变构菌素诱导乳腺癌细胞MCF-7凋亡机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变构菌素(Tautomycetin, TMC)作为一种新型的T细胞免疫抑制剂,具有独特的化学结构。目前有研究表明,TMC具有很好的抗肿瘤作用,有望成为极具潜力的抗癌药物,但其抗肿瘤的作用机制还没有被完全阐明。
     本研究首先通过MTT法测定了变构菌素对不同肿瘤细胞的细胞毒性,结果显示:变构菌素可以抑制乳腺癌细胞MCF-7、子宫颈癌细胞Hela、乳腺癌细胞MCF-7/ADR、肺癌细胞A549、黑色素瘤细胞B16等肿瘤细胞的生长,IC50(μM)分别为0.35、0.67、1.5、5.07、5.32。我们以乳腺癌细胞MCF-7为体外模型,初步探讨了TMC诱导乳腺癌细胞MCF-7凋亡的作用机制。
     为了进一步证明MTT法所得的结果,我们用流式细胞术对TMC处理的细胞进行了周期和凋亡分析。FCM检测结果表明,经0.5μM TMC处理24h后,G0/G1期细胞数量从43.38%上升到60.14%,S期细胞数量从35.83%降低到17.82%,表明TMC诱导了MCF-7细胞G1/S期阻滞。经0.5、1μM TMC处理24h后,MCF-7细胞早期凋亡率均高于对照组,且随着TMC浓度的升高而升高。Western blot检测凋亡效应因子caspase-7蛋白表达的结果显示,经TMC处理12和24h后,细胞pro-caspase-7蛋白表达明显降低,相应的活化的caspase-7蛋白表达明显升高,而加入caspase抑制剂Z-VAD-FMK后,TMC对MCF-7的细胞毒性受到了明显抑制,表明TMC是通过激活下游效应因子caspase-7诱导细胞凋亡的。
     Western blot检测凋亡相关蛋白的结果显示,经TMC处理12和24h后,细胞Bcl-2和pro-caspase-9蛋白表达均明显降低,cytochrome-c蛋白表达明显升高,而pro-caspase-8和p53蛋白表达无明显变化。同时,通过细胞转染及报告基因检测技术我们检测了TMC对p53转录活性的影响,结果显示TMC所引起的凋亡反应并不依赖于对p53转录的特异性激活反应。
     所得结果显示,TMC以时间和剂量依赖的方式诱导体外培养的乳腺癌细胞MCF-7凋亡,其作用通路为线粒体/细胞色素C介导的凋亡通路,凋亡机制为下调Bcl-2蛋白表达,引发cytochrome-c的释放以及caspase-9的活化,从而激活下游效应因子caspase-7,引起细胞凋亡,其作用并不依赖于p53,为进一步研究TMC抗肿瘤作用的机制与靶点,及其临床肿瘤治疗的可行性奠定了一定的理论基础。
Tautomycetin (TMC) is a novel T-cell immunosuppressor with unique chemical structure. It has been reported as a potential drug for cancer, and can inhibit the proliferation of cancer cells, but the molecular mechanisms have not been fully elucidated.
     Our studies showed that TMC could inhibit proliferation of different kinds of cancer cells in vitro including MCF-7, Hela, MCF-7/ADR, A549 and B16, the value of IC50 (μM) was 0.35, 0.35,0.67,1.5,5.07 and 5.32 respectively. We chose MCF-7 to continue our rearch.
     To confirm the results obtained from MTT assays, we analyzed the effects of TMC on cell cycle progression and apoptosis by flow cytometry assay. The results showed that,0.5μM TMC treatment caused an increase of the percentage of cells in the Gi phase from 43.38 to 60.14% and a decrease in the percentage of those in the S phase from 35.83 to 17.82%, which means TMC caused the G1/S cell cycle arrest in MCF-7 cells. When treated MCF-7 cells with 0.5 and 1μM TMC for 24h, the apoptosis rates were higher than that in control. Then we analyzed the effects of TMC on the expression of caspase-7 by western blot. The result showed that, treating MCF-7 cells with TMC resulted in caspase-7 activation, and the activation could be blocked by an caspase inhibitor, Z-VAD-FMK, indicating the important role of caspase-7 in TMC-induced apoptosis.
     We studied the expression of apoptosis related proteins by western blot, which showed that, when treated MCF-7 cells with TMC for 12 and 24h, Bcl-2 and pro-caspase-9 expression was down-regulated significantly, cytochrome-c expression was up-regulated, but there was no obvious difference between pro-caspase-8 and p53 expression and that in control. At the same time, we did some research on effects of TMC on p53 transcriptional activity in MCF-7 cells by transfection and transient reporter assay, the results showed that transcriptional activation of p53 is not required for TMC induced apopotosis in MCF-7 cells.
