基于流固耦合及复变函数分析的隧道渗流问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内公路网的完善和发展,需要修建大量的山岭深埋隧道。修建位于山岭富水区的深埋隧道,在国内外仍然是一个有待深入研究的技术难题。特别是在当今保护环境呼声日趋强烈的大背景下,以往通常采用的“以排为主”治水方案必须改变,取而代之地采用“以堵为主、控制排放”的防排水设计原则,有利于克服因隧道建设过度排水而引起的环境问题。
     基于渗流力学、弹塑性力学及复变函数理论,采用理论分析、数值计算与现场试验相结合的方法,研究富水区深埋山岭隧道围岩、加固圈、初期支护和二次衬砌中的渗透荷载分布规律,以及渗流状态变化对隧道衬砌和围岩之力学参数响应产生影响的机制,既有理论意义,又有工程应用价值。论文取得的主要研究成果如下:
     (1)通过极坐标下的渗流控制方程与达西定律,推导出了圆形隧道二次衬砌、初期支护、加固圈和围岩中的渗透水压力分布规律,得出了隧道在相应阶段的渗流量。方斗山特长公路隧道工程实例计算结果表明:在排水情况下,设置围岩加固圈和初期支护,能明显减少地下水的排放量,相应地明显减小了作用在衬砌上的渗透压力;随着加固圈渗透系数减小及厚度增加,二次衬砌上的渗流压力和渗流量一开始急剧减小,当加固参数达到一定界限值时,地下水渗流压力及渗流量基本保持不变;排水系统阻塞程度越严重,衬砌和支护背后的水压力就越大。
     (2)基于隧道拱顶竖向位移现场测量值,率先根据结构力学分析原理和洛克应力应变公式中的位移和转角方程,用反分析方法推导得到了隧道衬砌承受的总压力值。工程实例计算表明:在实例衬砌支护所承受的总压力中,渗透水压力所占比例为50.9%。
     (3)在轴对称条件下,根据考虑地下水渗透力的应力平衡方程和渗透压力分布规律,推导出了隧道衬砌、围岩弹性区与塑性区的应力和位移计算公式,以及塑性区半径和支护抗力的求解公式。工程实例计算表明,渗透水压力的存在,导致围岩塑性区半径、支护抗力以及衬砌内的应力值,均显著增大。
     (4)基于流固耦合理论,编制有限元代码(二次开发),通过较为复杂的迭代计算,得出了工程实例模型的渗流浸润线、节点水头分布,以及指定路径上的渗流速度变化趋势等重要的渗流状态参数,进一步通过耦合计算,得到了隧道围岩和衬砌中位移和应力的分布规律,这些为深入认识富水环境对隧道围岩与衬砌力学响应产生影响的机制,提供了重要参考。在正确计算流场的基础上,将热单元转换为相应的结构单元,同时把渗透力施加到浸润面以下的单元上进行耦合求解。应力计算结果表明,地下水的渗流改变了围岩和衬砌中位移和应力的分布规律,破坏了位移场和应力场的对称性。另外,隧道右侧拱脚与拱腰之间的区域,衬砌和围岩的应力及位移均较大,其最大主应力受地下水位的影响也较其他地方大。
     (5)基于Laurent级数的复合形最优化法,推导出了未支护和已支护非圆形隧道断面(轮廓)映射函数表达式。实例计算结果表明:对于未支护隧道,n=4时求得的映射函数能使映射后的形状与隧道轮廓吻合较好;对于已支护隧道,n=4时的映射精度不高,n=8时,映射形状与原隧道轮廓吻合较好,因此通过增加n的取值能提高映射精度。
     (6)针对未支护的非圆形隧道,率先推导出非圆形隧道无穷远处围岩受径向均布水压力作用下围岩复应力函数、的解析表达式,该解析式能计算隧道围岩任一点的应力状态。工程实例计算洞周指定点的应力结果表明:拱脚处应力最大,拱顶次之,拱脚与拱底之间的位置则最小。另一方面,已支护或有加固圈的隧道属于多连通域情况,围岩应力计算非常困难,是一个有待深入研究的问题。
With the continuous development and improvement of her highway networks, China hasbeen seeing a lot of deep mountain tunnels lain in water-enriched regions (WER) since theend of the last century. However, it’s still a challenging technical problem for civil engineersat home and abroad to build tunnel in WER. Particularly, under the current stringentenvironmentally-friendly prerequisite, the conventional philosophy drain firstly should beupdated with stop firstly, drain slightly, which is beneficial to the solution of environmentalproblems.
