EW75合金的组织结构及在制备加工中的演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素Gd、Y在镁合金中具有显著的时效强化效应,在此基础上通过成分优化设计研发的EW75合金(Mg-7Gd-5Y-1Nd-0.5Zr)室温高温力学性能优良,发展应用前景广阔。虽然目前关于Mg-Gd-Y系合金组织和性能的研究较多,但是亚稳时效析出相的晶体学特征还存在争议。此外,均匀化热处理之后进行预析出热处理,在合金中形成第二相颗粒,研究其对合金高温变形行为特别是动态再结晶的影响较少。本论文以此为立题依据,系统研究EW75合金不同热处理和加工状态下相的形貌、结构及强化机制,并通过合理的预析出热处理工艺控制第二相颗粒的形成,研究第二相对合金热压缩和多向锻造变形过程的影响作用,为研制高性能稀土镁合金提供实验基础和理论依据。
     确定铸态EW75合金组织由基体、骨骼状相(fc.c., a=2.22nm)、方块状H(f.c.c., a=0.53nm)和Zr颗粒组成。其中骨骼状相化学成分为Mg5(Y0.4Gd0.4Nd0.2),方块状相化学成分为Mg(Y3Gd)。经过均匀化处理后,骨骼状相基本消失,合金的组织主要由基体和方块状相Mg(Y3Gd)组成,Mg(Y3Gd)相的结构、成分与铸态合金中的相同。
     对均匀化EW75合金在520℃/480℃/440℃/400℃温度进行30min的等温预析出热处理,形成尺寸大于1μm的第二相颗粒。520℃、480℃等温预析出热处理的相为方块状的Mg(Y3Gd)相,而在440℃、400℃预析出热处理时出现杆状Mg5(Y0.4Gd0.4Nd0.2)相。将经过预析出热处理的合金(预析出处理合金)和均匀化合金分别进行后续的高温热压缩和多向锻造变形。
     研究了EW75合金的时效沉淀相及其强化机制。EW75合金在210℃等温时效过程中的主要沉淀相为β’相,以及沿(0001)。析出的沉淀相和β相。β’相的结构为底心正交(b.c.o.)结构,晶格常数a=0.64nm,b=2.22nm,c=0.52nm。β’相与Mg基体完全共格,以(1120)α为惯习面,与基体的取向关系为:[001]β,//[0001]α,(100)β//(1120)αβ’相在空间的形貌为椭球状。通过高角度环形暗场扫描透射电子显微技术(HAADF-STEM)观察结果,确定β’相的原子结构模型为Mg7RE型。β’相与基体的共格关系及其不同变体间相互交错成网状是其在210℃时效具有较高的热稳定性的主要原因。沿(0001)。析出的沉淀相以(0001)。为惯习面,与基体完全共格,为板状形貌,沿[0001]。方向的尺寸为2nm,沿[1120]。和[1010]。方向的尺寸为5nm,在之前文献中未见报道。过时效阶段的沉淀相为β相,其品格常数a=2.22nm,与基体的取向关系为:(111)β//(1120)α,[11]β//[0001]α,化学成分为Mg5(Y0.4Gd0.4Nd0.2)。一个β相通常由具有(111)β孪晶关系的几个部分组成。考虑β相的板状形貌及其[0001]α方向的长度,建立了β相的强化机制模型,在本合金中当β相沿[1120]α方向长度应当控制在2μm以内。
     研究了均匀化EW75合金在热压缩变形过程中的组织演变。晶界是主要的动态再结晶形核位置,并且再结晶晶粒与原始变形晶粒的取向存在一定关系。变形量较小时,晶界发生迁移形成锯齿状,具有非连续动态再结晶特征。变形量较大时,小角度晶界通过连续吸收位错形成大角度晶界,属于连续动态再结晶的特征。合金在热压缩过程中晶粒发生了明显的转动使基面法向趋于与压缩方向一致,具有典型的基面纤维织构特征。
     研究了预析出处理EW75合金中第二相对合金热压缩变形行为及组织演变的影响。建立了动态再结晶动力学模型,预析出处理合金的动态再结晶激活能低于均匀化合金,完成再结晶所需变形量较小。预析出处理合金在变形过程中,第二相附近产生具有一定取向差梯度的变形区,因此除晶界以外,第二相颗粒也是动态再结晶形核的有利位置,并且第二相附近的动态再结晶晶粒取向随机。预析出处理合金中的第二相可以起到促进动态再结晶的作用。
     研究了均匀化EW75合金在多向锻造变形过程中的显微组织、变形织构及变形析出相。动态再结晶是合金主要的晶粒细化方式,原始晶界是动态再结晶的主要形核位置。EW75合金在第一道次锻压之后形成了较强的(0001)基面纤维织构,由于外加应力轴的不断变化和动态再结晶体积分数的增加,在后续变形道次基面织构不断弱化。多向锻造过程中的变形析出相为Mg5(Gd0.4Y0.4Nd0.2),结构为f.c.c.,晶格常数a=2.22nm,变形析出相多分布于动态再结晶晶界,起到了阻碍动态再结晶晶粒长大的作用。
     研究了预析出处理EW75合金中第二相对多向锻造变形过程中的显微组织及变形织构的影响。预析出处理合金的动态再结晶形核位置为原始晶界和第二相颗粒。由于第二相颗粒对位错的阻碍作用,更容易在再结晶晶粒内发生多重再结晶。第二相附近的动态再结晶晶粒取向随机,对弱化合金织构有一定作用。对预析出处理合金进行六道次多向锻造变形,最终得到了平均晶粒尺寸为5.15μm,织构较弱,垂直于压缩方向抗拉强度、屈服强度和延伸率分别为347MPa、305.5MPa和3.5%的合金。
Magnesium alloys with the addition of rare earth metals(RE) Gd, Y have significant precipitation hardening effect. EW75(Mg-7Gd-5Y-1Nd-0.5Zr) alloy have great potential to be used widely due to their high specific strength at both room and elevated temperatures. Although there has been a lot of research work about the microstructure and mechanical properties of Mg-Gd-Y series alloys, there is still a debate about the characterization of metastable phase formed during ageing. Besides, the understand about the particle effects on the flow stress behavior and microstructure evolution during hot deformation is limited. Thus, in this study, the morphology, structure, and strengthening mechanism of phases formed in EW75alloy will be systemically researched. Also, the effect of particles on the deformation behavior and microstructure evolution during hot compression and multi-axial forging will be investigated. The aim of the present work is to provide experimental and theoretical results for the development and application of high performance Mg-RE alloys.
