转Cry1Ac/sck基因糙米作为鲤鱼(Cyprinus carpio)日粮原料的安全性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以鲤鱼(Cyprinus carpio)为实验动物,利用转Cry1Ac/sck基因糙米制作饲料,以亲本糙米饲料作为对照,选取健康鲤鱼240尾,随机分为两组,即转基因糙米组和亲本糙米组,进行56d鲤鱼喂养实验,系统进行了转Cry1Ac/sck基因糙米对鲤鱼营养安全性、免疫安全性、肠道微生态安全性和外源基因表达蛋白在体内的残留情况的研究,以全面评价转Cry1Ac/sck基因糙米作为鲤鱼日粮原料的安全性。实验结果如下:
     1、糙米营养成分分析
     转Cry1Ac/sck基因糙米与亲本糙米相比,水分、粗蛋白、粗脂肪、粗灰分、粗纤维、无氮浸出物、氨基酸、钙和磷等的含量均无显著性差异。
     2、转Cry1Ac/sck基因糙米作为鲤鱼日粮原料的营养安全性评价
     在0-28d、29-56d及整个0-56d生长过程中,饲喂转Cry1Ac/sck基因糙米饲料的鲤鱼与亲本饲料组相比,其生长性能和肌肉粗蛋白、粗脂肪、粗灰分、氨基酸、钙和磷等组成成分的含量均无显著性差异。
     鲤鱼对转Cry1Ac/sck基因糙米日粮总能、干物质、粗蛋白、粗脂肪、粗灰分、氨基酸、钙及磷表观消化率指标与亲本糙米日粮相比均无显著差异。转Cry1Ac/sck基因糙米及亲本糙米的营养物质表观消化基本等同,未发现转Cry1Ac/sck基因糙米对鲤鱼消化机能造成任何显著的不良影响。
     饲喂转基因组糙米日粮组鲤鱼与亲本糙米日粮组相比,肝胰腺、脾脏、肾脏、前肠、中肠和后肠的器官指数指标均无显著差异;肝胰腺、脾脏和肾脏未见明显可见的病理变化,肠段绒毛长度和隐窝深度均无显著差异。结果表明转Cry1Ac/sck基因糙米对鲤鱼器官发育未造成任何显著的不良影响。
     3、转Cry1Ac/sck基因糙米作为鲤鱼日粮原料的免疫安全性评价
     在0-28d、29-56d及整个0-56d生长过程中,饲喂转基因饲料对鲤鱼的免疫器官指数、血液生理生化、血清溶菌酶活性、血清激素、血清抗氧化能力指标、免疫因子(TNFα,IL-1β,IFNγ,iNOS2a,IL-10和TLR5)等指标未见显著的不良影响。
     4、转Cry1Ac/sck基因糙米作为鲤鱼日粮原料对鲤鱼肠道微生物菌群的影响
     在0-28d、29-56d及整个0-56d生长过程中,饲喂转基因饲料对鲤鱼前肠、中肠、后肠内的大肠杆菌、乳酸杆菌和双歧杆菌菌群数量未见显著不良影响,不影响肠道菌群结构。
     5、转Cry1Ac/sck基因糙米Cry1Ac蛋白在鲤鱼肠道内的残留检测
     饲喂转基因糙米日粮与亲本糙米日粮的鲤鱼前肠、中肠和后肠的肠道内容物均未检测到Cry1Ac蛋白的存在,Cry1Ac外源蛋白在鲤鱼体内未见残留。
     本实验结果表明,在实验期内,鲤鱼生长良好,转Cry1Ac/sck基因糙米未对鲤鱼营养、免疫、肠道微生态产生明显可见的不良影响,在鲤鱼体内未检测到Cry1Ac蛋白残留。可见,实验期内转Cry1Ac/sck基因糙米作为鲤鱼日粮原料与亲本糙米具有实质性等同,未对鲤鱼产生显著的有害影响。
A 56 days feeding study was used to evaluate whether a carp diet prepared with brown rice derived from transgenic rice modified with Cry1Ac gene and sck gene had any unanticipated adverse effects on carp (Cyprinus carpio) as compared with diet prepared with brown rice derived from non-transgenic control rice. 240 healthy carps were divided into two treatment groups randomly, and each group was divided into four replicates, furthermore every replicate fed with 30 fish. The control group (86) fed with ordinary 86 brown rice diet, the test group (FM86) was fed transgenic brown rice diet. Effects of transgenic brown rice on nutritional safety, immunotoxicological safety, intestinal microflora were studie and Cry1Ac gene protein was detected in foregut, midgut and hindgut of carp.
