好氧反硝化菌的筛选及反硝化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内外的不少研究和报道已能充分证明好氧反硝化菌的存在。这一发现突破了传统理论的认识,为生物脱氮技术提供了一种崭新的思路,并发展出在有氧条件下同步硝化反硝化的污水处理脱氮工艺。作为生物脱氮新技术之一的细菌好氧反硝化与传统的细菌厌氧反硝化相比更具有独特优势:1.好氧反硝化菌能在有氧条件下进行反硝化,使得同步硝化反硝化成为可能,硝化反应的产物可直接成为反硝化反应的底物,避免了培养过程亚硝酸盐和硝酸盐的积累对硝化反应的抑制,加速了硝化-反硝化进程。同时,反硝化作用补偿硝化反应消耗的碱度,维持了反应系统pH值稳定,降低了操作难度和运行成本。2.大部分好氧反硝化菌适应性较强、生长速度快、产量高并且溶解氧浓度要求较低,反硝化速度快且彻底,适合治理大面积氮污染水域。因此,进一步发掘好氧反硝化菌资源,并对其进行深入的研究已成为必然。
     本文通过定量投加硝酸盐和控制反应器曝气强度来驯化活性污泥以提高活性污泥在好氧条件下对硝酸盐的去除率,达到富集好氧反硝化菌的目的。筛选出五株快速去除硝酸盐的好氧反硝化细菌。根据16SrDNA序列分析确定了所筛菌的分类学和系统发育地位,并从其基因中扩增出与好氧反硝化作用相关的周质硝酸盐还原酶的亚基napA,为探讨其生理生化特性奠定基础。同时考察了五株菌在不同碳源以及C/N条件下的反硝化特性,当C/N为9时,筛选菌株均能进行完全的反硝化。当以丁二酸钠作为电子供体时,其脱氮效果最好。以G2和G5为例探讨了pH值和温度对反硝化效率的影响,当温度为25℃~35℃,pH值为中性偏碱,脱氮率能达到90%以上。
     本文采用活性污泥连续流反应器,探讨了好氧反硝化细菌对含硝氮废水的处理效果,并运用PCR-DGGE技术对运行期间反应器中微生物菌群结构的稳定性进行了分析。结果表明,在水温20℃~25℃,进水COD负荷402.14~288.57g/ (m~3·d),硝态氮负荷105.98~91.56g/(m~3·d),总氮负荷110.30~88.84g/ (m~3·d),pH值6.3~7.5,溶解氧(DO)≥5mg/L的条件下的稳定运行阶段,系统对于硝酸盐的平均去除率为98.35%,COD平均去除率为91.11%。变性梯度凝胶电泳(DGGE)结果显示,在系统稳定运行阶段,菌株G2和G5在反应器中能够稳定存在,并且逐渐成为优势菌群。
In recent years, many domestic and foreign researches and reports have confirmed the existence of aerobic denitrifying bacteria. This discovery broke through the traditional theory, provided a brank-new idea for the biological nitrogen removal, and developed the nitrogen removal technology in sewage which is simultaneous nitrification and denitrification(SND). There are two predominance for aerobic denitrification, one of new technology for biological nitrogen removal, compared with traditional: first aerobic denitrifying bacteria can remove nitrogen under aerobic condition, which makes simultaneous nitrification and denitrification possible. The nitration product may directly become the denitrification substrate, which will suppress the accumulation of the nitrate and nitrous acid and accelerate the process of nitrification and denitrification.Simultaneously, the denitrification compensates the alkalinity consumed during nitrification, stabilizes pH value of reaction system, reduces the operation difficulty and the running cost. Second,aerobic denitrification has been adapted to disposing of large scale sewage due to the characteristic of aerobic denitrification bacteria: excelled adaptability, fast growth, high yield, relative low requirement for dissolved oxygen, fast denitrifing speed and complete reaction. Therefore it is necessary to exploit more aerobic denitrification bacteria and research them profoundly.