     As-cast microstructure of EW75alloy consists of α-Mg matrix, skeletal phase(f.c.c., a=2.22nm), block-shaped phase(f.c.c., a=0.53nm) and Zr particles. A composition of Mg5(Y0.4Gd0.4Nd0.2) is suggested for the skeletal phase, and a composition of Mg(YdGd) is for the block-shaped phase. After homogenized heat treatment, the skeletal phase in the as-cast alloy have been completely dissolved, the microstructure of as-homogenized alloy consists of α-Mg matrix and block-shaped Mg(Y3Gd) phase. The structure and composition of Mg(Y3Gd) phase is identical with that in the as-cast alloy.
     After homogenized heat treatment, the pre-treated heat treatment(water quenching at room temperature and ageing at520℃/480℃/440℃/400℃for30min) for alloys were carried out. After isothermal pre-treated heat treatment, the particles with size larger than1μm are observed in the alloy. The block-shaped Mg(Y3Gd) phase formed in the520℃and480℃isothermal pre-treated alloys. However, the bacilliform Mg5(Y0.4Gd0.4Nd0.2) phase formed in the440℃and400℃pre-treated alloys.
     The precipitates in EW75alloy during ageing have been investigated. The precipitates of EW75alloy aged at210℃are β' phase, a new type of phase precipitated on the (0001)α habit plane and β phase. A b.c.o. structure with lattice parameters of a=0.64nm, b=2.22nm and c=0.52nm can be identified for β''phase. The β' precipitates are totally coherent with the matrix. The orientation relationship between the β' precipitates and the matrix satisfies [001]β'//[0001]α and (100)β'//(1120)α. Atomic-scaled HAADF-STKM observations along the [0001]α and [1120]α, zone axes suggest an Mg7RK-type structural model for the β' phase. Coherent relationship and joining of β' precipitates are responsible for the good thermal stability of alloy ageing at210℃. A new type of phase precipitated on the (0001α habit plane was observed in the21()℃718h and210℃/180h ageing samples. A completely coherent relationship between the precipitates and the matrix can be found. The new precipitates are plate-shaped with approximately2nm wide along the [0001|α direction of the matrix and5nm long along the [1120]α and [1010]α directions. None of the phases precipitated on the (0001)α plane was reported in Mg-Gd or Mg-Y series alloys during ageing heat treatment. The β phase formed in the over-aged EW75alloy. The β precipitate has a f.c.c. structure with a lattice parameter of a=2.22nm, a composition of Mg5(Y0.4Gd0.4Nd0.2) is suggested for the β phase. Furthermore, the β precipitate forms as plates with a habit plane parallel to (1100)α The orientation relationship between the β phase and a-Mg matrix is(112)β(l100)α|110]β//[0001α. A single β plate often contains several domains of (lll)β twin-related variants. Assuming the plate shape and the length along [0001]α direction of β phase, an appropriate versions of the Orowan equation for β phase have been developed.
     Microstructure evolution during hot compression of as-homogenized EW75alloy has been investigated. New dynamic recrystallization grains formed near origin grain boundaries. The orientation of new grains is related to the original grains. At low strains, the original grain boundaries are serrated and bulging at grain boundary regions can be recognized, which indicate that discontinuous dynamic recrystallization is operative. At higher strains, new grains result from the gradual increase in mis-orientation between subgrains during plastic deformation. Continuous absorption of dislocations in the low-angle boundaries results in continuous dynamic recrystallization. During hot compression, there is a tendency to exhibit a basal fiber texture in which the majority of grains are oriented to such that their [0001]α direction are nearly parallel to the compression direction.
     The effect of particles on flow stress behavior and microstructure evolution has been investigated. According to the DRX kinetics model, Qrex for the pre-treated alloys is smaller compared with the as-homogenized alloys. The deformation time required for the same amount of DRX volume fraction is shorter for the pre-treated alloys. In pre-treated alloys, the misorientation gradient surrounding particles is large enough that DRX grains formed both near the origin grain boundaries and large particles. The orientation of DRX grains formed around the particles is quite random. The DRX promoting effect of particles in pre-treated alloys during hot compression can be deduced.
     Microstructure, texture evolution and dynamic precipitation during multi-axial forging(MAF) of as-homogenized EW75alloy have been investigated. DRX is the dominant grain refinement mechanism in the as-homogenized alloy during MAF process. DRX grains are primely formed near origin grain boundaries. A pronounced basal texture can be observed in the EW75alloy after the first pass of MAF. However, the basal texture have been weakened during the subsequent passes, due to the various loading directions and increasing of DRX volume fractions. The dynamic precipitates formed during MAF processing has an f.c.c. structure with a lattice parameter of a=2.22nm. Most of the dynamic precipitates locate on the dynamic recrystallization grain boundaries.
     The effect of particles on microstructure and texture evolution during MAF process has been investigated. In the pre-treated alloys, DRX grains can be formed both near origin grain boundaries and large particles. The orientation of DRX grains formed around the particles is quite random, which is beneficial to the texture weaken. After6passes of MAF, simultaneously average grain size of5.15μm and weak texture have been achieved in the pre-treated EW75alloy. The ultimate tensile strength, yield strength and elongation are347MPa,305.5MPa and3.5%, respectively.