     The test results were as follows:
     Experiment 1: The nutrient composition of the brown rice
     The content of Moisture, Crude protein, Crude fat, Ash, Crude fiber, Nitrogen-free-extract, Amino acid, Calcium and Phosphorus between non-transgenic control rice and transgenic rice had no statistic difference.
     Experiment 2: Nutritional safety assessment of rice genetically modified with Cry1Ac and sck by feeding studies on carp
     During the period of 0 to 28d, the period of 29 to 56d and the whole 0 to 56d period, no significant statistically differences in the growth performance and Muscle content were observed between carps reared on the diets prepared with transgenic brown rice or control rice.
     With 0.4% Cr2O3 as the exogenous indicator, the apparent digestibility of total energy, dry material, crude protein, crude fat, crude ash, amino acid, Calcium and Phosphorus between non-transgenic control rice and transgenic rice had no statistic difference. The feeding value of transgenic rice and parental rice were similar in this study, and no unexpected effects were observed in rice genetically modified with Cry1Ac gene and sck gene.
     During the period of 0 to 28 d, the period of 29 to 56d and the whole 0 to 56d period, the carp in both groups grew well without marked differences in food intake and body weight. the organ index of liver pancreas, spleen, kidney, foregut, midgut and hindgut between non-transgenic control rice and transgenic rice had no statistic difference. Necropsy indicated neither pathological symptoms nor histopathological abnormalities in the liver, spleen, kidney, foregut, midgut and hindgut. Length of intestine villus and crypt depth of intestinalsegment were observed no significantly different. Judging from these results: no detrimental unexpected effects were observed in rice genetically modified with Cry1Ac gene and sck gene.
     Experiment 3: Immunotoxicological safety assessment of rice genetically modified with Cry1Ac and sck by feeding studies on carp
     During the period of 0 to 28d, the period of 29 to 56d and the whole 0 to 56d period, the carp in both groups grew well without marked differences in food intake, body weight and the growth of immune organs. There were also no significant differences in the physiological indexes of whole blood, serum regular parameters, serum lysozyme activity, serum hormone and antioxidant capacity indexs and immune factors in serum (TNFα, IL-1β, IFNγ, iNOS2a, IL-10 and TLR5) of carp. Necropsy at the end of the experiment indicated neither pathological symptoms nor histopathological abnormalities in the liver, spleen, foregut, midgut and hindgut. Judging from these results, the rice genetically modified with Cry1Ac and sck is considered to have been essentially the same in nutritional and Immunotoxicological characteristics as the control rice.
     Experiment 4: Intestinal microflora safety assessment of rice genetically modified with Cry1Ac and sck by feeding studies on carp
     During the period of 0 to 28d, the period of 29 to 56d and the whole 0 to 56d period, no significant differences were observed between carps reared on the diets prepared with transgenic brown rice or control rice.The Number of colonies for E. coli, Lactobacillus and Bifidobacterium which were residing in foregut, midgut and hindgut had no significant differences. The carps were not observed statistically significant difference in the impact of Intestinal microbial flora of carp. Experiment 5: Cry1Ac gene protein was detected in foregut, midgut and hindgut of carp
     Exogenous Cry1Ac protein was not detected in foregut, midgut and hindgut. The transgenic protein will not spread to nature by way of excreta.
     To sum up, transgenic brown rice has substantial equivalence as compared with ordinary brown rice, and has no negative effects to carp.
引文
[1]曹来福,徐晋康.免疫毒理学在食品毒理学中的应用[J].中国食品卫生杂志,1989, 1(1): 46-49.
    [2]陈小萍,卓勤,顾履珍等.转基因大米营养评价试验[J].营养学报,2004, 26(2): 119-123.
    [3]杜红方.转基因水稻作为肉仔鸡日粮原料的安全性评价[D].中国农业科学院,2006.
    [4]何宏.转基因食品及其发展[J].食品科技,2006, 5: 4-7.
    [5]黄昆仑,许文涛.转基因食品安全评价与检测技术[M].北京:科学出版社,2009.
