半闭环双边控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间探索的深入,遥操作技术的应用将会越来越广泛。双边控制是一种很重要的遥操作方式,它能应用于非结构化且未知的从端环境。在时延力反馈双边控制系统中,根据主端操作者获取反馈力的方式的不同,将双边控制区分为全闭环方式和半闭环方式。本文针对空间在轨监测任务需求,采用半闭环方式构建力反馈双边控制系统。
     在前人的研究中,时延力反馈双边控制系统的性能指标被概括为稳定性、透明性和跟踪性。由于透明性和跟踪性是借用电路理论中的阻抗概念定义的,缺乏直观性,定量度量也比较困难,因此提出一种新的性能指标——相位差指标,其特点是容易理解,简单实用。通过仿真实验,验证了相位差指标的实用性。
     在新的性能指标的框架下,对时延力反馈双边控制系统进行研究。
     建立了半闭环力反馈双边控制系统模型,基于Lyapunov稳定性得到保证系统稳定的参数约束方程,设计了双边控制器,分别在单边时延0.5、1.5、3、5秒时进行了仿真实验,运用相位差指标分析了实验结果,得到系统时延对系统性能的影响规律,为大时延情况下的双边控制器设计提供了指导。
     在保证系统稳定的基础上进一步研究系统的操作性能。分析了系统输入频率、系统时延以及相位差之间的相互关系。研究了系统输入频率对系统性能的影响规律,找出了合理的输入频率限定,用来指导操作员的操作;研究了系统时延对系统性能的影响规律,由此就可以在系统时延未知的情况下,通过相位差推导出当前的系统时延;研究了系统时延与输入频率的相互关系,在系统时延增大的情况下,输入频率必须降低,才能保证相位差指标良好,系统操作性能良好。
     搭建了半实物仿真实验系统,分别在系统单边时延为1、3、5秒的情况下进行实验,验证了所设计的双边PD控制器的稳定性。通过分析不同时延下的实验曲线,验证了系统时延变化对相位差指标的影响规律。针对工程实践中遇到的时延跳变情况,由程序模拟时延跳变过程,实验结果表明在时延由1秒跳变为3秒时,双边控制系统保持稳定,操作性能良好。
With the development of space exploration, teleoperation technology will be used more and more widely. Bilateral control, which can apply in non-structure, unknown environment, is a very important method of teleoperation. In the system of bilateral control with force feedback and time delay, according to the difference of obtaining feedback force by operator, the bilateral control method can be divided into half closed loop and closed loop mode. In this paper, aiming at the mission requirements of space-orbit monitoring, we construct the system of bilateral control with force feedback adopting half closed loop method.
     Based on previous research, the performance index of the system of bilateral control with force feedback and time delay can be summarized as stability, transparency and tracking. Due to using the impedance of circuit theory to define transparency and tracking, it lacks of intuition and is difficult to measure, thus we propose a new kind of performance index - phase difference, which is easy to comprehend and simple to use. The practicability of the phase difference was validated by simulation experiment.
     Under the frame of the new performance index, we research on the system of bilateral control with force feedback and time delay.
     A model of bilateral control system of half closed loop is built up. The parameter constraint equations are obtained based on Lyapunov stability. Bilateral controllers are designed for simulation experiment with time delay of 0.5, 1.5, 3 and 5 seconds. The result of the experiment is analyzed with the index of phase difference, finds the rule by which the time delay affects the system performance, and provides guidelines for design of bilateral control system with large time delay.
     More study of the manipulation performance of the system is made with the assurance of stability of the system. The connection between the input frequency of the system and the index of phase difference is analyzed. As well as the connection between the time delay of the system and the index of phase difference. The rule by which the input frequency affects the system performance is analyzed. And a limitation of input frequency is obtained for directing the manipulator’s movement. The rule by which the time delay affects the system performance is analyzed, and based on the rule the unknown time delay of the system can be deduced from the phase difference. The connection between the time delay and the input frequency is studied, and find that the input frequency of the system must be decreased when the time delay of the system is increasing. Otherwise, the index of phase difference will be increasing, and the system performance of manipulation will be getting bad.
     We build a semi-simulation semi-practicality experiment system, do the experiment with 1, 3, 5 seconds unilateral delay respectively, validate the stability of the bilateral PD controller that we designed. By the analysis of the experiment curves under different time delay, validate the impact rule of the phase difference along with the variational time delay. For the variable time delay in engineering practice, simulating the time delay jump by the program, experiment results show that while the time delay from 1 second jump to 3 seconds, the bilateral control system is stable, in good working order.
引文
[1]邓启文.空间机器人遥操作双边控制技术研究:博士.长沙:国防科学技术大学,2006.
    [2]陈俊杰.空间机器人遥操作克服时延影响的研究进展.测控技术,2007,26(2):1-7.
    [3] Weisbin C R, Montemerlo M D. NASA’s Telerobotics Research Program. Journal of Applied Intelligence, 1992, 2:113-126.