     It is of significant application value to investigate the distribution of seepage pressure insurrounding rock, grouted rim, primary support, second lining of deep tunnel, and the effectof seepage state change on lining and surrounding rock, based on percolation mechanics,plastoelasticity and complex function theory. The main researches have been conducted asfollows:
     (1) The formulas of the seepage flow in corresponding period and the hydraulic pressuredistribution law in secondary lining, primary support, reinforced rim, and surrounding rockshave been conducted, based on polar coordinate seepage analytic principle. The calculationresult of Fang Dou Shan extra long tunnel shows that reinforcement rim and primary supportcan obviously decrease the hydraulic seepage pressure acting on secondary lining, and thegroundwater discharge under drainage conditions; the water forces acting on secondary liningand the seepage discharge decrease sharply at the beginning, by reducing the permeabilitycoefficient and increasing the thickness of reinforcement rim, but when the reinforcementparameters reach to certain values, the groundwater pressure and seepage discharge keepstable regardless of whether the changes of reinforcement parameters are taken; the groundwater pressure behind second lining and primary support increase with the reduction of waterdischarge.
     (2) Based on structural mechanics method and the Roark’s Formul, the pressure actingon lining is firstly calculated by back-analysis on the field monitored data of vertical crown displacement. According to the example solutions, seepage pressure accounted for50.9%ofall pressure acting on lining.
     (3) Under axisymmetric conditions, based on the stress component functions with theconsideration of groundwater and the distribution law of water pressure, the stress anddisplacement of elastic and plastic zone in surrounding rocks and lining, the radius of plasticregion and support resisting force are derived. The calculation result shows: the radius ofplastic region, support resisting force and the stress in lining increased significantly due togroundwater seepage pressure.
     (4) Based on the Fluid-Solid coupling theory, the saturation ling, water head distributionand the velocity change in the designated path are obtained by iterative calculation. Thedistributions laws of stress and displacement in surrounding rock and lining are obtained byfurther coupling calculation. It provides important reference for understanding the effect ofwater-enriched enviroment change on the mechanical property of lining and surrounding rock.According to the accurate seepage field results, seepage-stress coupled analysis are alsoimplemented by changing thermal elements into structural elements, and applying seepageforce to the elements which below the saturation line. The example calculation results shows:the stress and placement distributions in lining and surrounding rocks are changed because ofthe seepage; the larger positions of stress and placement in lining and surrounding rocks, andthe change of maximum principal stress due to water level variation are the regions betweenarch springing and haunch at right side.
     (5) The mapping function formulas of not supporting and already supporting non-circulartunnels have derived by using the compound-shape optimization method which based onLaurent series. The example calculation results shows: when n=4, the map shape have perfecttally with cavern outline for not supporting tunnel; for already supporting tunnels, theaccuracy reduced when n=4, but it improved when n=8, so the mapping accuracy can beadvanced by increasing the value of n.
     (6) The formulas of complex stress functions φ(ζ) and ψ(ζ) have been firstly derivedunder the condition that there is a radial uniform water pressure acting at infinity. The stresscondition of any point in surrounding rock can be calculated by complex stress functions. According to the example, the stress of designated points around the tunnel has been obtained.The results shows: the stress at arch springing has the greatest value; vaults second; betweenarch springing and tunnel bottom the lowest. Additional, as a multiply connected domain, thestress calculation of the tunnel with lining and reinforcement rim needs further investigationbecause it is very difficult.
引文
[1]吉小明,王宇会,阳志元.隧道开挖问题中的流固耦合模型及数值模拟[J].岩土力学,2007,28:379-384
    [2]张有天.我国水工地下结构建设的理论与实践[J].水力发电,1999,10:48-52
    [3]高新强.高水压山岭隧道衬砌水压力分布规律研究[D].成都:西南交通大学,2005
    [4] JTG D70-2004,公路隧道设计规范[S]
    [5] TB10003-2005,铁路隧道设计规范[S]
    [6]任毅,胡壮志,杨幸.公路隧道工程中的环保问题及对策[J].地下空间与工程学报,2008,4(2):365-368.
