水产养殖废水的植物—微生物联合修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以富含氮、磷、有机物的水产养殖废水为研究对象,以广东省惠州市某淡水养殖基地为试验地,在华南地区亚热带气候条件下,从植物修复、微生物修复、植物-微生物联合修复三个方面,研究比较了凤眼莲、轮叶黑藻、香根草和蕹菜四种水生植物及6株由本实验室筛选并证明在实验室条件下有净化水质功能的菌株对废水的净化效果,给出实际鱼塘水体修复的植物搭配种植模式,初步了解了植物-微生物联合修复效果和机理,以期为治理珠三角地区水产养殖废水污染,构建有针对性的生物修复工程提供数据支持。研究结论如下:
     (1)单种植物的净水效果:凤眼莲、轮叶黑藻、香根草和蕹菜均有良好的净化水产养殖废水的功能,其中凤眼莲的综合净化能力最强,一个月内TP平均去除率为95%,显著高于其他各组,TN、COD、氨氮、亚硝酸盐氮和硝酸盐氮的去除率分别达到84%、88%、94%、92%、85%。蕹菜对水质检测项目中氨氮的去除效果最好,且在夏季气候条件下,一个月内鲜重净增113%,去污的同时获得经济收入。此二者是夏季净化废水时的首选。
     (2)植物组合体系的净水效果:植物搭配的总体净水效果为:凤眼莲+轮叶黑藻>凤眼莲+轮叶黑藻+蕹菜>凤眼莲+蕹菜、轮叶黑藻+蕹菜。凤眼莲和轮叶黑藻搭配对水产养殖废水的净化效果最好。氨氮去除93%,总氮81%,总磷83%,COD74%,总磷去除率显著高于其他各组。试验过程中凤眼莲、轮叶黑藻和蕹菜均生长良好,三种植物间没有表现出明显的抑制效果。
     (3)微生物的净水效果:由本实验室筛选出的亚硝化菌A、氨化菌M、硝化菌G、反硝化菌R、聚磷菌C和降COD的菌F组成的复合微生物净水菌剂AMGR和AMGRCF,在实际应用中发挥较强的净水功能。和空白对照组相比,AMGR和AMGRCF对总磷和氨氮的去除效果显著,一个月内总磷平均去除率分别为32.76%、23.83%,氨氮去除率分别为74.54%、67.28%,总氮去除率AMGR(37.29%)显著高于AMGRCF(29.43%),COD的去除率AMGRCF最高(44.92%),AMGR次之(41.39%)。
     (4)植物与微生物的联合净水效果:和单独植物、微生物菌剂的净化作用相比,植物-微生物联合修复体系的效果更强。凤眼莲-轮叶黑藻-AMGRCF的试验中氨氮的去除率,植微组(92.92%)显著高于微生物组(85.38%);TN、TP的去除率都是植微组(62.27%、71.82%)和植物组(67.02%、71.56%)显著高于微生物组(38.47%、20.74%)。通过植物、微生物、植物与微生物的组合净水效果的研究显示,凤眼莲和脱氮菌剂AMRG共同作用于水产养殖废水时对水体的除氮效果最好,其次是植物组,复合菌剂AMRG排第三。该组合TN、氨氮和亚硝酸盐氮的去除率分别达到70.26%、81.46%和94.92%,TN去除率显著高于复合菌液AMRG。
     (5)机理初探:凤眼莲-AMRG联合修复水体时,亚硝化菌A和氨化菌M能够大量稳定的存在于水产养殖废水中,通过自身降解代谢作用修复水体。A、M和硝化菌G附着在了凤眼莲的根部,成为根表优势菌,通过和凤眼莲根系的联合作用共同修复水体。凤眼莲对细菌的根际效应值的增长变化和水体氨氮去除率的变化相关,水体细菌数的变化与TN去除率相关。
     (6)中试研究:秋季气候条件下,凤眼莲和轮叶黑藻搭配起来,通过分割区域、控制生长面积式的种植模式进行鱼塘原位修复,使有机质丰富、气味难闻的劣Ⅴ类鱼塘水质大大改善,TN由11.29mg/L降低到1.55mg/L(地表Ⅳ类水),TP由6.22mg/L降低到0.29mg/L(地表Ⅳ类水),COD由101.22mg/L降低到31.67mg/L(地表Ⅳ类水),氨氮由7.21mg/L降低到0.98mg/L(地表Ⅲ类水),DO从1.96mg/L上升到4.99mg/L(地表Ⅲ类水),透明度从0.12m提高到0.38m,并且随着水质的改善,池内罗非鱼生长良好,35天内平均增重94.84g。该植物搭配种植模式在实际应用中起到了养水肥鱼的作用。
In this paper,wastewater aquaculture which rich in nitrogen,phosphorus,and organic matter were restored by aquatic plants,microbes and their coalition in sub-tropical climatic conditions in south of China.Eichhornia crassipes,Hydrilla verticillata,Vetiveria zizanioides,Ipomoea aquatia and 6 microbes were compared on their removal efficiencies of waste water, a fish pond restoration mode with phytoremediation was given,meanwhile effect and mechanism of phyto-microbial restoration of aquacultural wastewater was preliminarily studied. The purpose of the article is to provide datas support of building biological restoration project to restore waste water pollution in Pearl River Delta.This is following conclusions:
     (1)Eichhornia crassipes,Hydrilla verticillata,Vetiveria zizanioides and Ipomoea aquatia had good water purification function,especially the integrated effect of Eichhornia crassipes is the best,whose average removal rate of TP,TN,COD,NH_4~+-N,NO_2~--N and NO_3~--N was 95%,84%,88%,94%,92% and 85%,TP removal rate significantly higher than other groups.Ipomoea aquatia was apt to remove ammonia nitrogen,as long as the appropriate season,it wound be able to grow fast,increase 113% fresh weight within one month,so these two plants were the first choice of purification in summer.
