copper Interlayer. Materials Science and Technology. 2007, 23(3):368~373
    62 P. He, J.H. Zhang, R.L. Zhou, and X.Q. Li. Diffusion Bonding Technology of a Titanium Alloy to a Stainless Steel Web With an Ni Interlayer. Materials Characterization. 1999, 43:287~292
    63李小强,李元元,张大童,龙雁,陈维平.钛合金/镍/不锈钢网的扩散连接技术.中山大学学报. 2003, 42(3):92~94
    64李小强,李元元.加镍过渡层钛合金/不锈钢网的扩散连接技术.华南理工大学学报. 2003, 31(6):51~55
    65 S. Kundu, S. Chatterjee. Interfacial Microstructure and Mechanical Properties of Diffusion-Bonded Titanium-Stainless Steel Joints Using a Nickel Interlayer. Materials Science and Engineering A. 2006, 425:107~113
    66 S. Kundu, S. Chatterjee. Characterization of Diffusion Bonded Joint between Titanium and 304 Stainless Steel Using a Ni Interlayer. Materials Characterization. 2008, 59:631~637
    67 S. Kundu, S. Chatterjee. Mechanical Properties of Diffusion Bonded Joints between Titanium and Stainless Steel with Nickel Interlayer. Materials Science and Technology. 2007, 23(10):1167~1172
    68 S. Kundu, S. Chatterjee. Effect of Bonding Temperature on InterfaceMicrostructure and Properties of Titanium-304 Stainless Steel Diffusion Bonded Joints with Ni Interlayer. Materials Science and Technology. 2006, 22(10):1201~1207
    69 S. Kundu, S. Chatterjee. Effects of Intermetallic Phases on the Bond Strength of Diffusion-bonded Joints between Titanium and 304 Stainless Steel Using Nickel Interlayer. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2007, 38A(9):2053~2060
    70秦斌,盛光敏,黄家伟,周波,邱绍宇,李聪.纳米镍粉在钛合金-不锈钢扩散焊接中的应用.核动力工程. 2004, 25(5):457~462
    71邹茉莲,刘泽文.钛合金TC4与1Cr18Ni9Ti不锈钢的扩散焊工艺探索.北京航空航天大学学报. 1995, 21(3):45~50
    72黄家伟,盛光敏,周波,秦斌,邱绍宇,李聪.钛合金与不锈钢的相变超塑性扩散焊接.重庆大学学报(自然科学版). 2005, 28(9):48~52
    73秦斌,盛光敏,黄家伟,李聪.钛合金与不锈钢的相变超塑性扩散焊工艺.焊接学报. 2006, 27(1):41~48
    74广桥光治.超塑性新时代を迎ぇて.塑性と加工. 1996, 37(420):32~35
    75松木贤司.金属材料の超塑性.塑性と加工. 1996, 37(420):33~38
    76小林胜.最近の超塑性研究开发の动向.塑性と加工. 1996, 37(420): 4~10
    77大桥修.同素变态扩散溶接影响.熔接学会志. 1981, 50(1):24~29
    78广桥光治.超塑性利用接合技术.千叶工业大学论文集. 1990:1331~1334
    79周荣林,张九海,田锡唐.钛/不锈钢相变扩散连接工艺研究.焊接. 1999, (2):9~11
    80周荣林,郭德伦,张银根.相变扩散连接工艺参数对钛与不锈钢接头强度的影响.中国有色金属学报. 2002, 12(4):663~667
    81 B. Qin, G.M. Sheng, J.W. Huang, B. Zhou, S.Y. Qiu, C. Li. Phase Transformation Diffusion Bonding of Titanium Alloy with Stainless Steel. Materials Characterization. 2006, 56:32~38
    82 C.Y. Barlow, P. Nielsen, N. Hansen. Multilayer Roll Bonded Aluminium Foil: Processing, Microstructure and Flow Stress. Acta Materialia. 2004, 52: 3967~3972
    83 L. Zhang, L. Meng, S.P. Zhou, F.T. Yang. Behaviors of the Interface and Matrix for the Ag/Cu Bimetallic Laminates Prepared by Roll Bonding andDiffusion Annealing. Materials Science and Engineering A. 2004, 371:65~71
    84 H.D. Manesh, A.K. Taheri. Bond Strength and Formability of an Aluminum- Clad Steel Sheet. Journal of Alloys and Compounds. 2003, 361:138~143
    85 J.G. Luo, V.L. Acoff. Using Cold Roll Bonding and Annealing to Process Ti/Al Multi-Layered Composites from Elemental Foils. Materials Science and Engineering A. 2004, 379:164~172
    86 Y.M. Hwang, H.H. Hsu, Y.L. Hwang. Analytical and Experimental Study on Bonding Behavior at the Roll Gap during Complex Rolling of Sandwich Sheets. International Journal of Mechanical Sciences. 2000, 42:2417~2437
    87 J. An, Y.B. Liu, Y. Lu, D. Sun. Hot Roll Bonding of Al–Pb-Bearing Alloy Strips and Steel Sheets Using an Aluminized Interlayer. Materials Characterization. 2001, 47:291~297
    88 G.Y. Tzou, M.N. Huang. Analytical Modified Model of the Cold Bond Rolling of Unbounded Double-Layers Sheet Considering Hybrid Friction. Journal of Materials Processing Technology. 2003, 140:622~627
    89 H.D. Manesh, A.K. Taheri. The Effect of Annealing Treatment on Mechanical Properties of Aluminum Clad Steel Sheet. Materials and Design. 2003, 24:617~622