    [6]韩军花,杨月欣,陈淑蓉等.转SCK基因大米对小型猪生长发育的影响[J].中国食品卫生杂志,2004, 16(6): 489-493.
    [7]韩军花,杨月欣,门建华等.转基因大米与亲本大米猪回肠蛋白质及氨基酸消化率的比较研究[M].营养学报,2004, 26(5): 362-365.
    [8]贺晓云,黄昆仑,秦伟等.转基因水稻食用安全性评价国内外概况[J].食品科学,2008, 29(12): 760-765.
    [9]姬华,乐国伟,王洪新等.转基因食品的营养学评价研究进展[J].食品研究与开发,2009, 30(7): 149-152.
    [10]卢宝荣.我国转基因水稻的环境生物安全评价及其关键问题分析[J].农业生物技术学报,2008, 16(4): 547-554.
    [11]李敏,胡贻椿,朴建华等.猪回肠末端转基因大米和亲本大米主要营养素的消化率[M].中华预防医学杂志,2010, 44(10): 913-917.
    [12]刘梅等.进口转基因大豆对吉富罗非鱼生长和生理的影响[J].粮食与饲料工业,2009.
    [13]刘顺梅.转牙鲆生长因子基因集胞藻对鱼类促生长作用研究及安全性评价[D].中国海洋大学,2007.
    [14]罗云波.食品生物技术导论.北京:中国农业大学出版社[M],2002.
    [15]刘雨芳,王锋,尤民生等.转基因水稻及其杂交后代对稻纵卷叶螟的田间抗性检测[J].中国农业科学,2005, 38(4): 725-729.
    [16]刘雨芳,刘文海,李双等.转基因抗虫水稻MSA4大米对大鼠脏器系数、血常规与血生化的影响.湘潭师范学院学报,2007, 29(4): 112-116.
    [17]李英华,朴建华,陈小萍等.转基因大米的免疫毒理学评价[J].中国公共卫生,2004, 20(4): 404-406.
    [18]齐丽娟,李宁.免疫毒理学的评价方法及其研究进展[J].国外医学卫生学分册,2008, 35(3):174-180.
    [19]孙丽丽,王在贵,张宏福等.转基因饲料的安全性评价进展[J].饲料工业,2009, 30(16): 53-55.
    [20]王长康,陈文炳,邵碧英等.饲料中的转基因成分在家禽体内代谢残留的研究[J].食品科学,2007, 28(08): 428-432.
    [21]卫剑文,许新萍,陈金婷等.应用Bt和SBTi基因提高水稻抗虫性的研究[M].生物工程学报,2000, 16(5): 603-608.
    [22]吴莉芳,秦贵信,张东明等.饲料大豆蛋白对鲤鱼生长和肌肉营养成分的影响[M].西北农林科技大学学报,2008, 36(10): 67-80.
    [23]王晓通.转基因饲料原料与动物性食品安全[J].饲料广角,2006.
    [24]徐海滨.转基因水稻潮酶素标记基因在大鼠体内的代谢[J].毒理学杂志,2005, 19(3): 326.
    [25]许建刚,李国富.鲤鱼对四种动物性蛋白原料的表观消化率测定[J].2008, 36(27): 11782-11784.
    [26]姚春馨,许明辉,李进斌等.转溶菌酶基因水稻稻米毒理及致畸作用实验[M].西南农业学报,2006, 19: 103-110.
    [27]永杰,陈克平,陈宇.理性认识转基因食品的安全性[J].安徽农业科学,2007, 35(7): 2103-2105.
    [28]杨景云.肠道菌群与健康-肠道微生态学[M].哈尔滨:黑龙江科技出版社,1991.
    [29]杨丽,阎斐,张竞竞.来源于转基因植物的食品安全性评价原则和内容[J].中国食物与营养,2008, 12: 7-10.
    [30]游文章,雍文岳,廖朝兴等.测定鱼类饲料原料营养成分消化率的计算方法[J],1993, 17(2): 167-171.
    [31]闫新甫.转基因植物[M].北京:科学出版社,2003.
    [32]杨月欣,陈淑蓉,韩军花等.转SCK基因大米的营养学评价-小型猪比较喂养研究[J].营养学报,2005, 27(1): 38-41.