引文
[1]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002:16-69
    [2]Friedrich H.E., Mordike B.L.. Magnesium Technology[M]. Berlin:Springer-Verlag, 2006:20-24
    [3]左铁镛.21世纪的轻质结构材料——镁及镁合金发展[J].新材料产业,2007,12:22-26
    [4]陈振华.耐热镁合金[M].北京:化学工业出版社,2007:15-50
    [5]丁文江,彭立明.付彭怀,等.高性能镁合金发展现状与趋势[A].第五届中国有色合金及特种铸造国际会议论文集[C],上海:中国铸造学会.2007:17-23
    [6]丁文江.镁合金科学与技术[M].北京:科学出版社,2007:1-26
    [7]罗治平,张少卿.稀土镁合金的研究[J].材料科学与工程,1993.11:38-42
    [8]宋维锡.金属学[M].北京:冶金工业出版社,2000:10-41
    [9]周开文,孙仙奇,庄应烘.稀土镁合金的研究状况[J].广西大学学报(自然科学版),2006,31:186-190
    [10]吴玉娟,丁文汀.彭立明月,等.高性能稀土镁合金的研究进展[J].中国材料进展,2011,30(2):1-8
    [11]杨素媛.张丽娟,张堡垒.稀土镁合金的研究现状及应用[J].稀土.2008,29(4):81-86
    [12]邓永和.稀土镁合金的研究现状与发展趋势[J].稀土,2009,30(1):76-79
    [13]Zhang J.H., Wang J., Xin Q., et al. Effect of Nd on the Microstructure. Mechanical Properties and Corrosion Behavior of Die-Cast Mg-4Al-based Alloy [J]. Journal of Alloys and Compounds.2008,464(1-2):556-564
    [14]Zhou, H.T., Zhang Z.D., Liu C.M., et al. Effect of Nd and Y on the Microstructure and Mechanical Properties of ZK60 Alloy[J]. Materials Science and Engineering A, 2007,445-446:1-6
    [15]郭旭涛,李培杰,曾大本.Mg-Y合金的电子理论研究[J].中国稀土学报,2003.21(6):672-676
    [16]李伟,高家诚.稀土Nd对热挤压Mg-Y-Nd-Zr合金组织性能的影响[J].材料工程,2011,(2):35-41
    [17]马志新,李德富,李彦利Mg-Y-Nd-Zr合金加工工艺与组织演化的研究[J].稀有金属,2006,30(6):719-723
    [18]李德辉.Mg-Dy-Nd-(Gd)系合金组织与性能研究[D].上海,上海交通大学,2007
    [19]Peng Q.M., Dong H.W., Wang, L.D., et al. Aging Behavior and Mechanical Properties of Mg-Gd-Ho Alloys[J]. Materials Characterization,2008,59(8):983-986
    [20]Zheng K.Y., Dong J., Zeng X.Q., et al. Effect of Pre-Deformation on Aging Characteristics and Mechanical Properties of a Mg-Gd-Nd-Zr Alloy[J]. Materials Science and Engineering A,2008,491(1-2):103-109
    [21]王其龙,吴国华,郑韫,等Mg-Gd-Y系合金的研究进展[J].材料导报,2009,23(6):104-108
    [22]陈长江,王渠东,尹冬弟,等.时效态Mg-Gd-Y-Z镁合金压缩性能和组织演变[J].铸造,2010,59(3):34-307
    [23]熊创贤,张新明,陈健美,等Mg-Gd-Y-Mn耐热镁合金的压缩变形行为研究[J].材料热处理学报,2007,28(3):47-53
    [24]赵娟,李建平,郭永春.等.新型Mg-Gd-Y合金富镁角的相图计算及实验测定[J].稀有金属材料与工程.2008,37(2):281-285
    [25]张磊Mg-Gd-Y系镁合金强韧化研究[D].武汉:华中科技大学,2009
    [26]张新明,陈健美,邓运来,等Mg-Gd-Y-(Mn,Zr)合金的显微组织和力学性能[J].中国有色金属学报,2006,16(2):219-227
    [27]王飞,孙威,刘林林Mg-Gd-Y-Zn合金400℃热处理过程中长周期堆垛结构的形成[J].电子显微学报,2009,28(4):362-365
    [28]刘林林,孙威,王飞,等Mg-Gd-Y-Zn合金中长周期堆垛结构形成的原位准动态背散射电子显微研究[J].电子显微学报,2008,27(4):266-270
    [29]肖纪美.合金相与相变[M].北京:冶金工业出版社,2004:281-344
    [30]Li D.H., Dong J., Zeng X.Q., et al. Characterization of β " Precipitate Phase in a Mg-Dy-Gd-Nd Alloy[J]. Materials Characterization,2007,58(10):1025-1028
    [31]Li D.H., Dong J., Zeng X.Q., et al. Characterization of Precipitate Phases in a Mg-Dy-Gd-Nd Alloy[J]. Journal of Alloys and Compounds,2007,439(1-2):254-257
    [32]Vostry P., Smola B., Stulikova I., et al. Micro structure Evolution in Isochronally Heat Treated Mg-Gd Alloys[J]. Physica Status Solidi A,2002,175(2):491-500
    [33]Zheng K.Y., Dong J., Zeng X.Q., et al. Effect of Precipitation Aging on the Fracture Behavior of Mg-11Gd-2Nd-0.4Zr cast alloy[J]. Matetials Characterization,2008, 59(7):857-862
    [34]Zheng K.Y., Dong J., Zeng X.Q., et al. Precipitation and its Effect on the Mechanical Properties of a Cast Mg-Gd-Nd-Zr Alloy [J]. Materials Science and Engineering A, 2008,489(1-2):44-54
    [35]Nie J.F., Muddle B.C.. Characterisation of Strengthening Precipitate Phases in a Mg-Y-Nd Alloy[J]. Acta Materialia,2000,48(8):1691-1703
    [36]Antion C., Donnadieu P., Perrard F., et al. Hardening Pecipitation in a Mg-4Y-3RE Alloy[J]. Acta Materialia, 2003, 51(18): 5335-5348
    [37]Gao X., He S.M., Zeng X.Q., et al. Microstructure Evolution in a Mg-15Gd-0.5Zr (wt.%) Alloy during Isothermal Aging at 250 ℃ [J]. Materials Science and Engineering A, 2006,431(1-2): 322-327
    [38]Zhang M.. Zhang W.Z.. Interpretation of the Orientation Relationship and Habit Plane Orientation of the Equilibrium P -Phase in an Mg-Y-Nd Alloy[J]. Scripta Materialia, 2008, 59(7): 706-709
    [39]Smola B., Ikova I.S.. Equilibrium and Transient Phases in Mg-Y-Nd Ternary Alloys[J]. Journal of Alloys and Compounds, 2004, 381(1-2): L1-L2
    [40]Barucca G., Ferragut R., Fiori F., et al. Formation and evolution of the hardening Precipitates in a Mg-Y-Nd Alloy[J]. Acta Materialia, 2011, 59(10):4151-4158
    [41]Li Z.C., Zhang H., Liu L., et al. Growth and Morphology of P Phase in an Mg-Y-Nd Alloy[J]. Materials Letters, 2004, 58(24): 3021-3024
    [42]Xin R.L., Li L., Zeng K., et al. Structural Examination of Aging Precipitation in a Mg-Y-Nd Alloy at Different Temperatures[J]. Materials Characterization, 2011, 62(5): 535-539
    [43]Xin R.L., Song B.. Zeng K., et al. Effect of Aging Precipitation on Mechanical Anisotropy of an Extruded Mg-Y-Nd Alloy[J]. Materials and Design, 2012, 34: 384-388
    [44]Zhang M.X., Kelly P.M.. Morphology and Crystallography of Mg24Y5 Precipitate in Mg-Y Alloy[J]. Scripta Materialia, 2003,48(4): 379-384
    [45]Pike, T.J., Noble B.. The Formation and Structure of Precipitates in a Dilute Mgnesium-Neodymium Alloy[J]. Journal of the Less-Common Metals, 1973, 30: 63-74