    90 R.J. Hebert, J.H. Perepezko. Deformation-Induced Synthesis and Structural Transformations of Metallic Multilayers. Scripta Materialia. 2004, 50: 807~812
    91 N. Tsuji, T. Iwata, M. Sato, S. Fujimoto, Y. Minamino. Aging Behavior of Ultrafine Grained Al–Cu Alloy Severely Deformed by Accumulative Roll Bonding. Science and Technology of Advanced Materials. 2004, 5: 173~180
    92 A.K. Tieu, Z.Y. Jiang, C. Lu. A 3D Finite Element Analysis of the Hot Rolling of Strip with Lubrication. Journal of Materials Processing Technology. 2002, 125:638~644
    93Л.И.Маркашова,Г.М.Григоренко.ЗакономерностиПластическойДеформацииприСваркеДавлениемРазнородныхМатериалов.СварочноеПроизводство. 2004, (8):26~32
    94Г.ЭАркулис.Металлы.ИзвАНСССР.Л.Е., 1980:84~91
    95А.И.Адоньев.ТеорияиПрактикаМетизногоПроизводства.СварочноеПроизводство. 1976, (5):126~130
    96В.Б.Ляшков,В.К.Никифосов.ЧернаяМеталлургия.Изв.Вузов. 1976:116~119
    97Н.П.Громов,Н.Д.Лукашкин.Пластическаядеформациянержавеющейсталипригорячейпрокатки.Сталь. 1981, (5):41~42
    98 S.G. Chowdhury, V.C. Srivastava, B. Ravikumar, S. Soren. Evolution of Texture during Accumulative Roll Bonding (ARB) and its Comparison with Normal Cold Rolled Aluminium Manganese Alloy. Scripta Materialia. 2006, 54:1691–1696
    99 N. Tsuji, R. Ueji, Y. Minamino. Nanoscale Crystallographic Analysis of Ultrafine Grained IF Steel Fabricated by ARB Process. Scripta Materialia. 2002, 47:69~76
    100 R.J. Hebert, J.H. Perepezko. Structural Transformations in Crystalline and Amorphous Multilayer Samples During Cold-Rolling. Scripta Materialia. 2003, 49:933–939
    101 V. Salganik. Mathematical Modeling of Roll Load and Deformation in a Four-high Strip Mill. Journal of Materials processing Technology. 2002, 125-126:695~699
    102 J.Y. Jung, Y.T. Im. Fuzzy Algorithm for Calculating Roll Speed Variation Based on Roll Separating Force in Hot Rolling. International Journal of Mechanical Sciences. 2000, 42:249~272
    103 C.G. Sun. Investigation of Interfacial Behaviors between the Strip and Roll in Hot Strip Rolling by Finite Element Method. Tribology International. 2005, 38:413~422
    104 N. Hansen, X. Huang, R. Ueji, N. Tsuji. Structure and Strength After Large Strain Deformation. Materials Science and Engineering A. 2004, 387–389:191~194
    105 S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai. Role of Shear Strain in Ultragrain Refinement by Accumulative Roll-Bonding (ARB) Process. Scripta Materialia. 2002, 46:281~285
    106 S.H. Lee, Y. Saito, T. Sakai, H. Utsunomiya. Microstructures and Mechanical Properties of 6061 Aluminum Alloy Processed by Accumulative Roll-Bonding. Materials Science and Engineering A. 2002, 325:228~235
    107 X.G. Jin, Y.L. Liu, J.C. Lian, R.H. Wagoner. A Three-Dimensional Analysisof the Universal Beam Tandem Rolling Process Part I: Deformation Analysis. Journal of Materials Processing Technology. 2000, 102:59~64
    108 X.G. Jin, Y.L. Liu, J.C. Lian, R.H. Wagoner. A Three-Dimensional Analysis of the Universal Beam Tandem Rolling Process Part II: Stress Analysis. Journal of Materials Processing Technology. 2000, 102:65~69
    109 Z.C. Lin, T.G. Huang. Different Degree of Reduction and Sliding Phenomenon Study for Three-Dimensional Hot Rolling with Sandwich Flat Strip. International Journal of Mechanical Sciences. 2000, 42:1983~2012
    110 M.X. Ji, R. Shivpuri. Reduction of Random Seams in Hot Rolling Through FEM Based Sensitivity Analysis. Materials Science and Engineering A. 2006, 425:156~166
    111 H.R. Le, M.P.F. Sutcliffe, P.Z. Wang. Surface Oxide Fracture in Cold Aluminium Rolling. Acta Materialia. 2004, 52:911~920
    112李亚江,王娟,刘鹏.异种难焊材料的焊接及应用.化学工业出版社, 2004:21~23
    113李亚江,王娟,刘鹏.异种难焊材料的焊接及应用.化学工业出版社, 2004:32~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700