    [7]庄宁,阚二林,邓明镜.隧道衬砌外水压力确定的渗流场-应力场耦合模型研究[J].中南公路工程,2007,32(1):55-59
    [8]王建宇.再谈隧道衬砌水压力[J].现代隧道技术,2003,40(3):5-10.
    [9]王秀英,王梦恕,张弥.计算隧道排水量及衬砌外水压力的一种简化方法[J].北方交通大学学报,2004,28(1):8-10.
    [10] Henry A Russell. The control of groundwater in underground structures[J]. NorthAmerican Tunneling,2000:589-597.
    [11] DL/T5195-2004,水工隧洞设计规范[S]
    [12]高新强,仇文革.隧道衬砌外水压力计算方法研究现状与进展[J].铁道工程学报2004,4:128-131.
    [13]张有天,张武功.隧洞水荷载的静力计算[J].水利学报,1980,3:52-62.
    [14]陈俊儒.基于流固耦合的海底隧道注浆圈合理参数研究[D].长沙:中南大学,2009
    [15]于学馥,郑颖人,刘怀恒,方正昌.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983
    [16]毛昶熙.渗流计算分析与控制[M].水利电力出版社,北京,1988
    [17]宋晓晨,徐卫亚.裂隙岩体渗流概念模型研究[J].岩土力学,2004,25(2):226-232
    [18]陈俊儒.基于流固耦合的海底隧道注浆圈合理参数研究[D].长沙:中南大学,2009
    [19]何红忠.海底隧道渗流场分析及施工数值模拟[D].长沙:中南大学,2009
    [20]柴军瑞,仵彦卿.岩体渗流场与应力场耦合分析的多重裂隙网络模型[J].岩石力学与工程学报,2000,19(2):712-717
    [21]陈士俊,张俊霞.工程渗流有限元计算方法研究[J].人民黄河,2000,22(9):34-36
    [22] Barenblatt G I, Zheltov I P, Kochina I N. Basin concepts in the theory of seepage ofhomogeneous liquids in fissured rocks[J]. J Appl Math,1960,24:1286-1303
    [23]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005
    [24] Warren T E, Root P J. The behavior of naturally fractured reservoirs[J]. Soc. Pet. Engg.J.,1963,(3):234-255
    [25] Ualliapan S, Khalili-Naghadeh N. Flow through fissured porous media with deformablematrix[J]. Int. J. Number. Method Engg. Sci.,1990,29:1079-1094
    [26] Bai M, Ma Q, Roegiers J. Dual-porosity behavior of naturally fractured reservoirs[J].International Journal for Numerical and Analytical Methods in Geomechanics,1994,18:359-376
    [27]吉小明,白世伟,杨春和.裂隙岩体流固耦合双重介质模型的有限元计算[J].岩土力学,2003,24(5):748-754
    [28] Wittke W, Louis Z C. Berechnung des Einflusses der Bergwasser-stromung auf diestandsicherheit von Boschungen und Bauwerken in zer kluftetem Fels, Proc. Intl. Cong.ISRM,1966
    [29] Ромм Е.С.. Фильтрационные своиства трещиновтых горных пород[M]. Москва:Издательство Недра.1966
    [30] Snow D T. Anisotropic permeability of fractured media[J]. Water Resour Res.,1969,5:1273-1289
    [31] Володько И. Ф.. Кметодике лабораторного изучения подземных вод. Гuброзеолоцяu Инженерная Гuопоця.1941,8:30-38
    [32] Ломизе М. Фильтрация в трещиноватых породах Госэнергоизат.1951
    [33]速宝玉,詹美礼.仿天然岩体裂隙渗流的实验研究,岩土工程学报,1995,17(5):19-24
    [34] Louis C, Maini Y N T. Determination of in situ hydraulic parameters in jointed rock[J].Proc.2ndCong. ISRM,1970
    [35] Moren L, et al. Flow and tracer transport in a single fracture: a stochastic model and itsrelation to some field observations[J].Water Resources Research,1988,24(12):2033-2048
    [36] Tsang Y W,Witherspoon P A. Hydromechanical behavior of a deformable rock fracturesubject to normal stress[J]. J. Geophys. Res.,1981,86(b10):9187-9198.