    [4] Ono M, Machida K, Nagayama H. Advanced Space Telerobotics: Concept and Applications. iSAIRAS 1990. Kobe, Japan.
    [5] Hirzinger G, Brunner B, Dietrich J, Heindl J. ROTEX-The First Remotely Controlled Robot in Space. IEEE International Conference on Robotics and Automation. 1994, 2604-2608.
    [6] Imaida T, Yokokohji Y, Doi T, Oda M, Yoshikawal T. Ground-Space Bilateral Teleoperation Experiment Using ETS-VII Robot Arm with Direct Kinesthetic Coupling. IEEE International Conference on Robotics and Automation. 2001, 1031-1038.
    [7] Imaida T, Yokokohji Y, Doi T, Oda M, Yoshikawa T. Ground-Space Bilateral Teleoperation of ETS-VII Robot Arm by Direct Bilateral Coupling Under 7-s Time Delay Condition. IEEE Transactions on Robotics and Automation, 2004, 20(3):499-511.
    [8] Richard J P. Time-delay Systems: An Overview of Some Recent Advances and Open Problems. Automatica, 2003, 39:1667-1694.
    [9] Kwon D S, Ryu J H, Lee P M, Hong S W. Design of a Teleoperation Controller for An Underwater Manipulator. IEEE Transactions on Robotics and Automation, 2000, 3114-3119.
    [10] Goertz R C. Electronically Controlled Manipulator. Nucleonics, 1952, 10(11): 36-45.
    [11] Flemmer H, Eriksson B, Wikander J. Control Design and Stability Analysis of A Surgical Teleoperator. Mechatronics, 1999, 9: 843-866.
    [12]王亦红,黄惟一,宋爱国.力觉临场感遥控机器人系统的时延问题.自动化仪表,2002,23(7):7-9.
    [13] Niemeyer G, Slotine J J. Towards Force-Reflecting Teleoperation over the Internet. IEEE International Conference on Robotics and Automation, 1998, 1909-1915.
    [14] Lawn C A, Hannaford B. Performance Testing of Passive Communication and Control in Teleoperation with Time Delay. IEEE International Conference onRobotics and Automation, 1993, 776-783.
    [15]李焱.大时延遥操作技术及虚拟现实技术研究:博士.长沙:国防科学技术大学,2002.
    [16] Munir S. Internet Based Teleoperation: Ph.D. Georgia Institute of Technology, 2000.
    [17]董德尊.大时延遥操作机器人接触作业的遥编程技术研究:硕士.长沙:国防科学技术大学,2004.
    [18] Lawrence D A. Stability and Transparency in Bilateral Teleoperation. IEEE Transactions on Robotics and Automation, 1993, 9(5):624-637.
    [19] Tsuneo Y, Ueda J. Analysis and Control of Master-Slave Systems with Time Delay. IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996, 1366-1373.
    [20] Anderson R J, Spong M W. Bilateral Control of Teleoperators with Time Delay. IEEE Transactions on Automatic Control, 1989, 34(5):494-501.
    [21]费树岷,陈启宏,宋爱国.力觉临场感遥操作的研究进展.控制工程,2003,10(1):11-14.
    [22] Luo Z H, Sakawa Y. Control of A Space Manipulator for Capturing A Tumbling Object. Proceedings of the 29th Conference on Decision and Control. 1990, Hono lulu, Hawall.
    [23] Ni L Y, Wang D L. Contact Transition Stability Analysis for a Bilateral Teleoperation System. IEEE International Conference on Robotics and Automation, 2002, 3272-3277.
    [24]陈卫东,席裕庚,蔡鹤皋.力觉临场感遥操作系统的双向控制.机器人,1998,20(3):214-220.
    [25]邓启文,韦庆,李泽湘.大时延力反馈双边控制系统.机器人,2005,27(5):410-413.
    [26] Hannaford B. Stability and Performance Tradeoffs in Bilateral Telemanipulation. IEEE International Conference on Robotics and Automation. 1989, 1764-1767.
    [27] Hannaford B. A Design Framework for Teleoperators with Kinesthetic Feedback. IEEE Transactions on Robotics and Automation, 1989, 5(4):426-434.
    [28]李宽.基于绝对稳定性的空间机器人遥操作算法研究:硕士.长沙:国防科学技术大学,2007.
    [29] Eusebi A, Melchiorri C. Force Reflecting Telemanipulators with Time-Delay: Stability Analysis and Control Design. IEEE Transactions on Robotics and Automation, 1998, 14(4):635-640.
    [30] Xi N, Tarn T J. Stability Analysis of Non-Time Referenced Internet-Based Telerobotic Systems. Robotics and Autonomous Systems, 2000, 32:173-178.
    [31] Niemeyer G, Slotine J J. Stable Adaptive Teleoperation. IEEE Journal of Oceanic Engineering, 1991, 16(1):152-162.
    [32] Fridman E, Shaked U. On Delay-Dependent Passivity. IEEE Transactions on Automatic and Control, 2002, 47(4):664-669.