     In order to enrich the aerobic denitrification bacteria, The activated sludge was domesticated in sequencing batch reactor (SBR) reactor by adding rations nitrate and controlling the aeration intensity of reactor to enhance the removal of nitrate under aerobic condition. We screened five aerobic denitrifing bacteria, determined their phylogenetic status by phylogentic analysis based on partial 16SrDNA, and cloned their partial napA gene was cloned, the gene was subunit of periplasmic nitrate reduutase(NAR), which was considered to be relartive to aerobic denitrification.
     The carbon source test showed that as C/N ratio was 9, all strains can complete denitrification. When sodium succinate was used as electron donor, the denitrification effect was obviously more than that of carbon source and nitrogen removal rate were above 96%. We discussed the co-effect of pH radio and temperature to the denitrification efficiency of strains G2 and G5. When temperature was at 25℃~35℃and the optimal pH value was about 7, the nitrogen removal rate can reach up to 90%.
     Removal of wastewater containing nitrate nitrogen was performed using the activated sludge with aerobic denitrifying bacteria on continuous-flow reactor. The results showed that the average removal rate of nitrate nitrogen can be up to 98.35%, the average removal rate of COD can be up to 91.11% and the nitrite nitrogen in the effluent was kept in a lower level during the stable operating period, with pH radio was 6.3~7.5, influent COD loading of 402.14~288.57g/ (m~3·d) and nitrate nitrogen loading 105.98~91.56g/(m~3·d) at 20℃~25℃, and the dissolved oxygen concentration was kept at a high level(≥5mg/L). The results of DGGE showed that during the stable operating period, the aerobic denitrifying bacteria, G2 and G5, existed steadily, which were the dominant microorganisms all the time.
引文
1.邓英淘.中国的水危机.生态经济, 2002(7):5-10
    2.孙锦宜.含氮废水处理技术与应用.北京:化学工业出版社, 2003.
    3.郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社,2004.
    4.蒋建国.沸石吸附法去除垃圾渗滤液中氨氮的研究.给水排水. 2003.29(3): 6-9
    5.王琳,王宝贞.废水生物处理新技术.北京:中国建筑工业出版社,2000
    6.王宗平,陶涛,金儒霖.污水生物脱氮研究进展.环境科学进展.1999:124-129
    7. Prakasam T.B.,Loehr R.C. Microbial Nitrification and Denitrification in Concentrated Wastes .Wat. Res. 1972, 6 ,859-869
    8. Murray I. Et al. Inter-relationships Betwseen Nitrogen Balance, pH and Dissolved Oxygen in an Oxidation Ditch Treating Farm Animal Waste. Wat. Res. 1975,9: 25-30
    9.李军,杨秀山,彭永臻.微生物与水处理工程.化学工业出版社,2002:370-390
    10. Robertson L.A..Nitrogen removal from water and waste.Combridge University Press,1992:227-267
    11.郑兴灿,李亚新.污水除磷脱氮技术.中国建筑工业出版社,1998.
    12.任南琪,马放等.污染控制微生物学.哈尔滨工业大学出版社,2002:328-333
    13. Demoulin G., Rudiger A., Goronszy M. C. Cyclic activated sludge technology-recent operating experience with a 90000 p.e. plant in Germany. Wat.Sci.Tech,2001,43(3):331-337.
    14. Seghers. Technical report, brewery wastewater treatment with UNITANK, UNITAN K two stage aerobic; UNITANK two stage anaerobic-aerobic,2000.
    15. Wu W., Timpany P., Dawson D. Simulation and application of a novel modified SBR for biological removal. Wat.Sci.Tech,2001,43(3):215-222.
    16. Helmer CH,Kunst S.Simultaneous nitrification/denitrification in an aerobic biofilm system. Wat.Sci.Tech,1998,37(4-5):183-187.
    17. Kshirsagar M., Gupta A.B, Gupta.S. K Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha. Environ. Technol, 1994,16:35-43.
    18. Mike S. M. Jetten, Susanne logemann, Gerard Muyzer et al. Novel principle in the microbial conversion of nitrogen compounds. Antonie van Leeuwenhoek, 1997,71:75-93.
    19. Mulder A.A.A., Van de Graaf, Robertson L.A, et al.Anaerobic ammoniumoxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol.,1995,16:177-183.