     The results indicated that TMC could induce apoptosis of MCF-7 cells in a time and dose dependent manner, the key regulators include Bcl-2, caspase-9, cytochrome-c and caspase-7, which are controlled through the intrinsic apoptosis pathway independent of p53.
引文
[1]Newman, D. J., G. M. Cragg and K. M. Snader, Natural products as sources of new drugs over the period 1981-2002. J Nat Prod,2003.66(7):p.1022-37.
    [2]Kuznetsov, G., et al., Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389. Cancer Res,2004.64(16):p.5760-6.
    [3]Lee, J.H., et al., Tautomycetin inhibits growth of colorectal cancer cells through p21cip/WAF1 induction via the extracellular signal-regulated kinase pathway. Mol Cancer Ther,2006.5(12):p.3222-31.
    [4]刘炳辉等,聚酮类化合物生物合成基因簇与药物筛选.生物技术通报,2008(4):第30-33页.
    [5]Shen, B., Polyketide biosynthesis beyond the type Ⅰ, Ⅱ and Ⅲ polyketide synthase paradigms. Curr Opin Chem Biol,2003.7(2):p.285-95.
    [6]孙宇辉与邓子新,聚酮化合物及其组合生物合成.中国抗生素杂志,2006(1):第6-14+18页.
    [7]Bohm, I., et al., Engineering of a minimal modular polyketide synthase, and targeted alteration of the stereospecificity of polyketide chain extension. Chem Biol,1998. 5(8):p.407-12.
    [8]Leadlay, P. F., Combinatorial approaches to polyketide biosynthesis. Curr Opin Chem Biol,1997.1(2):p.162-8.
    [9]Hopwood, D. A., Genetic Contributions to Understanding Polyketide Synthases. Chem Rev, 1997.97(7):p.2465-2498.
    [10]Donadio, S., et al., Modular organization of genes required for complex polyketide biosynthesis. Science,1991.252(5006):p.675-9.
    [11]Choi, S.S., et al., Isolation of the biosynthetic gene cluster for tautomycetin, a linear polyketide T cell-specific immunomodulator from Streptomyces sp. CK4412. Microbiology,2007.153(Pt 4):p.1095-102.
    [12]Ramsey, U. P., et al., Biosynthesis of domoic acid by the diatom Pseudo-nitzschia multiseries. Nat Toxins,1998.6(3-4):p.137-46.
    [13]Cheng, X. C., M. Ubukata and K. Isono, The structure of tautomycetin, a dialkylmaleic anhydride antibiotic. J Antibiot (Tokyo),1990.43(7):p.890-6.
    [14]MacKintosh, C. and S. Klumpp, Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A. FEBS Lett, 1990.277(1-2):p.137-40.
    [15]Li, W., et al., Characterization of the tautomycetin biosynthetic gene cluster from Streptomyces griseochromogenes provides new insight into dialkylmaleic anhydride biosynthesis. J Nat Prod,2009.72(3):p.450-9.
    [16]Mitsuhashi, S., et al., Tautomycetin is a novel and specific inhibitor of serine/threonine protein phosphatase type 1, PP1. Biochem Biophys Res Commun,2001. 287(2):p.328-31.
    [17]McCluskey, A., A. T. Sim and J. A. Sakoff, Serine-threonine protein phosphatase inhibitors:development of potential therapeutic strategies. J Med Chem,2002.45(6): p.1151-75.
    [18]Mitsuhashi, S., et al., Usage of tautomycetin, a novel inhibitor of protein phosphatase 1 (PP1), reveals that PP1 is a positive regulator of Raf-1 in vivo. J Biol Chem,2003. 278(1):p.82-8.
    [19]Roulston, A., et al., Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha. J Biol Chem,1998. 273(17):p.10232-9.
    [20]Kerr, J. F., A. H. Wyllie and A. R. Currie, Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,1972.26(4):p.239-57.
    [21]Verhagen, A.M., et al., Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell,2000.102(1):p.43-53.
    [22]Li, L. Y., X. Luo and X. Wang, Endonuclease G is an apoptotic DNase when released from mitochondria. Nature,2001.412(6842):p.95-9.
    [23]孙玉宁与王升启,以细胞凋亡通路为靶点的抗肿瘤分子治疗研究进展.国外医学.药学分册,2006(5):第321-324页.
    [24]Crow, M. T., et al., The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res,2004.95(10):p.957-70.
    [25]Pirnia, F., et al., Mitomycin C induces apoptosis and caspase-8 and -9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ,2002.9(9):p. 905-14.
    [26]Grzasko, N., [Involvement of apoptosis and proinflammatory cytokines in the pathogenesis of anemia in multiple myeloma]. Postepy Hig Med Dosw (Online),2004.58: p.364-71.
    [27]Sutheesophon, K., et al., Involvement of the tumor necrosis factor (TNF)/TNF receptor system in leukemic cell apoptosis induced by histone deacetylase inhibitor depsipeptide (FK228). J Cell Physiol,2005.203(2):p.387-97.