    [46]Karimzadeh H.. Microstructure Evolution in Mg-Nd alloy[D]. Manchester: University of Manchester, 1985
    [47]Wei L.Y.. Age Hardening and Precipitation in a Cast Magnesium-Rare-Rarth Alloy [J]. Journal of Materials Science, 1996,31(2): 387-397
    [48]Ferraguta R., Moiaa F., Fiori F., et al. Small-Angle X-ray Scattering Study of the Early Stages of Precipitation in a Mg-Nd-Gd (EV31) Alloy[J]. Materials Characterization, 2008,495(2): 408-411
    [49]Meng F.G., Wang J., Liu H.S., et al. Experimental Investigation and Thermodynamic Calculation of Phase Relations in the Mg-Nd-Y Ternary System[J]. Materials Science and Engineering A,2007,454-455(1):266-273
    [50]Honmaa T., Ohkubob T., Hono K., et al. Chemistry of Nanoscale Precipitates in Mg-2.1 Gd-0.6Y-0.2Zr (at.%) alloy Investigated by the Atom Probe Technique[J]. Materials Science and Engineering A,2005,395(1-2):301-306
    [51]Liu K., Zhang J.H., Tang D.X., et al. Precipitates Formed in a Mg-7Y-4Gd-0.5Zn-0.4Zr Alloy during Isothermal Ageing at 250℃[J]. Materials Chemistry and Physics,2009,117(1):107-112
    [52]Ferraguta R., Moiaa F., Fiori F., et al. Small-Angle X-ray Scattering Study of the Early Stages of Precipitation in a Mg-Nd-Gd (EV31) Alloy[J]. Journal of Alloys and Compounds,2010,495(2):408-411
    [53]Apps P.J., Karimzadeh H., King J.F., et al. Precipitation Reactions in Magnesium-Rare Earth Alloys containing Yttrium, Gadolinium or Dysprosium[J]. Scripta Materialia,2003,48(8):1023-1028
    [54]Apps P.J., Karimzadeh H., King J.F., et al. Phase Compositions in Magnesium-Rare Earth Alloys containing Yttrium, Gadolinium or Dysprosium[J]. Scripta Materialia, 2003,48(5):475-481
    [55]Honma T., Ohkubo T., Hono K., et al. Chemistry of Nanoscale Precipitates in Mg-2.1Gd-0.6Y-0.2Zr(at.%) Alloy Investigated by the Atom Probe Technique [J]. Materials Science and Engineering A,2005,395(1-2):301-306
    [56]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,2010:549-597
    [57]Nie J.F.. Effects of Precipitate Shape and Orientation on Dispersion Strengthening in Magnesium Alloys[J]. Scripta Materialia,2003,48(8):1009-1015
    [58]Robson J.D., Stanford N., Barnett M.R.. Effect of Precipitate Shape on Slip and Twinning in Magnesium Alloys[J]. Acta Materialia,2011,59(5):1945-1956
    [59]李永军,张奎,李兴刚,等.均匀化处理和挤压对Mg-Y-RE-Zr合金组织性能的影响[J].特种铸造及有色合金,2009,29(7):593-595
    [60]马志新,李德富,李彦利.铸态Mg-Gd-Y-Zr镁合金均匀化工艺研究[J].稀有金属,2009,30(2):624-627
    [61]马鸣龙,张奎,李兴刚,等.GWN751K(?)美合金均匀化热处理[J].中国有色金属学报,2010.20(1):1-9
    [62]Gao Y., Wang Q.D., Gu J.H.. et al. Behavior of Mg-15Gd-5Y-0.57.r Alloy during Solution Heat Treatment from 500 to 540℃[J]. Materials Science and Engineering A. 2007.459(1-2): 117-123
    [63]Sha G., Li J.H., Xu W., et al. Hardening and Microstructural Reactions in High-Temperature Equal-Channel Angular Pressed Mg-Nd-Gd-Zn-Zr Alloy[J]. Materials Science and Engineering A. 2010, 527(20): 2092-2099
    [64]Hou X.L., Cao Z.Y.. Sun X.. et al. Twinning and Dynamic Precipitation upon Hot Compression of a Mg-Gd-Y-Nd-Zr alloy [J]. Journal of Alloys and Compounds, 2012, 525(1): 103-109
    [65]刘六法,丁汉林, 丁文江.AZ91镁合金挤压过程中β相的动态析出及其对组织和拉伸性能的影响[J].稀有金属材料与工程,2009,38(1):104-109
    [66]陈振华.变形镁合金[M].北京:化学工业出版社.2005:101-170
    [67]Yang Z., Guo Y.C., Li J.P., et al. Plastic Deformation and Dynamic Recrystallization Behaviors of Mg-5Gd-4Y-0.5Zn-0.5Zr Alloy[J]. Materials Science and Engineering A, 2008,485(1-2): 487-491
    [68]刘楚明,刘子娟,朱秀荣,等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报.2006,16(1):1-12
    [69]何运斌,潘清林,覃银江,等.ZK60镁合金热变形过程中的动态再结晶动力学[J]. 中国有色金属学报,2011,21(6):1205-1213
    [70]Engler O.. Influence of Particles Stimulated Nucleation on the Recrystallization Textures in Cold Deformed Al-Alloys[J]. Scripta Materialia, 1997, 37(11): 1675-1683
    [71]Habiby F., Humphreys F.J.. The Effect of Particles Stimulated Nucleation on the Recrystallization Texture of an Al-Si Alloy[J]. Scripta Metallurgica and Materialia, 1994, 30(6): 787-790
    [72]Goetz R.L.. Particle Stimulated Nucleation during Dynamic Recrystallization using a Cellular Automata Model[J]. Scripta Materialia, 2005,52(9): 851-856
    [73]马鸣龙.Mg-Y-MM-Zr合金组织及性能研究[D].北京:北京有色金属研究总院,2010
    [74]Robson J.D.. Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle Pinning[J]. Materials Science and EngineeringA,2011,528(12):4239-4247
    [75]Humphreys F.J.. Local Lattice Rotations at Second Phase Particles in Deformed Metals[J]. Acta Metallurgica,1979,27(12):1801-1814
    [76]王猛, 李龙飞,孙祖庆,杨土玥.渗碳体粒了尺寸对低碳钢铁素体动态再结晶的影响.金属学报,2007,43(10):1009-1014
    [77]Humphreys F.J., Hatherly M.. Recrystallization and Related Annealing Phenomena[M], Oxford:Pergamon,2004
    [78]Wang X.J., Hu X.S., Nie K.B., et al. Dynamic Recrystallization Behavior of Particle Reinforced Mg Matrix Composites Fabricated by Stir Casting[J]. Materials Science and Engineering A,2012,545:38-43
    [79]Doherty R.D., Hughes D.A., Humphreys F.J., et al. Current Issues in Recrystallization:a Review[J]. Materials Science and Engineering A,1997, 238(2):219-274