    20. J.G. Kuenen, L.A. Robertson. Combined nitrification-denitrification process. EMS Microbiol. Rev. 1994,15(2): 109-117
    21. L. Kuai, W. Verstrartr. Autotrophic denitrification with elemental sulphur in small-scale wastewater treatment facilities. Environ. Tech., 1999,20:201-209
    22. N. Bernet, C. Bizeau, R. Moletta,et al. Study of physicochemical factors controlling nitrite build-up during heterotrophic denitrification. Environ. Tech., 1995,16:165-179
    23.周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备,2000
    24.王建龙.生物脱氮新工艺及其技术原理.中国给排水,2000,16(2):25-28.
    25.郑平,胡宝兰.生物脱氮技术的研究进展.环境污染与防治, 1997,19(4):25-28.
    26. Voets J.P.et al..Removal of nitrogen from highly nitrogenous wastewater. JWPCF. 1975,47:395-398.
    27. Sutherson S., Ganczarczk J.J..Inhibition of nitrite oxidation during nitrification some observations. Wat. Poll. Rse.J.Can.1986, 21:257-256.
    28. Turk O.,Mavininc D.S. Preliminary assessment of shotcut in nitrogen removal from wastwater.Can.J.Civ.Eng..1986,13:600-605.
    29. Van Benthum W.A.J.et al..Nitrogen removal using nitrifying biofilm growth in a biofilm airlift suspension reactor coupled with a chemostat. Water Res.1998, 32(7): 2009-2018.
    30. Joanna surmacz-Gorska, Andrzej Cichon, Korneliusz Miksch. Nitrogen removal from wastewater with ammonia nitrogen concentration via shorter nitrification and denitrification . Wat Sci Tech, 1997,36(10): 73-78.
    31.王志盈,袁林江,彭党聪等.内循环生物流化床硝化过程的选择性研究.中国给水排水.2000,16(4): 1-4.
    32. Robertson L A and Kuenen J G. Aerobic denitrification-acontroversy re-vived[J]. Archives of Microbiology, 1984 , 139(4) : 351~354
    33. Irvine R L , Murthy D V S , Arora M L , et al. Analysis of full-scale SBR operation at Grundy Centre , Iowa[J]. Journal of Water Pollution Control Federation ,1987,59(3) : 132~138
    34. Bruce E. R.,Wayne E. L..Simultaneous denitrificaiton With nitrification in single channel oxidation ditches.Journal WPCF,1985,57(4):300-308.
    35. Watanabe Y..Simultaneous nitrification and denitrification in microaerobic biofilms.Water Science and Technology,1992,26(3-4):511-522
    36. Chni P. C.,Bord G.,Payreaudeau M.,Buisson H.Nitrogen removal in a submerged filter with no effluent recirculation.Water Science and Technology,2000,42(3-4):51-57.
    37. Christine H.,Sabine k..Simultaneou Nitrification denitrification in an aerobic biofilm system.Water Science and Technology.,1998,37(4-5):183-187
    38.郭海燕,周集体,姜苏等.一体化生物膜反应器处理生活污水试验研究.环境污染与防治第,2004,26(6):437-441.
    39. Munch E. V.,Paul L.,Keller J..Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors.Water Research,1996,30(2):277-284
    40. Rttmann B.E., Langeland W.E ..Simultaneous denitrification with nitrification in single channel oxidation ditche.JWPCF.1985,57(4):300-308.
    41.高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象.给水排水.1998,24(12): 6-9.
    42. Ding A Z,Fu M,Sheng G Y.Evidence of aerobic denitrification[J].Chin Scie Bull, 2000,45(3):2779-2785
    43. Lukow T,Diekmann H.1997.Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1[J]. Biotechnology Letters,11(19):1157-1159
    44. Robertson L.A, Kuenen J.G. Thiosphaeera Pantotropha gen. nov. sp. nov. ,a facultative autotrophic sulphur bacterium. J Gen Microbiol, 1983, 129 2847-2855.
