好氧颗粒污泥脱氮功能微生物及群落动态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧颗粒污泥具有沉降性能好、生物持有量高和抗冲击负荷能力强等优点,因此在废水处理领域具有重大的应用价值。研究表明,通过好氧颗粒污泥可以实现同步硝化反硝化脱氮,但是对于该体系功能微生物的研究还相当有限。因此,本研究着眼于处理高浓度氨氮废水的好氧颗粒污泥,运用DGGE技术,对好氧颗粒污泥形成及工艺运行过程中的功能微生物及群落演替进行分析,以期为工艺运行提供理论指导。
     采用DGGE技术,分析脱氮型好氧颗粒污泥形成过程中不同时期的污泥样品。试验结果表明,亚硝酸细菌包含自养的亚硝化单胞菌属和异养的脱氮副球菌属,是自养硝化和异养硝化共同作用的结果,虽然亚硝化单胞菌属富集非常明显,但异养的脱氮副球菌是反应器的优势菌,氨氧化应以异养氨氧化为主;分析认为,自养的硝酸细菌在25oC时的生长速率不如亚硝酸细菌,争夺无机碳源的能力也不如亚硝酸细菌,因此在出现短暂的富集后逐渐被竞争掉。脱氮型好氧颗粒污泥中的反硝化细菌包含脱氮副球菌Paracoccus denitrificans、红杆菌属Rhodobacter和陶厄氏菌属Thauera sp.,其中脱氮副球菌Paracoccus denitrificans、红杆菌属Rhodobacter为兼性厌氧菌,厌氧区出现后,可以以硝酸根做电子受体进行反硝化。
     在脱氮型好氧颗粒污泥形成过程中,微生物菌群落演替明显,亚硝化单胞菌属和丝状菌大量富集,而丝状菌在颗粒污泥解体后数量明显减少,推测丝状菌在好氧颗粒污泥形成过程中起着架构作用。链球菌属、拟杆菌等兼性厌氧菌,在颗粒形成后大量富集,颗粒解体后数量减少,证明颗粒形成后厌氧区的存在。
Aerobic granular sludge has great applicable values in wastewater treatment due to it’s advantages, such as excellent settling ability, high biomass retention and shock loading resistence ability. With aerobic granules, nitrogen removal by simultaneous nitrification denitrification (SND) can be achieved, whereas, up to now most research focused on low-concentration ammonium wastewater or artificial domestic wastewater treatment by this process. Therefore, this research was conducted in analyzing the functional microorganisms and microbial community of aerobic granule.
     The sludge samples taken at different phases of aerobic granules were analyzed by Denaturing Gradient Gel Electrophoresis (DGGE). The results revealed that ammonium-oxiding bacteria included autotrophic nitrifier Nitrosomonas and heterotropic nitrifier Paracoccus denitrificans. Although Nitrosomonas enriched in the process of aerobic granule forming, heterotropic nitrifier Paracoccus denitrificans was the dominated genus of the reactor because autorophical nitrite-oxiding bacteria grew slower than ammonium-oxiding bacteria at 25oC, nitrite-oxiding bacteria disappeared after a short time enrichment. Denitrifier in the reacter were Paracoccus denitrificans, Rhodobacter and Thauera sp.. Paracoccus denitrificans, Rhodobacter and Thauera sp. are aerobically respiring bacteria that under anoxic conditions have the ability to switch to anaerobic respiration.