    [80]陈振华,夏伟军,程永奇,等.镁合金织构与各向异性[J].中国有色金属学报,2005,15(1):1-11
    [81]Peng T., Wang Q.D., Lin J.B., et al. Microstructure and Enhanced Mechanical Properties of an Mg-10Gd-2Y-0.5Zr Alloy Processed by Cyclic Extrusion and Compression[J]. Materials Science and Engineering A,2011,528(3):1143-1148
    [82]Salishchev G. A., Valiakhmetov O. R., Galeyev.R.M.. Formation of Submicrocrystalline Structure in the Titanium alloyvt8 and Its Influence on Mechanical Properties[J]. Journal of Materials Science,1993,28(11):2898-2902
    [83]Imayev V. M., Imayev R. M., Salishchev G. A.. On Two Stages of Brittle-to-ductile Transition in TiAl Intermetallic[J].Intermetallics,2000,8(1):1-6
    [84]Belyakov A., Sakai T., Miura H., et al. Continuous Recrystallization in Austenitic Stainless Steel after Large Strain Deformation[J]. Acta Materialia,2002,50(6):1547 1557
    [85]郭强,严红革,陈振华,张辉.多向锻造技术研究进展[J].材料导报,2007,21(2):106-108
    [86]Sitdikov O., Sakai T., Goloborodko A., et al. Grain Fragmentation in a Coarse-grained 7475 Al Alloy during Hot Deformation[J]. Scripta Materialia,2004, 51(2): 175-179
    [87]Somjcet B., Satyam S.. Evolution of Sub-micron Grain Size and Weak Texture in Magnesium Alloy Mg-3Al-0.4Mn by a Modified Multi-axial Forging Process[J]. Scripta Materialia. 2012. 66(2):89-92
    [88]Zherebtsov S.V., Salishchev G.A.. Production of Submicrocrystalline Structure in Large-scale Ti-6A1-4V Billet by Warm Severe Deformation Processing[J]. Scripta Materialia, 2004, 51(12): 1147-1151
    [89]Han B.J., Xu Z.. Grain Refinement under Multi-axial Forging in Fe-32%Ni Alloy[J]. Journal of Alloys and Compounds, 2008,457(1-2):279-285
    [90]郭强、严红革.陈振华,张辉.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J].金属学报,2006,42(7):739-744
    [91]简炜炜,康志新,李元元.多向锻造ME20M镁合金的组织演化与力学性能[J].中国有色金属学报,2008,18(6):1005-1011
    [92]任政.张兴国.庞磊,等.多向锻造对变形镁合金AZ31组织和力学性能的影向[J].塑性工程学报.2009,16(6):23-28
    [93]Chen Q., Shu D.Y., Hu C.K., et al. Grain Refinement in an As-cast AZ61 Magnesium Alloy Processed by Multi-axial Forging under the Multitemperature Processing Procedure[J]. Materials Science and Engineering A, 2012,541:98-104
    [94]Zhao Z.D., Chen Q., Hu C.K., et al. Microstructure and Mechanical Properties of SPD-Processed an As-cast AZ91D+Y Magnesium Alloy by Equal Channel Angular Extrusion and Multi-axial Forging[J]. Materials and Design, 2009, 30(10):4557-4561
    [95]Miura H., Yua G., Yang X.. Multi-directional Forging of AZ61Mg Alloy under Decreasing Temperature Conditions and Improvement of Its Mechanical Properties[J]. Materials Science and Engineering A, 2011, 528(22-23):6981-6992
    [1]肖阳,张新明,陈健美,等.Mg-9Gd-4Y-0.6Mn合金的显微组织与力学性能[J].材料热处理学报,2007,28(2):44-45
    [2]马鸣龙,张奎,李兴刚,等.GWN751K镁合金均匀化热处理[J].中国有色金属学报,2010,20(1):1-9
    [3]夏祥生.多向锻造EW75合金组织及力学性能研究[D].北京:北京有色金属研究总院,2012
    [4]Cliff G., Powell D.J., Pilkington R., et al. X-ray Microanalysis of Second Phase Particles in Thin Foils[A]. Electron microscopy and analysis[C]. Bristol:Institute of Physics,1983:63-66
    [5]Robb P. D., Finnie M., Longo P., et al. Experimental Evaluation of Interfaces using Atomic-resolution High Angle Annular Dark Field(HAADF) Imaging. Ultramicroscopy,2012,114(1):11-19
    [6]李鹏飞.高角度环形暗场Z衬度成像原理及方法[J].兵器材料科学与工程,2002,25(4):44-47
    [7]GB/T 228-2002,金属材料室温拉伸试验方法[S].北京,国家技术监督局,2002
    [1]袁家伟,张奎,李婷,等.Mg-4Zn-1Mn镁合金均匀化热处理及导热率研究[J].材料热处理学报,2012,33(4):27-32
    [2]艾秀兰,杨军,权高峰.AZ31镁合金铸坯均匀化退火[J].金属热处理,2009,34(12):23-26
    [3]彭建,樊世波,宋成猛.固溶处理刘Mg-2.0%Zn-0.7Mn%合金热变形过程及变形组织的影响[J].热力工工艺,2009,38(14):8-11
    [4]段红玲.ZM61镁合金均匀化与热变形行为的研究[D].重庆,重庆大学,2008
    [5]李永军,张奎,李兴刚,等.Mg-Y-Nd-Zr合金均匀化处理工艺及微观组织的研究 [J].稀有金属,2008,32(6):679-683
    [6]马志新,张家振,李德富,等.铸态Mg-Gd-Y-Zr(?)美合金均匀化工艺研究[J].特种铸造及有色合金.2007,27(9):659-662
    [7]Engler O.. Influence of Particles Stimulated Nucleation on the Recrystallization Textures in Cold Deformed Al-Alloys[J]. Scripta Materialia,1997,37(11):1675-1683
    [8]Habiby F., Humphreys F.J.. The Effect of Particles Stimulated Nucleation on the Recrystallization Texture of an Al-Si Alloy[J]. Scripta Metallurgica and Materialia, 1994,30(6):787-790
    [9]Goetz R.L.. Particle Stimulated Nucleation during Dynamic Recrystallization using a Cellular Automata Model[J]. Scripta Materialia,2005,52(9):851-856
    [10]刘楚明,刘子娟,朱秀荣,等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-11
    [11][11]王斌,易丹青,方西亚,等.ZK60镁合金高温动态再结晶行为的研究[J].材料工程,2009,9(11):45-50
    [12][Ion S.E., Humphreys F.J., White S.H.. Dynamic Recrystallisation and the Development of Microstructure during the High Temperature Deformation of Magnesium[J]. Acta Metallurgica,1982,30(10):1909-1919
    [13]Ponge D., Gottstein G.. Necklace Formation during Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior[J]. Acta Materialia,1997,46(1):69-80
    [14]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002:16-69
    [15]Friedrich H.E., Mordike B.L.. Magnesium Technology[M]. Berlin:Springer-Verlag, 2006:20-24
    [16]李德辉.Mg-Dy-Nd-(Gd)系合金组织与性能研究[D].上海,上海交通大学,2007