    45. P. Bonin, Gilewiz, M cent, Oceanol Marseille, Fac. Sci. Luminy; Marseille, Fr. A direct demonstration of“co-respiration”of oxygen and nitrogen oxides by Pseudomonas nautical: some spectral and kinetic properties of the respiratory components. FEMS Microbiology Letters.1991, 80(2~3): 183-188
    46. J.M. Krul. Dissimilatory nitrate and nitrite reduction under aerobic conditions by an aerobically and anaerobically grown Alcaligenes sp. and by activated sludge. Journal of applied bacteriology, 1976,40(3): 245-260
    47. Patureau D., Davison J., Bernet N., Moletta R. Denitrification under various aeration conditions in Comamonas sp., strain SGLY2. FEMS Microbiology Ecology,1994,14(1):71~78.
    48. Gupta A.B..Thiosphaeera Pantotropha a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification. Enzyme and Microbile Technology. 1997,21(8): 589-595.
    49. Robertson L.A., VAN Niel ED W. J., Torremans ROB A. M. et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaeera Pantotropha Applied and Environmental Microbiology, 1988,54(11):2812-2818.
    50. Mike S. M. Jetten, Susanne logemann, Gerard Muyzer, et al. Novel principle in the microbial conversion of nitrogen compounds Antonie van Leeuwenhoek, 1997,71(1~2): 75-93.
    51. L.C. Bell, D.J. Richardson, S.J. Ferguson. Periplasmic and membrane-bound respiratory nitrite reductases in Thiosphaera pantotropha: The periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Letters, 1990,265(1~2): 85-87
    52.李平,张山,刘德立.细菌好氧反硝化研究进展[J].微生物学杂志,2005.25(1):60-64
    53. Patureau D., Bernet N., Bouchez T., Dabert P., Delgenes J.P., Moletta R.. Biological nitrogen removal in a single aerobic reactor by association of a nitrifying ecosystem to an aerobic denitrifier, Microvirgula aerodenitrificans Journal of Molecular Catalysis.1998, 5(1-4): 435-439.
    54. Lone Frette, Bo Gejlsbjerg, Peter Westermann,. Aerobic denitrifiers isolated from an alternating activated sluge system[J]. FEMS Microbiology Ecology, 1997,24(4): 363-370.
    55. Huang H.K., Tseng S.K. Nitrate reduction by Citrobacter diversus under aerobic enviroment. Appl Microbiol Biotechnol, 2001,55: 90-94.
    56. Pai Shwu-Ling, Chong Nyuk-Min, Chen Chei-Hsiang. Potential applications of aerobic denitrifiying bacteria as bioagents in wastewater treatment. Bioresource Technology. 1999,68(2): 179-185.
    57. Naoki Takaya, Maria Antonina B. Catalan-Sakairi, Yasushi Sakaguchi et al. Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Applied and Environmental Microbiology, 2003,69(6): 3152-3157.
    58. Baek Seung-Hun, Yin Cheng-Ri, Lee Sung-Taik, Aerobic nitrate respiration by a newly isolated phenol-degrading bacterium, Alcaligenes strain P5. Biotechnology Letters, 2001,23: 627-630.
    59. Lukow T., Diekmann H., Aerobic denitrificaiton by a newly isolated heterotrophic bacterium strain TL1. Biotechnology Letters, 1997,19(11): 1157-1159.
    60. Ebru ?ELEN, Mehmet Akif KILI?. Isolation and characterization of aerobic denitrifiers from agricultural soil. Turk J Biol, 2004,28: 9-14.
    61. Su J. J., Liu B. Y., Lin J., et al. Isolation of an aerobic denitrifying bacterial strain NS-2 from the activated sludge of piggery wastewater treatment systems in Taiwan possessing denitrification under 92% oxygen atmosphere. Journal of Applied Microbiology, 2001,91:853-860.
    62.马放,王弘宇,周丹丹.活性污泥体系中好氧反硝化菌的选择与富集[J].湖南科技大学学报,2005.20(2):80-83
    63.周丹丹,马放,王弘宇,等.关于好氧反硝化菌筛选方法的研究[J].微生物学报,2004.44(6):837-839
    64.李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究.给水排水,2001,27(1):22-24.