     (2)The overall purification effect of plants combination is:Eichhornia crassipes+Hydrilla verticillata > Eichhornia crassipes+Hydrilla verticillata+Ipomoea aquatia > Eichhornia crassipes+Ipomoea aquatia,Hydrilla verticillata+Ipomoea aquatia.The integrated effect of the first group is the best,whose average removal rate of NH_4~+-N,TN, TP,COD was 93%,81%,83%,74%,TP removal rate significantly higher than other groups.No significant inhibitory effect is proved by good growing of these three plants.
     (3)AMRG and AMRGCF was effectual in the practical application,given appropriate conditions could make sue their function.Compared with the control group,removal of AMRG and AMRGCF was significant.TP average removal were 32.76%,23.83%,ammonia nitrogen average removal were74.54%,67.28%,TN average removal of AMGR(37.29%)were significantly higher than AMRGCF(29.43%).AMGRCF was the best and AMRG was the second on COD average removal.
     (4)Compared with phytoremediation and bioremediation,plants-microbial bioremediation system was more effective.When Eichhornia crassipes,Hydrilla verticillata and microbes AMGRCF were combined,ammonia nitrogen removal of plants- microbes group(92.92%)was significantly higher than microbes group(85.38 % );TN,TP removal of plants-microbes group(62.27%,71.82%)and plants group(67.02%,71.56%)was significantly higher than microbes group(38.47 % ,20.74 % ).When Eichhornia crassipes and AMGRCF were combined,water nitrogen removal achieved the best results(TN70.26%,NH_4~+-N 81.46%, NO_2~--N 94.92%) followed by plants group, microbes AMRGCF was the third.
     (5)When Eichhornia crassipes and microbes AMRG were combined,AMRG made an important contribution to removal of TN and ammonia from fishery wastewater because of their exist in the warter and alliance with descending axis of Eichhornia crassipes,such as large nitrosobacteria A,ammonifiers M stabilitily exist in the aquaculture wastewater,large A,M and nitrobacteria G attached to the roots of Eichhornia crassipes.R/S of Eichhornia crassipes on the bacteria was related to ammonia nitrogen removal, changes in the number of bacteria in water was related to TN removal.
     (6)When Eichhornia crassipes and Hydrilla verticillata was applied to fish pond in Autumn with partition and controlled growth area mode,inferior classⅤpond water,which was smelling and rich in organic matter was greatly improved,TN was decreased from 11.29 mg/L to 1.55 mg/L(Ⅳtype),TP was from 6.22 mg/L to 0.29 mg/L(Ⅳtype),COD was from 101.22 mg/L to 31.67mg /L(Ⅳtype),ammonia nitrogen was from 7.21mg /L to 0.98mg /L(Ⅲtype),DO increased from 1.96mg/L to 4.99mg/L(Ⅲtype),transparency increased from 0.12m to 0.38m.The average weight of Tilapia in this pond gained 94.84g with the improvement of water quality.
引文
[1]安鑫龙,李婷.凤眼莲的生态特征[J].水利渔业,2007,27(4):82~84.
    [2]卞云斌,汪东冬.微生物制剂与水生植物对养殖水质的协同净化作用[J].渔业现代化,2007,34(4):16~18.