    [33]张东鸣,黄权,周景祥等.不同饲料蛋白质水平条件下L-肉碱对鲤鱼生长和肌肉营养成分的影响[M].吉林农业大学学报,2002, 24(1): 82-87.
    [34]中华人民共和国国家标准GB 11607渔业水质标准[S].
    [35]中华人民共和国国家标准GB/T 5009.1-2003食品中水分的测定[S].
    [36]中华人民共和国国家标准GB/T 5009.4-2003食物中粗灰分的测定方法[S].
    [37]中华人民共和国国家标准GB/T 5009.5-2003食品中粗蛋白的测定[S].
    [38]中华人民共和国国家标准GB/T 5009.6-2003食品中粗脂肪的测定[S].
    [39]中华人民共和国国家标准GB/T 5009.7-2008食品中还原糖的测定[S].
    [40]中华人民共和国国家标准GB/T 5009.8-2008食品中蔗糖的测定[S].
    [41]中华人民共和国国家标准GB/T 5009.9-2008食品中淀粉的测定[S].
    [42]中华人民共和国国家标准GB/T 5009.10-2003食物中粗纤维的测定方法[S].
    [43]中华人民共和国国家标准GB/T 5009.124-2003食品中氨基酸的测定[S].
    [44]中华人民共和国国家标准GB/T 9695.4-2009肉与肉制品总磷含量测定[S].
    [45]中华人民共和国国家标准GB/T 9695.7-2008肉与肉制品总脂肪含量测定[S].
    [46]中华人民共和国国家标准GB/T 18654.11-2008养殖鱼类种质检验:肌肉中主要氨基酸含量的测定[S].
    [47]中华人民共和国国家标准GB/T 9695.13-2009肉与肉制品钙含量测定[S].
    [48]中华人民共和国国家标准GB/T 9695.15-2008肉与肉制品水分含量的测定[S].
    [49]中华人民共和国国家标准GB/T 9695.18-2008肉与肉制品粗灰分含量的测定[S].
    [50]中华人民共和国国家标准GB/T 14699.1-2005饲料采样[S].
    [51]中华人民共和国国家标准GB/T 19495.2-2004转基因产品检测实验室技术要求[S].
    [52]中华人民共和国国家标准GB/T 18407.4农产品安全质量无公害水产品产地环境要求[S].
    [53]中华人民共和国农业行业标准NY 5051无公害食品淡水养殖用水水质[S].
    [54]中华人民共和国农业行业标准NY 5072无公害食品渔用配合饲料安全限量[S].
    [55]中华人民共和国农业行业标准NY/T 5281-2004无公害食品鲤鱼养殖技术规范[S].
    [56]中华人民共和国水产行业标准SC/T 1006-1992淡水网箱养鱼通用技术要求[S].
    [57]中华人民共和国水产行业标准SC/T 1007-1992淡水网箱养鱼操作技术规程[S].
    [58]中华人民共和国水产行业标准SC/T 1026鲤鱼配合饲料[S].
    [59]中华人民共和国水产行业标准SC/T 1048.3-2001颖鲤养殖技术规范[S].
    [60]中华人民共和国水产行业标准SC/T 1048.4-2001颖鲤养殖技术规范苗种培育技术[S].
    [61]中华人民共和国水产行业标准SN/T 1194-2003植物及其产品转基因成分检测抽样和制样方法[S].
    [62]赵岚,张雷,张洪洋等.转基因豆油的免疫毒理学评价[J].中国保健营养,2009, 11: 5.
    [63]张丽娜,陈一资.基因工程技术及转基因食品安全性评价[J].中国食物与营养,2008, 1: 18-20.
    [64]周联高.高赖氨酸转基因稻谷对肉仔鸡饲用安全性的研究[M].扬州大学,2009.
    [65]卓勤,陈小萍,朴建华等.转豇豆胰蛋白酶抑制剂大米90天喂养实验研究[J].卫生研究,2004, 32(2): 176-179.
    [66]赵荣敏,范云六,石西平等.获得高抗虫转双基因烟草[M]..生物工程学报,1995, 11(1): 1-5.
    [67]朱元招.抗草甘膦基因大豆PCR检测及其饲用安全性研究[D].北京:中国农业大学,2004.
    [68]朱祯.高抗虫转基因水稻的研究与发展[M]..中国科学院院刊,2001, 5: 353-357.