    [37] Walsh J B. New model for analyzing the effect of fracture on compressibility[J]. J.Geophs. Res,1979,84(B7):3532-3536
    [38]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质,1987(4):22-28.
    [39] Barton N. Strength deformationed conductivity coupling of rock joints[J]. Int. J. RockMech. Min. Sci.&Geomech. Abstr.,1985,22(3):121-140.
    [40]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996,15:338-344
    [41]禹华谦.工程流体力学(水力学)[M].成都:西南交通大学出版社,1999
    [42] Kwicklis E M, Healy R W. Numerical investigation of steady liquid water flow in avariably saturated fracture network[J]. Water Resources,1993,29(12):4091-4102
    [43] Gerke HH, Van Genuchtem M T. A dual-porosity model for simulating the preferentialmovement of water and solute in structured porous media[J]. Water Resources,1993,29(12):305-319
    [44] Zimmeiman R W, Hadnu T, Bodvarsson G S. A new lumped-parameter model for flowin unsaturated dual-porosity media[J]. Advances in Water Resources,1996,19(5):317-327
    [45]岑建,詹美礼.渗流对岩体强度的影响[J].水利科技与经济,2005,11(1):13-15
    [46]李宗利,任青文,王亚红.考虑渗流场影响深埋圆形隧洞的弹塑性解[J].岩石力学与工程学报,2004,23(8):1291-1295
    [47]陈杰森.连拱隧道地下水渗流场及防排水技术研究[D].南京:河海大学,2006
    [48]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学,2000,21(1):64-67
    [49]朱汉华,孙红月,杨建辉.公路隧道围岩稳定与支护技术[M].科学出版社,北京,2007
    [50]高新强,仇文革.隧道衬砌外水压力计算方法研究现状与进展[J].铁道工程学报,2004,4:128-131
    [51]陈崇希,刘文波,彭涛.确定隧道外水压力的地下水流模型[J].水文地质工程地质,2002,5:62-64
    [52]仵彦卿.岩体裂隙系统渗流场与应力场耦合模型[J].地质灾害与环境保护,1996,1:31-34
    [53]杨林德,丁文其.渗水高压引水隧道衬砌的设计研究[J].岩石力学与工程学报,1997,16(2):112-117
    [54]崔岩.地下结构外水压试验研究及理论分析[D].北京:中国矿业大学,1997
    [55]崔岩,崔京浩,吴世红,等.浅埋地下结构外水压折减系数试验研究[J].岩石力学与工程学报,2000,19(1):82-89
    [56]王秀英,王梦恕,张弥.山岭隧道堵水限排衬砌外水压力研究[J].岩土工程学报,2005,27(1):2004-2006
    [57]谢兴华,盛金昌,速宝玉,等.隧道外水压力确定的渗流分析方法及排水方案比较[J].岩石力学与工程学报,2002,21(增2):2375-2378
    [58]杨志锡,杨林德.圆形坑道各向异性稳定渗流的一个解析解[J].同济大学学报,2001,29(3):273-277
    [59]王建秀,杨立中,何静.深埋隧道外水压力计算的解析-数值法[J].水文地质工程地质,2002,3:17-19
    [60] In-Mo Lee, Seok-Woo Nam. The study of seepage forces acting on the tunnel lining andtunnel face in shallow tunnels[J] Tunnelling and Underground Space Technology,2001,16:31-40
    [61] A. Bobet, Effect of pore water pressure on tunnel support during static and seismicloading[J]. Tunnelling and Underground Space Technology,2003,18:377-393
    [62] Young-Jin Shin, Byoung-Min Kim, Jong-Ho Shin, et al., The ground reaction curve ofunderwater tunnels considering seepage forces[J]. Tunnelling and Underground SpaceTechnology,2010,25(25):315-324
    [63]徐干成,郑颖人.圆形洞室围岩与支护共同作用的线弹性分析[J].隧道工程,1982,4:9-17
    [64]付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995,20(3):304-310
    [65]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001
