海上风电场VSC-HVDC柔性直流输电变流器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的不断发展,能源危机也越发严重。传统能源因其储量有限、造成大量污染等原因促使人们不断开发新能源。风能作为一种可再生的清洁能源在全球范围内储量丰富,加之土地资源日益紧缺、近海地域风储量富足,大力发展海上风电已成为解决能源危机的一个重要手段。柔性直流输电技术较比传统输电技术有诸多优势,将其广泛应用于近海风场风电的传输和并网连接也成为了发展海上风电的关键。
     本文着重研究基于电压源型变流器的柔性直流输电变流器(VSC-HVDC)。在介绍VSC-HVDC的基本控制原理的基础上,对其主电路和无源滤波系统的参数进行了详细的分析和计算,并基于同步旋转坐标系(d-q系)设计了海上风电场柔性直流输电变流器的双闭环矢量控制系统,实现了有功功率和无功功率的独立控制。同时针对柔性直流输电系统对变流器要求的大功率应用场合,设计了新型模块化级联多电平变流器(MMC),提出了将参考信号叠加平衡分量方法与电容排序法相结合以解决MMC存在的直流电容电压均压问题。利用仿真软件Matlab/Simulink对所设计的VSC-HVDC和MMC拓扑结构的控制方式进行了仿真验证,仿真结果证实了主电路和滤波系统参数选择的合理性以及所采用的控制方式的有效性
     采用TI公司的TMS320F28335DSP作为控制芯片搭建了VSC-HVDC实验系统,对双闭环矢量控制编写了DSP程序,同时基于触摸屏和PLC设计了上位操作界面及相应的通讯系统,验证了所设计的拓扑结构和控制方法的正确性。
     本文的研究对于海上风电场VSC-HVDC系统原理的研究具有一定的理论和实践意义,有助于大功率系统的进一步开发,以实现我国海上风电场VSC-HVDC输电系统的产业化。
Along with the global economy development, the energy crisis is growing more serious. The traditional energy, because of whose limited reserves and caused a lot of pollution, prompted people to develop renewable new energy. As a kind of renewable energy, Wind power has abundant reserves in the global range, coupled with growing shortage of land resources and rich wind energy storage on offshore areas, vigorously developing offshore wind business has become an important method to solve the energy crisis. Flexible HVDC transmission technology over the traditional technology has many advantages. It will be widely used in the transmission of the offshore wind farm and grid connection, which has become the key of offshore wind power development.
     This topic studies flexible high voltage direct current transmission based on voltage source converter which called VSC-HVDC system. According to the basic working principle of VSC-HVDC, this paper carries the parameters of the main circuit and filter on the detailed analysis and calculation. Then based on synchronization reference frame (d-q department), this paper designs the double loop vector control system for the offshore wind farms flexible HVDC converter, realized the active power and reactive power independent control. And in the light of converter requirements of the high power applications by flexible HVDC system, this paper designs the new module multilevel converter (MMC) and takes the method of weighting balance signals on reference and the method of sorting capacitance together to solve dc voltage sharing problem which existed in MMC. Using simulation software Matlab/Simulink simulates the designed topology structure and control mode of VSC-HVDC and MMC, simulation results confirm the main circuit and filtering system parameter selection rational and the control method effective
     Finally, using the TMS320F28335DSP which provided by TI Company as a control chip to built VSC-HVDC experiment system, wrote the DSP program On the double closed loop vector control, at the same time, based on PLC and touch screen interface, designs corresponding communication system and the experiments show the validity of the method which adopted by this paper.
     The research of this topic has certain theoretical and practical significance for offshore wind farms VSC-HVDC system theory research. It is helpful for the further development of the more system to realize the industrialization of the offshore wind farms VSC-HVDC transmission system in our country.
引文
[1]吴良健.海上风电场及双馈式风电机组的仿真分析[D].天津:天津大学. 2008.6
    [2]薛海梅.大型海上风力发电的开发[J].发电设备. 2007,23 (2):161-164
    [3]刘根东.全球海上风电发展状况[J].风力发电. 2003,4 (12):24-26
    [4]施鹏匕.风力发电的进展和趋势[J].中国电力. 2002,35 (9):86-90
    [5]刘颖,高辉.近海风电场发展的现状、技术、问题和展望.中国风能. 2006,7(3):41-46
    [6] Boon-Teck Ooi, Xiao Wang. Boost type PWM HVDC transmission system [J]. IEEE Transactions on Power Delivery, 1991,6(1): 1557-1563.
    [7] Boon-Teck Ooi, Xiao Wang. Voltage angle lock loop control of the boost type PWM converter for HVDC application [J]. IEEE Transactions on Power Delivery, 1990,5(2): 229-235.
    [8] Weixing Lu, Boon Teck Ooi. Multiterminal LVDC system for optimal acquisition of power in wind-farm using induction generators [J]. IEEE transactions on power electronics, 2002.17(4): 558-563.
    [9]徐政.高压直流输电与柔性交流输电控制装置---静止换流器在电力系统中的应用[M].北京:机械工业出版社,2006.
    [10]魏晓光.电压源换流器高压直流输电控制策略及其在风电场并网中的应用研究[D].北京:中国电力科学研究院,2007.