    [17]Cliff G., Powell D.J., Pilkington R., et al. X-ray Microanalysis of Second Phase Particles in Thin Foils[A]. Electron microscopy and analysis[C]. Bristol:Institute of Physics,1983:63-66
    [18]Apps P. J., Karimzadeh H., King J. F., et al. Phase Composition in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium[J], Scripta Materialia, 2003,48(5):475-481
    [19]晋勇,孙小松,薛纪.X射线衍射分析技术[M].北京:国防工业出版社,2008: 121-135
    [20]查利R.布鲁克斯.阿肖克 考霍莱.工程材料的失效分析[M].北京:机械工业出版社,2003:112-115
    [21]Engler O.. Influence of Particles Stimulated Nucleation on the Recrystallization Textures in Cold Deformed Al-Alloys[J]. Scripta Materialia,1997.37(11):1675-1683
    [22]Habiby F., Humphreys F.J.. The Effect of Particles Stimulated Nucleation on the Recrystallization Texture of an Al-Si Alloy[J]. Scripta Metallurgica and Materialia, 1994,30(6):787-790
    [23]Humphreys F.J., Hatherly M.. Recrystallization and Related Annealing Phenomena (Second Edition)[M], Oxford:Pergamon,2004
    [24]夏祥生.多向锻造FW75合金组织及力学性能研究[D].北京:北京有色金属研究总院.2012
    [1]Vostry P., Smola B., Stulikova I., et al. Microstructurc Evolution in Isochronally Heat Treated Mg-Gd Alloys[J]. Physica Status Solidi A,2002,175(2):491-500
    [2]Zheng K.Y., Dong J., Zeng X.Q., et al. Effect of Precipitation Aging on the Fracture Behavior of Mg-11Gd-2Nd-0.4Zr Cast Alloy[J]. Matetials Characterization.2008, 59(7):857-862
    [3]Gao X., He S.M., Zeng X.Q., et al. Microstructure Evolution in a Mg-15Gd-0.5Zr (wt.%) Alloy during Isothermal Aging at 250℃[J]. Materials Science and Engineering A,2006,431(1-2):322-327
    [4]Hossein K.. The Microstructure and Mechanical Properties of Some Magnesium Alloys Containing Yttrium and Heavy Rare Earth[D]. Department of Metallurgy University of Manchester, Manchester:1985
    [5]Nie J.F., Muddle B.C.. Characterisation of Strengthening Precipitate Phases in a Mg-Y-Nd Alloy[J]. Acta Materialia,2000,48(8):1691-1703
    [6]Liang S.Q., Guan D.K., Tan X.P., et al. Effect of Isothermal Aging on the Microstructure and Properties of As-cast Mg-Gd-Y-Zr Alloy [J]. Materials Science and EngineeringA,2011,528(3):1589-1595
    [7]He S.M.. Zeng X.Q., Peng L.M., et al. Precipitation in a Mg-10Gd-3Y-0.4Zr(wt.%) Alloy during Isothermal Aging at 250℃[J]. Journal of Alloys and Compounds,2006, 421(1-2):309-313.
    [8]Gao X., He S.M., Zeng X.Q., et al. Microstructure Evolution in a Mg-15Gd-0.5Zr (wt.%) Alloy during Isothermal Aging at 250℃[J]. Materials Science and Engineering A,2006,431(1-2):322-327
    [9]Gao Y., Wang Q.D., Gu J.H., et al. Behavior of Mg-15Gd-5Y-0.5Zr Alloy during Solution Heat Treatment from 500 to 540℃[J]. Materials Science and Engineering A, 2007,459(1-2):117-123
    [10]Robb P. D., Finnie M., Craven A. J.. Modelling of AlAs/GaAs Interfacial Structures using High-angle Annular Dark Field (HAADF) Image Simulations[J]. Ultramicroscopy,2012,118(1):53-60
    [11]Kauko H., Grieb T., Bjorge R., et al. Compositional Characterization of GaAs/GaAsSb Nanowires by Quantitative HAADF-STEM[J]. Microscopy,2013,44:254-260
    [12]李鹏飞.高角度环形暗场Z衬度像成像原理及方法[J].兵器材料科学与工程,2002,25(4):44-47
    [13]Zhu Y., Niewczas M., Couillard M., et al. Single Atomic Layer Detection of Ca and Defect Characterization of Bi-2212 with EELS in HA-ADF STEM[J], Ultramicroscopy,2006,106(11-12):1076-1081
    [14]Robb P.D.. Experimental Evaluation of Interfaces Using Atomic-Resolution High Annular Dark Field(HAADF) Imaging[J]. Ultramicroscopy,2012,114:11-19
    [15]Grillo V., Rossib F.. A New Insight on Crystalline Strain and Defect Features by STEM-ADF Imaging[J]. Journal of Crystal Growth,2011,318(4):1151-1156
    [16]Honma T., Ohkubob T., Hono K., et al. Chemistry of Nanoscale Precipitates in Mg-2.1Gd-0.6Y-0.2Zr (at.%) Alloy Investigated by the Atom Probe Technique[J]. Materials Science and Engineering A,2005,395(1-2):301-306
    [17]Nishijima M., Hiraga K., Yamasaki M., et al. Characterization of Phase Precipitates in an Mg-5at%Gd Alloy Aged in a Peak Hardness Condition, Studied by High-angle annular Detector Dark-Field Scanning Transmission Electron Microscopy [J]. Materials Transactions,2006,47(8):2109-2112
    [18]Nishijima M., Yubuta K., Hiraga K.. Characterization of Phase Precipitate Phase in Mg-2at%Y Alloy Aged to Peak Hardness Condition by High-Angle Annular Detector Dark-Field Scanning Transmission Electron Microscopy|JJ. Materials Transactions, 2007,48(1): 84-87
    [19]Saito K., Yasuhara A.. Nishijima ML et al. Structural Changes of Precipitates by Aging of an Mg-4 at%Dy Solid Solution Studied by Atomic-Scaled Transmission Electron Microscopy[J]. Materials Transactions, 2011, 52(5): 1009-1015
    [20]Buha J.. Reduced Temperature (22-100°C)Ageing of an Mg-Zn Alloy[J], Materials Science and Engineering A, 2008, 492(1-2): 11-19
    [21]Braszczynska-Malik K.N.. Discontinuous and Continuous Precipitation in Magnesium-Aluminium Type Alloys[J], Journal of Alloys and Compounds, 2009, 477(1-2): 870-876
    [22]Karimzadeh H.. The Microstructure and Mechanical Properties of Some Magnesium Alloys containing Yttrium and Heavy Rare EarthfDl, Department of Metallurgy University of Manchester, Manchester: 1985