    [3]陈怀满.香根草净化富养水体的初步试验.见:国际香根草研讨会论文集.1997,10.
    [4]陈家长,简纪常,胡庚东,等.利用有益微生物改善养殖生态环境的研究[J].湛江海洋大学学报,2002,22(4):33~36.
    [5]陈家长,胡庚东,吴伟,等.有益微生物在中华绒螯蟹养殖中应用的研究[J].上海水产大学学报,2003,12(3):271~273.
    [6]程晓燕,李文军,王芸,等.新疆野生胀果甘草内生细菌多样性的非培养初步分析[J].微生物学报,2009,49(6):718~725.
    [7]陈博谦,尹澄清.污水净化湿地模拟系统中细菌和藻类的生态分布研究[J].生态学报,1998,18(6):634~639.
    [8]陈声明,张立钦,微生物学研究技术[M].2006:209-213.
    [9]邓延陆.新农村环境保护读本[M].湖南:湖南教育出版社,2008,57~59.
    [10]丁义.生物修复技术在水产养殖中的应用[J].水产科技情报,2007,34(3):135~144.
    [11]杜连祥,路福平,微生物学实验技术[M].北京:中国轻工业出版社,2006,349~355.
    [12]冯俊荣,陈营,付学军,等.微生态制剂对养殖水体水质条件的影响[J].海洋湖沼通报,2005,4:104~108.
    [13]付融冰,杨海真,顾国维,等.人工湿地基质微生物状况与净化效果相关分析[J].环境科学研究,2005,18(6):44~49.
    [14]广东省海洋与渔业局.三十年改革开放广东渔业实现质的飞跃[J].中国水产,2008,12:17~22.
    [15]宫曼丽,任南琪,邢德峰.DGGE/TGGE技术及其在微生物分子生态学中的应用[J].微生物学报, 2006,44(6):485-488.
    [16]国家环境保护总局.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002.
    [17]高光.伊乐藻.轮叶黑藻净化养鱼污水效果试验[J].湖泊科学,1996,8(2):184~188.
    [18]何义进,邢华,黄珏.噬菌蛭弧菌防治鱼类细菌性疾病的应用研究[J].水产科技情报,1996,23(5):220~224.
    [19]何昌云,曲亚斌,戴昌方.广东省农村生活饮用水卫生状况调查[J].华南预防医学,2006,32(6):15~18.
    [20]黄立南,蓝崇钰.湿地处理污水的研究[J].生态科学,1996,15(2):117~120.
    [21]黄辉,赵浩,饶群,等.浮萍与水花生净N、P污染性能比较[J].环境科学与技术,2007,30(4):16~18.
    [22]蒋艾青.凤眼莲对城郊污水鱼塘的净化试验[J].淡水渔业,2003,33(5):43~44.
    [23]江云飞,蔡柏岩.PCR-DGGE技术在细菌多样性研究中的条件优化[J].生物技术,2009,19(5).
    [24]江兴龙,关瑞章,刘爱原.论我国水产养殖业的发展方向[J].中国水产,2008,51(1):19-20.
    [25]康贻军,程洁,梅丽娟,等.植物根际促生菌的筛选及鉴定[J].微生物学报,2010,50(7):853~861.
    [26]刘建康主编.高级水生生物学[M].北京:科学出版社,199l.
    [27]罗海峰,齐鸿雁,薛凯,等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8).
    [28]李文朝.富营养水体中常绿水生植被组建及净化效果研究[J].中国环境科学,1997,17(1):53~57.
    [29]李秀萍,阿力木江,吾甫尔·米吉提.一株具有抗菌活性的水浮莲内生放线菌的鉴定[J].新疆农业科学,2010,47(7):1370~1375.
    [30]林连升,岳春梅,缪为民.轮叶黑藻及其在水产养殖上的利用[J].水利渔业,2005,25(5):33~34.
    [31]李彬,彭秀,耿养会,等.香根草应用研究现状及前景分析[J].江苏林业科技,2009,36(5):46~50.
    [32]李淑英,周元清,胡承,等.水生植物组合后根际微生物及水净化研究[J].环境科学与技术,2010,33(3):148~153.
    [33]李秋芬,张艳,王印庚.复合有益菌剂对工厂化大菱鲆育苗水净化效果研究[J].水产学报,2006,30(6):852~856.
    [34]刘士哲,林东教,何嘉文,等.猪场污水漂浮栽培植物修复系统的组成及净化效果研究[J].华南农业大学学报,2005,1(26):46~49.