    [66]荣传新,程桦.地下水渗流对巷道围岩稳定性影响的理论解[J].岩石力学与工程学报,2004,23(5):741-744
    [67]侯伟.公路隧道的渗流场与应力场的耦合分析[D].西安:西安理工大学,2006
    [68]黄涛,杨立中.山区隧道涌水量计算中的双场耦合作用研究[M].西南交通大学出版社,2002
    [69]薛禹群,张幼宽.双重介质渗流模型及其里兹有限元解在矿坑涌水量预测中的应用[J].水文地质工程地质,1984,12(2):33-39
    [70]朱大力,李秋枫.用降水入渗系数经验值预测隧道涌水量[J].铁道工程学报.1995,1,100-102
    [71]徐济川,黄少霞.大瑶山隧道的突泥涌水机制[J].铁道工程学报,1996,2,83-89
    [72]黄涛,杨立中.渗流与应力耦合环境下裂隙围岩隧道涌水量的预测研究[J].铁道学报,1999,21(6):75-80
    [73]毕焕军.裂隙岩体数值法预测计算特长隧道涌水量的应用研究[J].铁道工程学报,2000,1,59-62
    [74]徐则民,杨立中,黄润秋.特长超深隧道涌水量预测的镜象法[J].铁道工程学报,2000,1,55-58
    [75]钱家忠,朱学愚,吴剑锋,等.矿井涌水量的灰色马尔可夫预报模型[J].煤炭学报,2000,25(1):71-75
    [76]王建秀,杨立中,何静.深埋隧道涌水量数值计算中的试算流量法[J].岩石力学与工程学报,2002,21(12):1776-1780
    [77] Dimitrios Kolymbas, Peter wagner. Groundwater ingress to tunnels-The exact analyticalsolution[J]. Tunnelling and Underground Space Technology,2007,22,23-27
    [78] N. Coli, G. Pranzhi, A. Alfi, etc.. Evaluation of rock-mass permeability tensor andprediction of tunnel inflows by means of geostructural surveys and finite elementseepage analysis[J]. Engineering Geology,2008,101,174-184
    [79] Zienkiewicz O C, Shiomi T. Dynamic behavior of saturated porous media[J]. Journal forNumerical and Analytical Methods Geotechanics,1984,8:71-96
    [80] Desai. Finite Element Methods for Flow in Porous Media in Fluids[M]. New York:Wiley,1975
    [81] Neuman S. P.. Saturated-unsaturated Seepage by finite element [J]. Journal of theHydraulics Division. ASCE.1973,99(12):2223-2250
    [82]赤井浩一,大西有三,有限要素法对饱和-非饱和渗流问题的解析,土木学会论文报告集,NO.264
    [83] Papagiannakis, A. T and Fredlund, D. G. A steady stale model for flow insatured-unsatured soils [J]. Can. Geoteeh. J.,21(13):19
    [84]张有天,张武功.用边界元法求解有排水孔的渗流场[J].水利学报,1982,7:36-40
    [85]朱伯芳.渗流场中考虑排水孔作用的杂交元[J].水利学报,1982,9:32-41
    [86]关锦荷,刘嘉忻,朱玉侠.用水沟代替排水井列的有限单元法分析[J].水利学报,1984,3:9-18
    [87]王媛,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报,2000,19(2):177-181
    [88]李守巨,刘迎曦,冯文文,霍趁方.岩体裂隙中渗流场有限元随机模拟分析[J].岩土力学,2009,30(7):2119-2125
    [89]殷德胜,汪卫明,陈胜宏.三维随机裂隙岩体渗流分析的块体单元法[J].岩土力学,2009,30(8):2535-2539
    [90]梁炯鋆.锚固与注浆技术手册[M].北京:中国电力出版社,2003
    [91]廖树忠,郑智军.注浆技术在加固隧道围岩中的应用[J].重庆交通学院学报,2001,20(2):103-109
    [92]汪磊,李涛,王全胜.海底隧道预注浆加固效果检查与评价[J].铁道标准设计,2010(12):83-88
    [93]岩土注浆理论与工程实例协作组.岩土注浆理论与工程实例[M].科学出版社,2001
    [94]张弛,王杰,杜嘉鸿,等.岩土注浆技术的理论探讨[J].沈阳建筑工程学院学报,2001,17(1):34-37
    [95]韩金田.复合注浆技术在地基加固中的应用研究[D].长沙:中南大学博士论文,2007
    [96] DL/T5148-2001,水工建筑物水泥灌浆施工技术规范[S]
    [97] DL/T5213-2005,水利水电工程钻孔压水试验规程[S]
    [98]程晓,张凤祥.土建注浆施工与效果检测[M].上海:同济大学出版社,1998
    [99] Thomas Kasper, Gunther Meschke. A numerical study of the effect of soil and groutmaterial properties and cover depth in shield tunneling [J]. Computers and Geotechnics,2006,33(2006):234-247