    [28]Green, D. R., Apoptotic pathways:paper wraps stone blunts scissors. Cell,2000.102(1): p.1-4.
    [29]Motoyama, N., et al., Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science,1995.267(5203):p.1506-10.
    [30]Cheng, E. H., et al., Conversion of Bcl-2 to a Bax-like death effector by caspases. Science,1997.278(5345):p.1966-8.
    [31]Tian, H. L., et al., A novel compound modified from tanshinone inhibits tumor growth in vivo via activation of the intrinsic apoptotic pathway. Cancer Lett,2010.297(1): p.18-30.
    [32]Alsabeh, R., et al., Expression of bcl-2 by breast cancer:a possible diagnostic application. Mod Pathol,1996.9(4):p.439-44.
    [33]Meek, D. W., The p53 response to DNA damage. DNA Repair (Amst),2004.3(8-9):p.1049-56.
    [34]Choi, J. and L.A. Donehower, p53 in embryonic development:maintaining a fine balance. Cell Mol Life Sci,1999.55(1):p.38-47.
    [35]Lane, D. P. and L. V. Crawford, T antigen is bound to a host protein in SV40-transformed cells. Nature,1979.278(5701):p.261-3.
    [36]Fridman, J. S. and S. W. Lowe, Control of apoptosis by p53. Oncogene,2003.22(56):p. 9030-40.
    [37]Caelles, C., A. Helmberg and M. Karin, p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature,1994.370(6486):p.220-3.
    [38]Kirsch, D. G. and M. B. Kastan, Tumor-suppressor p53:implications for tumor development and prognosis. J Clin Oncol,1998.16(9):p.3158-68.
    [39]刘民培与吴祖泽,肿瘤基因的一种新的功能分类与概念.中国肿瘤临床,2004(21):第57-60页.
    [40]Ikeguchi, M., M. Makino and N. Kaibara, Telomerase activity and p53 gene mutation in familial polyposis coli. Anticancer Res,2000.20(5C):p.3833-7.
    [41]Porter, P. L., et al., Widespread p53 overexpression in human malignant tumors. An immunohistochemical study using methacarn-f ixed, embedded tissue. Am J Pathol,1992. 140(1):p.145-53.
    [42]Attardi, L. D., et al., PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev,2000.14(6):p.704-18.
    [43]Liang, X. Q., et al., A P53 target gene, PIG11, contributes to chemosensitivity of cells to arsenic trioxide. FEBS Lett,2004.569(1-3):p.94-8.
    [44]Sprick, M. R. and H. Walczak, The interplay between the Bcl-2 family and death receptor-mediated apoptosis. Biochim Biophys Acta,2004.1644(2-3):p.125-32.
    [45]Wu, X. W., et al., Effect of bombesin on gut mucosal impairment after severe burn. Shock, 2002.18(6):p.518-22.
    [46]Wang, P., et al., [Cross-talk between nuclear factor-kappaB and P53 signal pathway in keratinocytes after ultraviolet B irradiation]. Zhonghua Yi Xue Za Zhi,2007.87(43): p.3088-91.
    [47]Sugars, K. L., et al., A minimal Bcl-x promoter is activated by Brn-3a and repressed by p53. Nucleic Acids Res,2001.29(22):p.4530-40.
    [48]Sayan, B. S., et al., p53 is cleaved by caspases generating fragments localizing to mitochondria. J Biol Chem,2006.281(19):p.13566-73.
    [49]Chang, N.S., A potential role of p53 and WOX1 in mitochondrial apoptosis (review). Int J Mol Med,2002.9(1):p.19-24.
    [50]Chipuk, J. E. and D. R. Green, Cytoplasmic p53:bax and forward. Cell Cycle,2004.3(4): p.429-31.
    [51]Tomita, Y., et al., WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem,2006.281(13): p.8600-6.
    [52]Leu, J. I., et al., Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcll complex. Nat Cell Biol,2004.6(5):p.443-50.
    [53]Perfettini, J. L., R. T. Kroemer and G. Kroemer, Fatal liaisons of p53 with Bax and Bak. Nat Cell Biol,2004.6(5):p.386-8.
    [54]Lane, D. P. and P.M. Fischer, Turning the key on p53. Nature,2004.427(6977):p.789-90.
    [55]Yee, K. S. and K. H. Vousden, Complicating the complexity of p53. Carcinogenesis,2005. 26(8):p.1317-22.
    [56]Nicholson, D. W. and N. A. Thornberry, Caspases:killer proteases. Trends Biochem Sci, 1997.22(8):p.299-306.
    [57]Arisan, E. D., et al., Small inhibitor of Bcl-2, HA14-1, selectively enhanced the apoptotic effect of cisplatin by modulating Bcl-2 family members in MDA-MB-231 breast cancer cells. Breast Cancer Res Treat,2010.119(2):p.271-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700