    [35]刘治华.重污染湖泊沉水植被重建的生理生态研究[刘治华硕士学位论文].武汉:华中师范大学,2006.
    [36]刘灵芝,陈志刚,陈玉玲.污水净化过程中凤眼莲根区微生物的变化[J].安徽农业科,2007,35(2):510~511.
    [37]梁威,吴振斌,成水平,等.构建湿地基质微生物与净化效果及相关分析[J].中国环境科学,2002,22(3):282~285.
    [38]娄敏廖,柏寒,刘红玉,等.3种水生漂浮植物处理富营养化水体的研究[J].中国生态农业学报,2005,13(3):94~95.
    [39]苗卫卫,江敏.我国水产养殖对环境的影响及其可持续发展[J].农业环境科学学报,2007,(B03):319~323.
    [40]任保振,王广军.应用有益微生物改善温室养鳌池水质的研究[J].水产科技情报,2002,29(1):27~30.
    [41]苏永华.广东渔业可持续发展的探讨[J].中国渔业经济,2002,4:19~20.
    [42]沈萍,范秀容.《微生物学实验》(第三版)[M].北京:高等教育出版社,1999年.
    [43]宋巍,安德荣,刘雪,等.DGGE分析东江流域农村饮用水源中微生物多样性及其与环境因子相关性[J].微生物学通报,2009,9:1311~1317.
    [44]孙晓棠,王燕,龙良鲲,等.番茄根际微生物种群动态变化及多样性[J].微生物学通报2008,35(11):1744~1749.
    [45]特约评论员.全国政协委员呼吁尽快治理农业面源污染[N].人民政协报,2004-04-05.
    [46]屠晓翠,蔡妙珍,孙建国.大型水生植物对污染水体的净化作用和机理[J].安徽农业科学,2006,34(12):2843~2844.
    [47]王占生,刘文君.污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [48]王和蔼.水生生物学[M].北京:中国农业出版社,2002.
    [49]王彦芹,席琳乔.棉花根际促生菌基因组DNA的提取及其鉴定[J].基因组学与应用生物学,2010,29(5).
    [50]王开真,肖崇刚,孔德英,等.番茄根区优势菌及青枯拮抗细菌的动态变化[J].西南农业大学学报(自然科学版),2005,27(2):169~172.
    [51]文媛,冯子元,韦世文.香根草的广泛用途及其项目开发价值[J].大众科技,2008,7:133~135.
    [52]吴爱平,吴世凯,倪乐意.长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系[J].水生生物学报,2005,29(4):406~412.
    [53]吴伟,余晓丽,李咏梅,等.诺卡氏菌与假丝酵母的跨界融合及对退化养殖生态的修复[J].水产学报,2002,26(1):35~41.
    [54]王广军,任保振.应用有益微生物对温室养鳌池水异养细菌和浮游生物的影响[J].河北渔业,2002,(1):9~11.
    [55]王玮,陈军,刘晃,等.中国水产养殖水体净化技术的发展概况[J].上海海洋大学学报,2010,19(1):41~49.
    [56]魏俊飞,吴家强,焦文娟.多环芳烃的毒性及其治理技术研究[J].污染防治技术,2008,21(3):65~69.
    [57]薛恒平,薛彦青.水产养殖同微生态与微生态之间关系初探[J].饲料工业,1997,18(2):23~26.
    [58]肖晶晶,朱昌雄,郭萍,等.氮循环菌群的构建鉴定及其脱氮性能研究[J].农业环境科学学报,2009,28(12):2680~2687.
    [59]杨航,黄钧,刘博.异养硝化-好氧反硝化菌Paracoccus pantotropHus ATCC35512的研究进展[J].应用与环境生物学报,2008,14(4):585~592.
    [60]余志敏,袁晓燕,施卫明.面源污染水治理的人工湿地治理技术[J].中国农学通报,2010,26(3):264~268.
    [61]由文辉,淑媛,钱晓燕.水生经济植物净化受污染水体研究[J].华东师范大学学报,自然科学版,2000,(1):99~102.
    [62]喻龙,龙江平.生物修复技术研究进展及在滨海湿地中的应用[J].海洋科学进展,2002,20(4):99~108.
    [63]姚重华.废水处理单元过程[M].北京:化学工业出版社,2001.
    [64]袁冬海,席北斗,王京刚,等.固定化微生物-水生生物强化系统在前置库示范工程中的应用[J].环境科学研究,2006,19(5):45~48.
    [65]周德庆.微生物学实验手册[M].上海:上海科学技术出版社,1986.