    [23]Gao X., He S.M., Zeng X.Q., et al. Microstructure Evolution in a Mg-15Gd-0.5Zr (wt.%) Alloy during Isothermal Aging at 250℃. Materials Science and Engineering A, 2006,431(1-2): 322-327
    [24]Nie J.F., Muddle B.C.. Characterisation of Strengthening Precipitate Phases in a Mg-Y-Nd Alloy[J]. Acta Materialia, 2000,48(8): 1691-1703
    [25]Li Z.C., Zhang H., Liu L., et al. Growth and Morphology of β Phase in an Mg-Y-Nd Alloy[J]. Materials Letters, 2004, 58(24): 3021-3024
    [26]Nie J.F., Muddle B.C.. Precipitation in Magnesium Alloy WE54 during Isothermal Ageing at 250℃. Scripta Materialia, 1999,40(10): 1089-1094
    [27]Cliff G., Powell D.J., Pilkington R., et al. X-ray Microanalysis of Second Phase Particles in Thin Foils[A]. Electron microscopy and analysis[C]. Bristol: Institute of Physics, 1983:63-66
    [28]Apps P. J., Karimzadeh H., King J. F., et al. Phase Composition in Magnesium-rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium[J]. Scripta Materialia, 2003,48(5): 475-481
    [29]宋维锡.金属学[M].北京:冶余工业出版社,2000:244-246
    [30]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998:589-593
    [31]Nie J.F.. Effects of Precipitate Shape and Orientation on Dispersion Strengthening in Magnesium Alloys[J]. Scripta Materialia,2003,48(8):1009-1015
    [1]陈振华.耐热镁合金[M].北京:化学工业出版社,2007:15-50
    [2]马鸣龙.Mg-Y-MM-Zr合金组织及性能研究[D].北京:北京有色金属研究总院,2010
    [3]陈彬.高强度Mg-Y-Zn(?)美合金的研究[D].上海:上海交通大学,2007
    [4]Jonas J.J., Sellars C.M., Tegart M.W.J.. Strength and Structure under Hot Working Conditions[J]. International Metallurgical Reviews,1969,14(130):1-24
    [5]Semiatin S.L., Jonas J.J.. Formability and Workability of Metals-Plastic Instability Flow Localization[M]. Ohio:ASM Park,1984
    [6]Sheppard T., Parson N.C., Zaidi M.A.. Dynamic Recrystallization in Al-7Mg[J]. Metal Science,1983,17(10):481-490
    [7]Zener C., Hollomon J.H.. Effect of Strain Rate upon the Plastic Flow of Steel[J]. Journal of Applied Physics,1944,15(1):22-32
    [8]Fatemi-Varzaneh S.M., Zarei-Hanzaki A., Beladi H.. Dynamic Recrystallization in AZ31 Magnesium Alloy[J]. Materials Science and Engineering A,2007,456(1-2): 52-57
    [9]Liu J., Cui Z.S., Li C.X.. Modelling of Flow Stress characterizing Dynamic Recrystallization for Magnesium Alloy AZ31B[J]. Computational Materials Science, 2008,41(3):375-382
    [10]Xu S.W., Kamado S., Matsumoto N., et al. Recrystallization meChanism of As-cast AZ91 Magnesium Alloy duringhot Compressive Deformation[J]. Materials Science and Engineering A, 2009, 527(1-2): 52-60
    [11]Takuda H., Fujimoto H., Hatta N.. Modelling on Flow Stress of Mg-Al-Zn Alloys at Elevated Temperatures[J]. Journal of Materials Processing Technology. 1998, 80-81(1):513-516
    [12]Shimizu I.. Theories and Applicability of Grain Size Piezometers: The Role of Dynamic Recrystallization Mechanisms[J]. Journal of Structural Geology, 2008, 30(7): 899-917
    [13]Yang Z., Li J.P., Zhang J.X., et al. Effect of Homogenization on the Hot-deformation Ability and Dynamic Recrystallization of Mg-9Gd-3Y-0.5Zr Alloy[J]. Materials Science and Engineering A, 2009, 515(1-2): 102-107
    [14]Zeng Z.Y., Chen L.Q., Zhu F.X., et al. Dynamic Recrystallization Behavior of a Heat-resistant Martensitic Stainless Steel 403Nb during Hot Deformation. Journal of material science and technology[J]. 2011. 27(10): 913-919
    [15]Liu J., Cui Z., Ruan L.. A New Kinetics Model of Dynamic Recrystallization for Magnesium Alloy AZ31B[J]. Materials Science and Engineering A, 2011, 529(25): 300-310
    [16]Quan G.Z., Mao Y.P., Li G.S., et al. A Characterization for the Dynamic Recrystallization Kinetics of as-Extruded 7075 Aluminum Alloy Based on True Stress-Strain Curves[J]. Computational Materials Science, 2012, 55: 65-72
    [17]Yue C.X., Zhang L.W., Liao S.L., et al. Research on the Dynamic Recrystallization Behavior of GCrl5 Steel[J]. Materials Science and Engineering A, 2009, 499(1-2): 177-181
    [18]Dehghan-Manshadi A., Barnett M.R., Hodgson P.D.. Recrystallization in AISI 304 Austenitic Stainless Steel during and after Hot Deformation[J]. Materials Science and Engineering A, 2008.485(1-2): 664-672
    [19]Fan X.G., Yang H., Sun Z.C., et al. Quantitative Analysis of Dynamic Recrystallization Behavior using a Grain Boundary Evolution based Kinetic Model[J]. Materials Science and Engineering A, 2010, 527(21-22): 5368-5377
    [20]Quan G.Z., Li G.S., Chen T., et al. Dynamic Recrystallization Kinetics of 42CrMo Steel during compRession at Different Temperatures and Strain Rates[J]. Materials Science and Engineering A,2011,528(13-14):4643-4651
    [21]Barraclough D.R., Sellars C.M.. Static Recrystallizaiton and Restoration after Hot Deformation of Type 304 Stainless Steel[J]. Metal Science,1979,13(3-4):257-267
    [22]Beer A.G., Barnett M.R.. The Post-Deformation Recrystallization Behavior of Magnesium Alloy Mg-3Al-1Zn[J]. Scripta Materialia,2009,61(12):1097-1100