     The populations in the reactor varied obviously during the whole aerobic granule forming. Certain bacteria enriched and others disappeared. The functional microorganisms and filamentous bacteria were found enriched. Streptococcus and Bacteroidetes enriched after aerobic granule forming which revealed anaerobic aera existed
引文
1郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.科学出版社, 2004: 52-59
    2郭海娟.亚硝酸型硝化和反硝化除磷的生物脱氮除磷技术研究.哈尔滨工业大学硕士学位论文. 2003: 30-35
    3张自杰.排水工程下册.中国建筑工业出版社. 2000: 53-57
    4李勇智.短程生物脱氮和反硝化除磷的基础研究.哈尔滨工业大学博士学位论文. 2003: 55-59
    5 Castigneti D, Hollocher T C. Heterotrophic nitrification among denitrifiers. Appl. Environ. Microbiol, 1984, 47(4): 620-623
    6 Robertson L A, Van Niel E J, Torremans R M., et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Environ. Microbiol. 1988, 54(11): 2812-2818
    7 Zhao H W, Mavinic D S, Oldham W K, et al. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Wat. Res. 1999, 33(4): 961-970
    8张锡辉.高等环境化学与微生物学原理及应用.化学工业出版社,2001: 227-228
    9 Prosser, J. I. Autotrophic nitrification in bacteria. Adv. Microbiol. Physio. 1989, 30: 125-181
    10 Crossman, L. C, J. W. B. Moir., et al. Heterologous expression of heterotrophic nitrification genes. Microbiol. 1997, 143: 3775-3783
    11 Robertson, L. A., Kuenen, et al. Heterotrophic nitrification in Thiosphaera pantotropha-oxygen uptake and enzyme studies. J. Gen Microbiol. 1998, 134: 857-863
    12 Anderson, I. C., Levine, et al. Relative rates of NO and N2O production by nitrifiers and nitrate respirers. Appl. Environ. Microbiol. 1986, 51: 938-945
    13 Van Niel, E. W. J., Robertson, et al. Heterotrophic nitrification in denitrifying bacteria. Proc. 4th. Eur. Cong. Biotechnol. 1987, 3: 363-367
    14 Shoun H, Tanimoto T. Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome p-450 in the respiratory nitrite reduction. J Biol Chem. 1991, 266: 11078-11082
    15邹联沛. MBR中DO对同步硝化反硝化的影响.中国给水排水. 2001, 17(6): 10-14
    16 C Hellinga, AAJC Schellen, JW Mulder, et al. The Sharon-process: An Innovative method for nitrogen removal from ammonium rich wastewater. Water Science and Technology. 1998, 37(9): 135-142
    17 W Verstraete, S Philips. Nitrification-denitrification processes and technologies in new contexts. Environmental pollution. 1998, 102: 717-726
    18 A Mulder, L. A. Vandegraaf. Anaerobic ammonium oxidation discovered in a denitrification fluidized bed reactor. FEMS Microbial Ecol. 1995, 16: 177-183
    19 S. M Mike, Jetten, Marc Strous, et al. The anaerobic oxidation of ammonium. FEMS microbiology reviews. 1999, 22(5): 421-437
    20 L Kuai, W Verstraete. Ammonia removal by the oxygen-limited autotrophic nitrification-denitrification system. Applied and Environmental Microbiology. 1998, 64(11): 4500-4506
    21 E. Albertson, H. D. Stensel. Aerated anoxic biological NdeN process. Wat. Sci. Tech. 1994, 29(7): 167-176
    22 G. T. Cinar, Daigger. Evaluation of IAWQ Activated Sludge Model No. 2 using steady-state data from four full-scale wastewater treatment plant. Wat. Envi. Res. 1998, 70: 1216-1220
    23 G. T. Daigger, H. X. Littleton. Characterization of simultaneous nutrient removal in staged, closed-loop bioreactors. Wat. Envi. Res. 2000, 72: 330-335