    [66]周巧红,王亚芬,吴振斌.人工湿地系统中微生物的研究进[J].环境科学与技术,2008,31(7):58~61.
    [67]周小娟,张日俊.PCR-DGGE技术在动物肠道微生态研究中的应用[J].中国微生态学杂志,2009,21(10).
    [68]郑耀通,胡开辉.固定化光合细菌净化养鱼水质试验[J].中国水产科学,1999,6(4):56~58.
    [69]张志剑,胡勤海,朱荫湄.农业面源污染与水体保护[J].杭州科技,1999,(6):23~24.
    [70]张庆费,陈红锋.植物修复环境香根草[J].园林,2010,(4):66~67.
    [71]张圣照,王国祥,淮培民.太湖藻型富营养化对水生高等植物的影响及植被的恢复[J].植物资源与环境,1998,7(4):52~57.
    [72]赵勇,周志华,李武等.土壤微生物分子生态学研究中总DNA的提取[J].农业环境科学学报,2005,24(5):854~860.
    [73]朱静平,程凯,宋宝增.水培吊兰污水净化系统中微生物数量与净化效果相关分析[J].水处理技术,2009,35(6):14~18.
    [74] Christine L,Oliver H,Michael H.Environmental factors regulating the radial oxygen loss from roots of MyriopHyllum spicatum and Potamogeton crispus[J].Aquatic botany,2006,84:333~340.
    [75] Jasti S,Sieracki ME,Poulton NJ.PHylogenetic diversity and specificity of bacteria closely associated with Alexandriun spp.and other pHytoplankton[J].Applied and Environmental Microbiology,2005,71(7):3483~3494.
    [76] Grommen R.,Hauteghem Van,Van W ambekeb M.et al.Animp roved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems[J].Aquaculture,2002, (211):115.
    [77] Haberl R,Perfler R,Mayer H.Constructed wetlands in Europe[J].Wat.Sci. Tech.,1995,32(3):306~315.
    [78] Mako Kawai,Eiichi Matsutera,Hisashi Kanda.16S ribosomal DNA-based analysis of bacterial diversity in purified water used in pHarmaceutical manufacturing processes by PCR and denaturing gradient gel electropHoresis[J].Applied and Environmental Microbiology,2002,68:699~704.
    [79] Muyzer G,De Waal EC,Uitterlinden AG.Profiling of complex microbial populations by denaturing gradient gel electropHoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA[J].Applied and Environmental Microbiology,1993,59:695~700.
    [80] MUYZER G, WAAL E C, UITTERLINDEN A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genesencodingfor16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59: 695~700.
    [81] Nelson S G,Glenn I P,Moore D,et al.Use of an edible seaweed to improve effluent from shrimp farms[J].Journal of PHycology,2001,37(s3):38~39.
    [82] Ovreas L,Bourne D,Sandaa RA.Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms[J].Aquat Microb Ecol,2003,31:109~121.
    [83] R.M.Gersberg,B.V.Elkins,S.R.Lyon.Role of aquatic plants in wastewater treatment by artificial wetlands[J].Water Research.1986,20(3):363~368.
    [84] Reddy K R,Patrick J W,Lindau C W.Nitrification denitrification at the plant root sediment interface in wetlands[J].Imnol oceanogr,1989,34:1004~1013.
    [85] S. Gifford,H. Dunstan,W. O'Connor.G.R. Macfarlane.Quantification of in situ nutrient and heavy metal remediation by a small pearl oyster (Pinctada imbricata) farm at Port StepHens[J].Australia.Marine Pollution Bulletin,2005, 50(4) :345-353
    [86] Steven W E,Drysdale G D,Bux F.Evaluation of nitrification by heterotropHic bacteria inbiological nutrient removal processes[J].South African Journal of Science,2002,98(5-6):222~224.
    [87] Thompson F.L.,Abreu P.C.,W asielesky W.Importance of biofilm for water quality and nourishment in intensive shrimp culture[J].Aquaculture,2002, (203):263~278.
    [88] Troell M,Ronnback P,Halling C,et al.Ecological engineering in aquaculture:some results from EU-project EU-MAC[J].Appl PHycol,1999,11:69~78.
    [89] Ter Braak CJF.Canonical correspondence analysis:a new eigenvector technique for multivariate direct gradient analysis[J].Ecol,2005,67:1167~179.
    [90] Yannarell AC,Triplett EW.GeograpHic and environmental sources of variation in lake bacterial community composition[J].Applied and Environmental Microbiology,2005,71(1):227~239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700