主动配电网PWM变流器动态高品质控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源压力加大和环保意识的提升,风力发电、光伏发电等可再生能源发电比重不断增加,高渗透率下新能源发电的不间断随机接入给配电网带来新的挑战。主动配电网是实现大规模间歇式新能源并网运行控制、电网与充放电设备互动、智能配用电等电网分析与运行关键技术的有效解决方案。然而,主动配电网还处在发展阶段,尚有许多亟待解决的理论问题和技术问题。如何研制相关智能电力设备并进行电压调节、无功补偿、谐波治理和可再生能源转换和接入成为电力电子设备层面的突出问题。本文针对主动配电网背景下电能质量和电能转换的共性关键技术问题进行研究,以脉冲宽度调制(pulse width modulation, PWM)变流器为研究对象,以实现动态和高品质控制效果为研究目的,进行了数学建模和功率分析、信号检测、控制方法研究、实验平台研制和数字信号处理器(digital signal processor, DSP)控制系统实现。完成从理论分析、仿真研究、实验验证到具体程序的代码实现,以便为主动配电网相关智能电力设备研制提供相应的理论保证和技术支撑。全文主要工作如下:
     1)建立数学模型和进行功率分析计算。采用开关函数描述法建立三相电压型PWM变流器在abc静止坐标系下的数学模型。由瞬时功率理论得到abc静止坐标系下功率计算公式;利用坐标变换方法,分析得到等量变换和等功率变换αβ止坐标系和dq同步旋转坐标系下的功率计算。
     2)针对单相系统电压暂降和电压定向信号的检测,提出一种新型检测方法。根据单相交流电压信号离散数据,利用相线电压相量关系,通过移相角度30°虚构出三相电压信号。本文提出的检测方法幅值变化延时仅为电网工频周期的1/12,理论延时为1.67ms,与目前延时3.33ms的瞬时电压dq分解法和延时5.Oms的αβ测法相比,实时性进一步提高。三相系统采用此方法,可减少交流电压检测的传感器数量,降低系统设计成本。给出了具体实现方法和仿真结果。
     3)提出一种新型准直接功率控制方法。从PWM控制的基本原理出发,对传统直接功率控制开关表调制机理进行深入分析,对其开关表调节有功功率和无功功率能力作出解释,分析选择不同零矢量的原因,并指出基于开关表结构的功率滞环控制的不足。针对PWM变流器主要实现整流和逆变功能,从电力系统瞬时有功功率和无功功率控制的角度,提出一种新型准直接功率控制策略。采用内环定频,外环功率的结构,满足功率流向控制的同时兼顾电流内环保护。同时给出控制器参数设计方法和控制仿真结果,仿真结果表明实现PWM变流器的动态高品质控制目标。
     4)提出基于abc坐标下的PWM变流器自然坐标控制方法,包括直接电流控制方法,无交流电压传感器控制方法和直接功率控制方法。由电压传感器采集交流侧三相电源经计算得到有功单位分量和无功单位分量实现矢量控制效果。对PWM变流器交流侧的相电压直接进行工程积分代替传统的微分方法,获得每相磁链的近似值,通过相电压估算和磁链估算模块实现无交流电压传感器控制。按照新型准直接功率控制策略的思想,采用功率外环电流内环的方法,完成基于自然坐标下的直接功率控制。本文提出的基于自然坐标的控制方法,不需要进行坐标变换和三角函数计算,物理概念清晰。给出PWM变流器基于自然坐标控制方法的稳态和动态仿真结果,仿真结果表明实现PWM变流器的动态高品质控制目标。
     5)为进行实验研究,按照V模式开发流程基于dSPACE核心平台研制了PWM变流器实时控制综合平台。设计了主电路、测量电路、驱动电路、故障检测和保护电路、电源电路等具体电路。进行了配电网静止同步补偿器(distribution static synchronous compensator, DSTATCOM)、动态电压恢复器(dynamic voltage restorer, DVR)、统一电能质量调节器(unified power quality conditioner, UPQC)等配电网电能质量控制实验和PWM变流器整流、逆变电能转换实验。给出相应的动静态实验测试结果,与仿真结果相符,算法比较实验表明本文提出的控制算法进一步提高了系统的动静态特性,实验结果表明实现PWM变流器的动态高品质控制目标。
     6)研制了基于DSP控制的PWM变流器控制系统。采用32位高性能处理器TMS320F2812,研制了50kvar容量的DSTATCOM实验样机,给出详细的实现过程、实验测试和实验结果。
     本文的仿真结果和实验结果表明,所提出的信号检测方法和PWM变流器控制方法,具有较好的实时检测性能和控制性能,对研究电能质量控制器和电能转换系统可起到一定的理论保证和技术支撑作用,系统设计也可为研制相关智能电力设备提供参考。
Continuously increasing growth of renewable energy generation such as wind turbine(WT) and photovoltaic(PV) is posing new challenges to distribution network with increasing pressure on energy and environmental protection. The active distribution network(ADN) is an effective approach to solve the problems such as the high-penetration of intermittent renewable energy, interaction between grid and charge-discharge facilities, and also the analysis and operation of smart grid. However, the ADN is still in the development stage and there are many urgent theoretical and technical issues to be solved. A key issue of power electronic devices in distribution system is to develop the intelligent power devices in order to match the growing demand for different purposes, such as voltage regulation, reactive power compensation, harmonic suppression, energy conversion and the integration of renewable distributed generation(DG). In this dissertation, the key technologies of power quality and energy conversion in ADN are researched. The research subject is the control methods for pulse width modulation(PWM)converter with fast dynamic