    [69]周志刚,任泽林.鲤鱼(Cyprinus carpio)肠道不同部位表观消化率比较研究[J].饲料广角,2003, 15: 28-29.
    [70]周志刚,任泽林,曾虹等.粪便收集时间影响鲤鱼(Cyprinus carpio)表观消化率的测定[M].北京:中国农业出版社,2004.
    [71]周志刚,任泽林,曾虹等.鲤鱼(Cyprinus carpio)表观消化率日变化初步研究[M].北京:中国农业出版社,2004.
    [72] Ash, Novak C., Scheideler S.E. The fate of genetically modified protein from roundup ready soybeans in laying hens[J]. Journal of Applied Poultry Research, 2003, 12(2): 242-245.
    [73] Aulrich K., Bohme H., Daenicke R., et al. Genetically modified feeds in animal nutrition 1st communication: Bacillus thuringiensis (Bt) coin in poultry, pig and ruminant nutrition[J]. Arch Anim Nutr, 2001, 54: 183-195.
    [74] Bajaj S. and Mohanty A. Recent advances in rice biotechnology-towards genetically superior transgenic rice[J]. Plant Biotechnology Journal, 2005, 3: 275-307.
    [75] Corinne Hérouet, David J. Esdailea, Bryan A., et al. Dominique Rouand Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants[J]. Regulatory Toxicology and Pharmacology, 2005, 41: 134-149.
    [76] Cromwell G.L., Lindemann M.D., Randolph J.H., et a1. Soybean Meal from Roundup Ready or Conventional Soybeans in Diets for Growing-finishing Swine[J]. American Society of Animal Soience, 2002, 80: 708-715.
    [77] Hammond B., Lemen J., Dudek R. Results of 90-day safety assurance study with rats fed grainfrom corn rootworm-protected corn[J]. Food and Chemical Toxicology, 2006, 44: 147-160.
    [78] Hammond B., Lemen J., Dudex R., Neneth M. Results of a 13 week safety assurance study with rats fed grain from glyphosate tolerant corn[J]. Food and Chemical Toxicology, 2004, 42: 1003-1014.
    [79] High S.M., Cohen M.B., Shu Q.Y., et a1. Achieving successful deployment of Bt rice[J]. Trends in Plant Science, 2004, 9(6): 286-292.
    [80] Han J.H., Yang Y.X., Chert S.R., et a1. Comparison of nutrient composition of parental rice and rice genetically modified with cowpea trypsin inhibitor in China[J]. Journal of food composition and analysis, 2005, 18: 297-302.
    [81] James C. Global status of commercialized biotech/GM crops: 2007[J]. International Service for the Acquisition of Agri-Biotech Applications (ISAAA), Brief No.37, 2006.
    [82] Keiko Momma, Wataru Hashlmoto, Hye-Jin Yoon, et al. Safety assessment of rice genetically modified with soybean glycinin by feeding studies on rats [J]. Biosci Biotechnol Biochem, 2000, 64(9): 1881-886.
    [83] Momma K., Yoon H.J., Ozawa S., et a1. Safety assessment of rice genetically modified with soybean glycinin byfeeding studies on rats. Bioscience, Biotechnology and Biochemistry, 2000, 64(9): 1881-1886.
    [84] NBSC (National Bureau of Statistics of China). China Statistical Yearbook[M]. Beijing: China Statistics Press, 2009.
    [85] Reuter T., Aulrich K., Berk A., et al. Investigation on genetically modified maize (Bt-maize)in pig nutrition: chemical composition and nutritional evaluation[J]. Arch Anim Nutr, 2002, 56: 23-31.
    [86] SHOZO H. SUGIURA, FAYE M. DONG. Apparent protein digestibility and mineral availabilities in various feed ingredient for salmonid feeds[J]. Aquaculture, 1998, 159: 177-202.
    [87] Teshima R., Watanabe T., Okunuki H., et al. Effect of subchronic feeding of genetically modified corn(CBH351)on immune system in BN rats and B10A mice[J]. Shokuhin Eiseigaku Zasshi, 2002, 43: 273-279.
    [88] Yonemochi C., Fujisaki H., Harada C., et a1. Evaluation of transgenic event CBH 35l (Starlink) corn in broiler chicks[J]. Anim Sci J, 2002, 73: 221-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700