    24 Holley Kaempfer Steller. Simultaneous nitrification and denitrification in activated sludge floc. Ph. D. thesis, University of Missouri-Rolla. USA. 2003
    25 E. Morgenroth, T Sherden, van M. C. M. Loosdrecht. Aerobic granular sludge in a sequencing batch reactor. Wat. Res. 1997, 31: 3191-3194
    26 Peng Dangcong, Nicolas Bernet, Jean-philippe Delgenes, et al. Aerobic granular sludge- a case report. Wat. Res. 1999, 33: 890-893
    27 T. Etterer, P. A. Wilderer. Generation and properties of aerobic granular sludge. Water Sci. Technol. 2001, 43: 19-26
    28 L Qin, Y Liu, J. H. Tay. Effect of settling time on aerobic granulation in sequencing batch reacftor. Biochemical Engineering Journal. 2004, 21: 47-52
    29 J. H. Tay, Q. S Liu, Y. Liu. Aerobic granulation in sequential sludge blanket reactor. Wat. Sci. Technol. 2002, 46: 13-18
    30 J. J. Beun, A Hendriks, M. C. M van Loosdrecht. Aerobic granulation in a sequencing batch reactor. Wat. Res. 1999, 33: 2283-2290
    31 J. H. Tay, Q. S. Liu, Y. Liu. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J. Appl. Microbiol. 2001, 91: 168-175
    32 Y. Liu, J. H Tay. State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances. 2004, 22: 533-563
    33 BYP Moy, J H Tay, SK Toh. High organic loading influences the physical characteristics of aerobic sludge granules. Lett Appl Microbiol 2002, 34: 407-412
    34 PJ Allsop, Y Chisti, M Moo-Young. Dynamics of phenol degradation by Pseudomonas putida. Biotechnol Bioeng. 1993, 41: 572-580
    35 HL Jiang, JH Tay, STL Tay. Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Lett Appl Microbiol. 2002, 35: 439-445
    36 HL Jiang, JH Tay, STL Tay. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl Microbiol Biotechnol. 2004, 63: 602-608
    37 SF Yang, Y Liu, JH Tay. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J Biotechnol. 2003, 106: 77-86
    38 JJ Beun, JJ Heijnen, MCM van Loosdrecht. N-removal in a granular sludge sequencing batch airlift reactor. Biotechnol Bioeng. 2001, 75: 82-92
    39 Tay J H,Yang S F,Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Appl. Microbiol. Biotechnol. 2002, 59: 332-337
    40杨麟.好氧颗粒污泥的培养及其实现同步硝化反硝化的研究.湖南大学硕士论文. 2003: 25-31
    41卢然超,张晓健,张悦等. SBR工艺污泥颗粒化对生物脱氮除磷特性的研究.环境科学学报, 2001, 21 (5): 577-581
    42阮文权.好氧颗粒污泥同步硝化反硝化过程研究.江南大学博士论文2002: 50-57
    43王芳. SBAR中好氧颗粒污泥的培养及其特性研究.大连理工大学博士论文. 2004: 66-72
    44 Koenig, L. H. Liu. Kinetic Model of Autotrophic Denitrification in Sulfur Packed-Bed Reactors. Water Research. 2001, 35(8): 1969-1978
    45近敏,林雨霖,周峰等.分子生态学.湖北科技出版社. 2002: 2-23
    46 Bruce K. M., M. Wanger, V. Urbain, et al. Phylogenetic Probes for Analyzing Abundance and Spatial Organization of Nitrifying Bacteria. Appl. Environ. Mi-crob. 1996, 62: 2156-2162
    47 Bachmann K. Molecular Markers in Plant Ecology. New Phy-tol. 1994, 126(2): 403-418
    48柴丽红,彭谦,徐丽华等. DGGE技术在微生物生态学研究中的应用.发酵工业. 2002, 28(3): 20-24
    49 Wayne R. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacteria Systematizes. World Conser. 1996, 1(1): 15-17
    50叶亚新,黄勇,王金虎.分子生物学技术在环境微生物多相分类中的作用.苏州科技学院学报. 2004, 21(4): 46-53
    51贾俊涛,宋林生,李筠. T-RFLP技术及其在微生物群落结构研究中应用.海洋科学. 2004, 28(3): 64-67
    52 Zabeau M, Vos P. European patent. conservation including application 92402629. (Publication nuber: 0534858A)1992