    [33] Raju G J, Verghese G C, Sheridan. Design Issues in 2-Port Network Models of Bilateral Remote Manipulation. IEEE Transactions on Robotics and Automation, 1989, 1316-1321.
    [34] Lawrence D A. Designing Teleoperator Architectures for Transparency. IEEE Transactions on Robotics and Automation, 1992, 1406-1411.
    [35]田小锋,宋爱国,黄惟一.空间机器人自适应无源控制技术研究.东南大学学报(自然科学版),2000,30(5):51-55.
    [36] Speich J E, Fite K, Goldfarb M. A Method for Simultaneously Increasing Transparency and Stability Robustness in Bilateral Telemanipulation. IEEE Transactions on Robotics and Automation, 2000, 2671-2676.
    [37]席建峰.大时延遥操作机器人接触作业的双边控制技术研究:硕士.长沙:国防科学技术大学,2004.
    [38] Chopra N, Spong M W, Ortega R, Barabanov N E. On Tracking Performance in Bilateral Teleoperation. IEEE Transactions on Robotics, 2006, 22(4):861-866.
    [39] Arcara P, Melchiorri C. Control Schemes for Teleoperation with Time Delay: A Comparative Study. Robotics and Autonomous Systems, 2002, 38:49-64.
    [40] Cho H C, Park J H. Impedance Controller Design of Internet-Based Teleoperation Using Absolute Stability Concept. IEEE Transactions on Robots and Systems, 2002, 2256-2261.
    [41] Strassberg Y, Goldenberg A A, Mills J K. A New Control Scheme for Bilateral Teleoperating Systems: Lyapunov Stability Analysis. IEEE Transactions on Robotics and Automation, 1992, 837-842.
    [42]陈惠开,吴新余,吴叔美.现代网络分析.北京:人民邮电出版社,1992.
    [43]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社,2002.
    [44]王正林,刘明.精通MATLAB7.北京:电子工业出版社,2006.
    [45]胡家耀,赵雅君.现代控制理论基础.北京:轻工业出版社,1990.
    [46]田小锋,黄惟一,宋爱国,吴涓.力觉临场感遥操作机器人系统的时延稳定性分析.制造业自动化,2001,23(8):15-17.
    [47] Oboe R, Fiorini P. A Design and Control Environment for Internet-Based Telerobotics. The International Journal of Robotics Research, 1998, 17(4):433-449.
    [48]吴敏,何勇.时滞系统鲁棒控制:自由权矩阵方法.北京:科学出版社,2008.
    [49]陈卫东,席裕庚,蔡鹤皋.力觉临场感系统的动力学建模及控制策略.上海交通大学学报,1999,33(5):584-587.
    [50]安宏雷.双边遥操作力反馈手控器研制:硕士.长沙:国防科学技术大学,2008.
    [51]张家祥,方凌江,毛全胜.基于MATLAB 6.x的系统分析与设计:虚拟现实.西安:西安电子科技大学出版社,2002.
    [52]蔡自兴.机器人学.北京:清华大学出版社,2000.
    [53]丁学恭.机器人控制研究.杭州:浙江大学出版社,2006.
    [54]理查德?摩雷(美),李泽湘,夏恩卡?萨斯特里(美).机器人操作的数学导论.北京:机械工业出版社,1997.
    [55]张铁,谢存禧.机器人学.广州:华南理工大学出版社,2001.
    [56]王庭树.机器人运动学及动力学.西安:西安电子科技大学出版社,1990.
    [57]郝文化.Windows多线程编程技术与实例.北京:中国水利水电出版社,2005.
    [58]郑阿奇.Visual C++实用教程(第3版).北京:电子工业出版社,2007.
    [59]多尔夫(美),毕晓普(美)著;邹逢兴等译.现代控制系统.北京:高等教育出版社,2001.
    [60]邓启文,韦庆,李泽湘.大时延力反馈遥操作系统的PID控制.宇航学报,2006,27(2):196-200.
    [61] Cho Y J, Kotoku T, Tanie K. Discrete-Event-Based Planning and Control of Telerobotic Part-mating Process with Communication Delay and Geometric Uncertainty. IEEE International Conference on Intelligent Robots and Systems, 1995, 2001-2006.
    [62] Cho H C, Park J H, Kim K, Park J O. Sliding-mode-Based Impedance Controller for Bilateral Teleoperation under Varying Time-Delay. IEEE International Conference on Robotics and Automation, 2001, 1025-1030.
    [63] Zhu W H, Salcudean S E. Teleoperation with Adaptive Motion/Force Control. IEEE International Conference on Robotics and Automation, 1999, 231-237.
    [64] Zhu W H, Salcudean S E. Stability Guaranteed Teleoperation: an Adaptive Motion/Force Control Approach. IEEE Transactions on Automatic Control, 2000, 45(11):1951-1969.
    [65] Leung C M H, Francis B A, Apharian J. Bilateral Controller of Teleoperation Systems with Time Delay viaμ-Synthesis, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700