    [100] Lisa Hernqvist, Asa Fransson, Gunnar Gustafson, et al. Analyses of the groutingresults for a section of the APSE tunnel at Aspo Hard Rock Laboratory [J]. InternationalJournal of Rock Mechanics&Mining Sciences,2009,46(2009):439-449
    [101]郑大锋,邱学青,楼宏铭等.水溶性高聚物在盾构隧道注浆材料中的应用研究[J].华南理工大学学报(自然科学版),2005,33(8):87-90
    [102]来弘鹏,谢永利,杨晓华.地表预注浆加固公路隧道浅埋偏压破碎围岩效果分析[J].岩石力学与工程学报,2008,27(11):2309-2315
    [103] Terzaghi K. Undisturbed clay samples and undisturbed clays [J]. J. Boston Soc. CivilEng.1941,28,3:45-65
    [104]赵延林.裂隙岩体渗流-损伤-断裂耦合理论及应用研究[D].长沙:中南大学,2009
    [105]董学晟.水工岩石力学[M].北京:中国水利水电出版社,2004
    [106] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis injointed rock masses[J]. Water Resources Research,1986,22(13):1845-1856
    [107] Venuijt A. Elastic storage of aquifers [A]. In: Flow Through Porous Media [C]. Dewiest R J M, New York: Tiho Wiley,1969
    [108] Mctigue D F. Thermoelastic response of fluid-saturated porous rock [J]. J. Geophys.Res.1986(91):9533-9542
    [109]毛昶熙,陈平,李祖贻,李定方.裂隙岩体渗流计算方法研究[J].岩土工程学报,1991,6:1-19
    [110]杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J].水利学报,1991,5:18-27
    [111]王媛,徐志英等.裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J].水利学报,1998,7:55-60
    [112]赵坚,赖苗,沈振中.岩溶地区渗流场计算的改进折算渗透系数法和变渗透系数法[J].岩石力学与工程学报,2005,24(8):1341-1347
    [113]王媛,刘杰.基于敏感性分析的裂隙岩体渗流与应力静态全耦合参数反演[J].岩土力学,2009,30(2):311-317
    [114]徐曾和,徐小荷.二维应力场承压地层中渗流的液固耦合问题[J].岩石力学与工程学报,1999,18(6):645-650
    [115]易顺明、朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社,2005
    [116]赖远明,吴紫汪,朱元林,等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999,21(5):529-533
    [117]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质,1995,12(2):30-35
    [118]王媛.单裂隙面渗流与应力的耦合特性[J].岩石力学与工程学报,2002,21(1):83-87
    [119]陈祖安,伍向阳等.岩体渗透率随静水压力变化的关系研究[J].岩石力学与工程学报,1995,14(2):155-159
    [120]田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1989
    [121] Esaki J. Shear-flow coupling test on rock joints[C]//ISRM. Proc.7th. Int. Conf. ISRM,1992:145-167
    [122]耿克勤.岩体裂隙渗流水力特性的实验研究[J].清华大学学报,1996,36(1):102-106
    [123]夏才初,王伟,王筱柔.岩石节理剪切-渗流耦合试验系统的研制[J].岩石力学与工程学报,2008,27(6):1285-1291
    [124]吕爱钟.地下隧洞力学分析的复变函数方法[M].北京:科学出版社,2007
    [125] Мусхелишвили.数学弹性力学的几个基本问题[M].北京:科学出版社,1958
    [126]徐芝纶.弹性力学[M].北京:高等教育出版社,2004
    [127] S.P. Timoshenko, J.N. Goodier. Theory of Elasticity [M].清华大学出版社,2004
    [128] N.I. Muskhelishvili. Mathematical theory of elasticity [M]. International publishingleyden,1954
    [129]路见可.平面弹性复变方法[M].武汉大学出版社,2002
    [130]陈子荫.围岩力学分析中的解析方法[M].北京:煤炭工业出版社,1994
    [131]范广勤,汤澄波.应用三个绝对收敛级数相乘法解非圆形洞室的外域映射函数[J].岩石力学与工程学报,1993,12(3):255-264