    [23]Galiyev A., Kaibyshev R., Gottstein G.. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60[J]. Acta materialia.2001,49(7): 1199-1207
    [24]Ponge D., Gottstein G.. Necklace Formation during Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior[J]. Acta Materialia,1997,46(1):69-80
    [25]Zhu K.Y., Chaubet D., Bacroix B., et al. A study of Recovery and Primary Recrystallization Mechanisms in a Zr-2Hf Alloy[J]. Acta Materialia,2005,53(19): 5131-5140
    [26]Murat T., John C., James T. S.. Evaluating Structural Integrity of Cast Al-7%Si-Mg Alloys via Work Hardening Characteristics[J]. Materials Science and Engineering A, 2004,368(1-2):205-211
    [27]Barnett M.R., Sullivan A., Stanford N., et al. Texture Selection Mechanisms in Uniaxially Extruded Magnesium Alloys[J]. Scripta Materialia,2010,63(7):721-724
    [28]Myshlyae M.M., Mcqueen H.J., Mwembela A., et al. Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy[J]. Materials Science and Engineering A,2002,337(1-2):121-133
    [29]Al-Samman T., Konstantin D., Molodov A., et al. Softening and Dynamic Recrystallization in Magnesium Single Crystals during c-axis Compression[J]. Acta Materialia,2012,60(2):537-545
    [30]Troeger L.P., Starke E.A.. Particle-stimulated Nucleation of Recrystallization for Grain-size, Control and Superplasticity in an Al-Mg-Si-Cu Alloy[J]. Materials Science and Engineering A,2000,293(1-2):19-29
    [31]Ion S.E., Humphreys F.J., White S.H.. Dynamic Recrystallisation and the Development of Microstructure during the High Temperature Deformation of Magnesium[J]. Acta Metallurgica,1982,30(10):1909-1919
    [32]Gourdet S, Montheillet F.. An Experimental Study of the Recrystallization Mechanism during Hot Deformation of Aluminium[J]. Materials Science and Engineering A, 2000, 283(1-2): 274
    [33]Gourdet S., Montheillet F.. A Model of Continuous Dynamic Recrystallization[J|. Acta Materialia, 2003, 51(9): 2685-2699
    [34]Jazaeri H., Humphreys F.J.. The Transition from Discontinuous to Continuous Recrystallization in Some Aluminium Alloys: Il-Annealing Behavior[J]. Acta Materialia, 2004, 52(11), 3251-3262
    [35]Gholinia A., Humphreys F.J., Prangnell P.B.. Production of Ultra-fine Grain Microstructures in Al-Mg Alloys by Coventional Rolling[J]. Acta Materialia. 2002, 50(18): 4461-4476
    [36]A1-Samman T., Gottstein G.. Dynamic Recrystallization during High Temperature Deformation of Magnesium[J]. Materials Science and Engineering A, 2008, 490(1-2): 411-420
    [37]Wu H., Yang J.C., Liao J.H., et al. Dynamic Behavior of Extruded AZ61 Mg Alloy during Hot Compression[J]. Materials Science and Engineering A, 2012, 535: 68-75
    [38]Gao L., Luo A.. Hot Deformation Behavior of As-cast Mg-Zn-Mn-Ce Alloy in Compression[J]. Materials Science and Engineering A. 2013, 560(1-2): 492-499
    [39]Tan J.C., Tan M.J.. Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg-3Al-lZn Alloy Sheet[J]. Materials Science and Engineering A, 2003, 339(1-2): 121-132
    [40]Sitdikov O., Kaibyshev R.. Dynamic Recrystallization in Pure Magnesium[J], 2001, Materials Transactions, 2001,42(9): 1928-1937
    [41]Zhang Y., Zeng X. Q., Lu C, et al. Deformation Behavior and Dynamic Recrystallization of a Mg-Zn-Y-Zr alloy[J]. Materials Science and Engineering A, 2006,428(1-2): 91-97
    [1]Salishchev G. A., Valiakhmetov O. R.. Formation of Submicrocrystalline Structure in the Titanium AlloyVT8 and Its Influence on Mechanical Properties[J]. Journal of Materials Science,1993,28(11):2898-2902
    [2]郭强,严红革,陈振华,等.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J].金属学报,2006,42(7):739-744
    [3]简炜炜,康志新,李元元.多向锻造ME20M镁合金的组织演化与力学性能[J].中国有色金属学报,2008,18(6):1005-1011
    [4]任政,张兴国,庞磊,等.多向锻造对变形镁合金AZ31组织和力学性能的影响[J].塑性工程学报,2009,16(6):23-28
    [5]Sitdikov O., Sakai T., Goloborodko A., et al. Grain Fragmentation in a Coarse-grained 7475 Al Alloy during Hot Deformation|JJ. Scripta Materialia, 2004. 51(2): 175-179
    [6]Somjeet B.. Satyam S.. Evolution of Sub-micron Grain Size and Weak Texture in Magnesium Alloy Mg-3Al-0.4Mn by a Modified Multi-axial Forging[J]. Scripta Materialia, 2012.66(2): 89-92
    [7]Barnett M.R., Nave M.D.. Bettles C.J.. Deformation Microstructures and Textures of Some Cold Rolled Mg Alloys[J]. Materials Science and Engineering A, 2004, 386(1-2): 205-211
    [8]Barnett M.R., Nave M.D., Bettles C.J.. Deformation Microstructures and Textures of Some Cold Rolled Mg Alloys[J]. Materials Science and Engineering A, 2004, 386(1-2):205-211
    [9]Yi S.B., Davies C.H.J., Brokmeier H.G., et al. Deformation and Texture Evolution in AZ31 Magnesium Alloy during Uniaxial I,oading[JJ. Acta Materialia, 2006, 54(2): 549-562
    [10]毛卫民,杨平,陈冷.材料织构分析原理与检测技术[M].北京:冶金工业出版社,2008:130-131
    [11]Peng T., Wang Q.D., Lin J.B., et al. Microstructure and Enhanced Mechanical Properties of an Mg-10Gd-2Y-0.5Zr Alloy Processed by Cyclic Extrusion and Compression[J]. Materials Science and Engineering A, 2011, 528(3): 1143-1148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700