    65. Bang D.Y., Watanabe Y. and Noike T. An Experimental study on aerobic denitrification with polyvinyl alcohol as a carbon source in biofilms. Wat. Sci. Tech, 1995,32(8): 235-242.
    66. Patureau D., Bernet N., Delgenes J. P. and Moletta R. Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium. Appl Microbiol Biotechnol, 2000,54:535-542.
    67. Gupta A.B., Gupta S.K. Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBC biofilm. Wat. Res., 1999,33(2): 555-561.
    68. Kshirsagar M., Gupta A.B, Gupta S.K. Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha. Environ. Technol, 1994,16(1): 35-43.
    69.周德庆.微生物学教程.高等教育出版社,2001:140-141.
    70.马放,任南琪,杨基先.污染控制微生物学实验.哈尔滨:哈尔滨工业大学出版社, 2002.6. 39-40.
    71. Robertson L.A. Nitrogen removal from water and waste. In:Microbial control of pollution,Cambridge University Press,1992:227—267.
    72.张智,杨华仙,张晓卫,等.生活污水的好氧反硝化研究[J].生态环境,2006.15(5):905-908
    73.蹇文婴,东秀珠.定向进化同源基因在细菌进化系统研究中的应用.微生物学报,2000,(27)5:377-388.
    74. Drancourt M, Bollet C, Carlioz R, et a1. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates.J Clin Microbiof. 2000,38:3623—630.
    75. Janda J M, Abbo tt S L. Bacterial identification for publication:when is enough enough? J Clin Microbiol, 2002,40:1887—1891.
    76.王毓仁.提高废水生物反硝化效果的理论和实践.石油化工环境保护,1995,2:1~7.
    77. Her J.J, Huang J.S. Influences of carbon source and C/N ratio on nitrate/nitrate denitrification and carbon breakthrough, Bioresource Technology, 1995, 54:45~51.
    78. Cervantes F, MonroyO, Gomez J. Influence of ammonium on the performance of a denitrifying culture under heterotrophic conditions. Appl Biochem Biotechnol,1999;81:13–21.
    79. Samuelson M.1985.Dissimilatory nitrate reduction to nitrite,nitrous oxide,and ammonium by Pseudomonas putrefaciens[J].Appl Environ Microbiol, 50(4):812-815
    80. Marinez L M, Dobao M, Castillo F. Characterization of the assimilatory and dissimilatory nitrate-reducing systems in Rhodobacler a comparative study.FEMS Microbiol. Lett.1991,83:329-334.
    81. Lesley A.Robertson&J.Gijs Kuenen. Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek.1990, 57: 139~152.
    82.孔庆鑫,李君文,王新为,金敏,古长庆.一种新的好氧反硝化菌筛选方法的建立及新菌株的发现.应用与环境生物学报, 2005,11(2):222~225.
    83. Bell L C,Page M D,Berks B C,et al.1993.Insertion of transposon Tn5 into a structural gene of the membrane-bound over expression of periplasmic nitrate reductase activity [J].Gen Microbiol,39:3205-3214
    84. Crespi M, Ramazzotti V. Evidence that N-nitroso compounds contribute to the causation of certain human cancers . In: Bogardi I, Kuzelka RD, editors. Nitrate contamination, NATO ASI Ser, vol. G30. Germany: Springer, 1991.
    85. Shrimali M., Singh K.P. New methods of nitrate removal from water. Environmental Pollution, 2001,112: 351~359.
    86. Lucija Foglar, Felicita Briski, Laszlo Sipos, Marija Vukovic. Nitrate removal form synthetic wastewater with the mixed bacterial culture Bioresource Technology, 2005, 96:879~888.
    87. Rabah Fahid K. J., Dahab Mohamed F. Nitrate removal characteristics of high performance fluidized-bed biofilm reactors. Water Research, 2004,38:3719~3728.
    88. Muyzer G, DeWaal E C, Uitterlinden A G. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction–amplified genes encoding for 16SrRNA. Appl. Environ. Microbial, 1993,59(3): 695~700.
    89. Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Microbiol,1999,2:317~322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700