    [132]吕爱钟.非圆形硐室封闭整体式支护映射函数确定的新方法[J].岩土工程学报,1995,17(4):38-44
    [133]王晓冬.渗流力学基础[M].北京:石油工业出版社,2006
    [134]顾慰慈.渗流计算原理及应用[M].北京:中国建材工业出版社,2000
    [135]左东启.水力学、河流及海岸动力学分册[M].北京:中国水利水电出版社,2004
    [136]蔡晓鸿,蔡勇平.水工压力隧洞结构应力计算[M].北京:中国水利水电出版社,2004
    [137]孙钧,汪炳鑑.地下结构有限元法解析[M].上海:同济大学出版社,1988
    [138] Lee In-Mo, Lee Jae-Sung, Nam Seok-Woo. Effect of seepage force on tunnel facestability reinforced with multistep pipe grouting [J]. Tunnelling and UndergroundSpace Technology,2004,19:551-565
    [139]刘福胜.隧道渗透水压力的研究及工程应用[D].重庆:重庆交通大学,2009
    [140]骆冠勇,曹洪,房营光.城区渗流场分析的奇异点子结构法[J].华南理工大学学报:自然科学版,2007,35(3):150-154
    [141]王秀英,谭忠盛,王梦恕,等.山岭隧道堵水限排围岩力学特性分析[J].岩土力学,2008,29(1):75-80
    [142]张向霞.各向异性软岩的渗流耦合本构模型[D].上海:同济大学,2006
    [143] Schweiger H F, Pottler P K, Steiner H. Effect of seepage forces on the shotcrete liningof a large undersea cavern[C]//Proceeding Int Conf Computer Methods and Advancesin Geomechanics. Balkema:[s. n.],1991:1503-1508
    [144] Arjnoi Ponlawich, Jeong Jae-Hyeung, Kim Chang-Yong, et al. Effect of drainageconditions on porewater pressure distributions and lining stresses in drained tunnels[J].Tunnelling and Underground Space Technology,2009,24:376-389
    [145]林传年,李利平,韩行瑞.复杂岩溶地区隧道涌水预测方法研究[J].岩石力学与工程学报,2008,27(7):1469-1476
    [146]宋超业,周书明,谭志文.海底隧道衬砌水荷载计算[J].现代隧道技术,2008(增刊):134-138
    [147] Warren C. young, Richard G. Budynas. Roark’s Formulas for stress and strain [M].Beijing: Tsinghua university press,2003
    [148]刘福胜,文竞舟,王成.用隧道周边位移反分析围岩压力的解析研究[J].地下空间与工程学报,2007,3(7):1203-1207
    [149]李围. ANSYS土木工程应用实例(第二版)[M].北京:中国水利水电出版社,2007
    [150]王美芹.深埋隧洞外水压力分析与研究[D].南京:河海大学,2004
    [151]陈慧远.土石坝有限元分析[M].南京:河海大学出版社,1987
    [152]邵蕴秋. ANSYS8.0有限元分析实例导航[M].北京:中国铁道出版社,2004
    [153]宋学官,蔡林,张华. ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社,2012
    [154]商跃进.有限元原理与ANSYS应用指南[M].北京:清华大学出版社,2005
    [155]刘允芳.弹性介质岩体中非圆形洞室位移反分析计算[J].岩石力学与工程学报,1986,5(1):25-39
    [156]万耀青,梁庚荣,陈志强.最优化计算方法常用程序汇编[M].北京:工人出版社,1983
    [157]郭仁生.基于MATLAB和Pro/ENGINEER优化设计实例解析[M].北京:机械工业出版社,2007
    [158] N.I. Mushhelishvili. Mathematical theory of elasticity [M]. International publishingleyden,1954
    [159] Sokolnikoff. Mathematical Theory of Elasticity [M]. New York: McGraw-Hill BookCompany,1946
    [160] S. Timoshenko, J. N. Goodier. Theory of Elasticity [M]. New York: McGraw-HillBook Company,1951
    [161]徐芝纶.弹性理论[M].北京:人们教育出版社,1960
    [162] A. Verruijt. A complex variable solution for a deforming circular tunnel in an elastichalf plane [J]. International Journal for numerical and analytical methods ingeomechanics,1997,21:77-89
    [163]杨巧林.复变函数与积分变换[M].北京:机械工业出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700