    [11]申张亮,郑建勇,梅军.基于改进虚拟空间矢量调制方法的中点箝位型三电平逆变器电容电压平衡问题[J].电力自动化设备, 2011,31(3):79-84.
    [12]刘洪涛.新型直流输电的控制与保护策略研究[D].浙江:浙江大学.2003.
    [13] Nojtaba Noroozian, Abdel-Aty Edris, David Kidd, et al. The potential use of voltage sourced converter based back-to-back tie in load restoration [J]. IEEE trans. on power delivery, 2003,18(4):1416-1421.
    [14]李庚银,吕鹏飞.轻型高压直流输电技术的发展和展望[J].电力系统自动化. 2003,27(4):1-5.
    [15] It’s time to connect– Technical description of HVDC Light technology[J], ABB power technology AB, 2005.
    [16] B.Jacobson, Y. Jiang-hafner, P. Rey, G. Asplund. HVDC with voltage source converters and extruded cables for up to±300kV and 1000MW[J]. Cigre session 2006, B4-105.
    [17]孙会洁. VSC-HVDC系统有功无功独立调节的控制策略与仿真研究[D].南宁:广西大学. 2008,6
    [18]殷自力. VSC-HVDC模拟实验系统的研究及实现[D].北京:华北电力大学. 2007,12
    [19]张桂斌.新型直流输电及其相关技术[D].浙江:浙江大学. 2001
    [20]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社. 2003:10:148-154
    [21]孙蔚. LCL滤波器的PWM整流器控制策略研究[D].北京:中国矿业大学. 2009.12
    [22]周杨.基于LCL滤波器的风力发电网侧变换器的研究[D].北京:华北电力大学. 2010.3
    [23]赵强.带LCL滤波器的新能源并网发电用三相PWM变换器研究[D].北京:中国石油大学. 2009.5
    [24] Gu B,Nam K.A DC-Link capacitor minimization method through direct capacitor current control[J].IEEE Trans Ind.Appl.,2006,42(2):573-581
    [25]周国梁.基于电压源换流器的高压直流输电系统控制策略研究[D].北京:华北电力大学. 2009.4
    [26]李响,王志新,刘文晋.海上风电柔性直流输电变流器的研究与开发[J].电力自动化设备,2009,29(2):10-14.
    [27]黄川,王志新,王国强等.海上风电场三电平VSC-HVDC系统仿真研究[J].电力电子技术,2011,45(8):89-93。
    [28]刘凤君.多电平逆变技术及应用[M].北京,机械工业出版社,.2007:94-103
    [29]屠卿瑞,徐政,郑翔等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010,36(2):547-552.
    [30]刘钟淇,宋强,刘文华.基于模块化多电平变流器的轻型直流输电系统[J].电力系统自动化,2010,34(2):53-58.
    [31] Lie Xu, Bjame R., Phillip Cartwright. VSC Transmission Operating Under Unbalanced AC Conditions—Analysis and Control Design [J]. IEEE Transactions on Power Delivery, 2005,20(1):427-434.
    [32] Hagiwara M, Akagi H. PWM control and experiment of modular multilevel converters[C]. Power Electronics Specialists Conference, Rhodes. IEEE, 2008 :154-161.
    [33] Makoto Hagiwara, Hirofumi Akagi, Control and experiment of pulsewidth-modulated modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2009, 24(7):1737-1746.
    [34]王国强,王志新.基于DPC的海上风场VSC-HVDC变流器控制策略[J].电力自动化设备,2011,31(7):115-119.
    [35] Steffen Rohner, Steffen Bernet, Marc Hiller, Analysis and simulation of a 6kV, 6MVA modular multilevel converter[C]. Industrial Electronics 35th Annual Conference, Porto.IEEE, 2009 :225-230.
    [36] Gemmell B, Dorn J, Retzmann D, et al. Prospect of multilevel VSC technologies for power transmission[C]. Transmission and Distribution Conference, Chicago, IL. IEEE, 2008:1-16.
    [37]梁海峰.柔性直流输电系统控制策略研究及其实验系统的实现[D].北京:华北电力大学.2009.5
    [38]吴作明.工控组态软件与PLC应用技术[M].北京:北京航空航天大学出版社.2007:1-6.
    [39]李江全,刘荣,李华等.西门子S7-200PLC数据通信及测控应用[M].北京:电子工业出版社,2011:94-156.
    [40]蔡慧勇.基于DSP的轻型直流输电动态模拟系统控制策略的研究与实现[D].上海:上海交通大学,2007,2.
    [41]孙国印. IGBT模块应用中过电压的抑制[J].电力电子技术.2002,36(4):73-74
    [42]宋小权.基于DSP和CPLD的轻型直流输电动态模拟换流控制系统的研究与设计[D].上海:上海交通大学,2007,2.
    [43] Loft Heustess.TMS320x280x to TMS320x2833x or 2823x Migration Overview[J].Texas Instrument Application Report. 2008,7.
    [44] Andrew Soukup.Enabling Greener Embedded Control systerns with Floating Point DSCs[J].Texas Instruments White Paper,2008,5.
    [45] Lidong Zhang, Harnefors, Nee. Interconnection of Two Very Weak AC Systems by VSC-HVDC Links Using Power-Synchronization Control[J]. Power System. IEEE. 2011,26(1):344-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700