    53 Vos P. AFLP: an ewtech nique for DNA finge printing. Nucleic acids Res. 1995, 23(21): 4407-4414
    54王世伟,齐小辉,刘军等. AFLP技术在微生物分类鉴定、基因标定及遗传多样性方面的应用.生物技术. 2003, 13(5): 42-43
    55 Desai,Tanna. Fluorescent amplifiedfragment lengtpolymorphism analysis of outbreak of Group A Streptococcal oinvasive diseas. Clin. Micr-obiol. 1998, 36: 3133-3137
    56张小平,陈强.用AFLP技术研究花生根瘤菌的遗传多样性.微生物学报. 1999, 39(6): 483-488
    57 Williams J G,Kubelid A R,Lirak KJ,et al. DNA polymorphisms anmlified by arbitrary prinmers are uweful as genelic markers. Nucleic Acids Res. 1990, 18(22): 6531-6535
    58 John Welsh, Michael McClelland. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research. 1990, 18(24): 7213-7218
    59 Domingues M R, Araujo J C, Varesche M B A, et al. Evaluation of thermophilicanaerobic microbial consortia using fluorescence in situ hybridization. Water. Sci. Technol. 2002, 45(10): 2733-2736
    60 Amann R. I., Snaidr J., Wagner M, et al. In situ visualization of high genetic diversity in a natural microbial community. J. Bacteriol. 1996, 178: 3496-3500
    61 Lee D-H, Zo YG, Kim S J. Nonradioactive method to study genetic profiles of natureal bactenal communitieds by PCR-single-strand-conformantion-polymorphism. Appl Environ Microbiol. 1996, 62: 3112-3120
    62 Giovannoni, S. J. , DeLon, et al. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 1988, 170: 720-726
    63邢德峰,任南琪,宫曼丽等. DGGE技术监测生物制氢反应器微生物群落结构和演替.中国科学C辑生命科学. 2004, 34(6): 569-574
    64张丹,刘耀平,徐慧等. OLAND生物脱氮系统中硝化菌群16SrDNA的DGGE分析.生物技术. 2003, 13(5): 1-3
    65刘新春,吴成强. PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析.生态学报. 2005, 25(4): 842-847
    66全向春,施汉昌,杨志峰等.生物强化系统微生物分子诊断技术的应用及新进展.环境污染治理技术与设备. 2006, 7(3): 1-7
    67 Sinigalliano, C. D., Amplification of the amoA gene from diverse species of ammonium-oxiding bacteria and from an indigenous bacteria population from seawater. Appl. Environ. Microbiol. 1995, 61: 2702-2706
    68 Christensen B. B. Sternberg C., Andersen J. B., et al. Establishment of new genetic traits in a microbial biofilm community. Appl. Environ. Microbiol. 1998, 64: 2247-2255
    69 Neefs, J-M. Compilation of small ribosomal subunit RNA structures. Nucleic Acids Research. 1993, 21(13): 3025-3049
    70 F. Schwieger, C. C. Tebbe. A New Approach to Utilize PCR-Single-Strand Conformation Polymorphism for 16S rRNA Gene-Based Microbial Community Analysis. Appl Environ Microbiol. 1998, 64: 4870-4876
    71 Pohlmann, R. Cramm, K. Schmelz, et al. A novel NO responding regulator controls the reduction of nitric oxide in Ralstonia eutropha. Mol. Microbiol. 2000, 38(3): 626–638
    72 Jin, L., Nei. A novel compilation of small ribosomal subunit RNA structures. M.Mol. Biol. Evol. 1990, 7: 82-102
    73 Lisa C. Crossman. Heterologous expression of heterotrophic nitrification genes. Microbiology. 1997,143: 3775-3783
    74 Van Niel, E. W. J. , Robertson, et al. Heterotrophic nitrification in denitrifying bacteria. Proc. 4th. Eur. Cong. Biotechnol. 1987, 3: 363-366
    75林秀萍.莲池潭紫色不含硫光合细菌之分类与特性探讨.国立中山大学硕士论文. 1992:35-39
    76 Shinoda, Y. , Sakai, et al. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl. Environ. Microb-iol. 2004, 70 (3): 1385-1392

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700