response and high quality of the current and voltage waveforms. The main contents include mathematical model and power analysis, voltage sag detection, control method, experimental platform development and digital signal processor(DSP) control system implementation. The process of theoretical analysis, simulation study, experimental verification and DSP code programming are proposed in order to provide appropriate assurance and technical support for development of intelligent power devices in AND system. The main contents of this dissertation are proposed as the following:
     1) The mathematical models, analysis and calculations of power for PWM converter are proposed. In abc stationary coordinate, the mathematical models of three-phase voltage-source PWM converter are presented using switching function description method and the calculation formulas of active power and reactive power are derived with the instantaneous power theory. Further, the power calculation equations under different coordinate systems such as αβ stationary frame and dq synchronous rotating frame are analyzed by Clarke transformation and Park transformation, respectively.
     2) A novel voltage sag detection method for single-phase voltage system is presented. With the sampling discrete data, a fictitious three-phase system is created from a reference single-phase voltage with30°phase angle shift according to phasor relationship phase voltage and line voltage. The delay time of proposed detection method is just1/12grid period and the theoretical delay time is1.67ms, which is faster than the instantaneous voltage dq conversion method with3.33ms delay and the αβ detection method with5.0ms delay, respectively. The sensor number and the design costs of three-phase system can be reduced using the proposed method. The implementation process and simulation results are presented.
     3) A novel quasi direct power control(DPC) method with fixed switching frequency is proposed. The principle of switching table modulation mechanism are discussed and the explanation of control effect to active and reactive power with different space vector from switching table is introduced in detail, respectively. The reasons for choosing different zero vectors are analyzed and the defects of power hysteresis control based on switching table are discussed. A novel quasi DPC method is proposed with the idea that PWM converter functions for rectifier and inverter, and power system control for instantaneous active and reactive power are considered simultaneously. The novel quasi DPC method with fixed switching frequency can not only control the instantaneous active and reactive power, but also give rapid regulation and protection for internal current loop. The design of controller parameters and simulation results are given and the results show the excellent performance of the proposed method for PWM converter control.
     4) Control methods for PWM converter based on abc coordinate, named natural coordinate in this dissertation, including direct current control(DCT), without line voltage sensors control and natural coordinate direct power control(NC-DPC), are presented. The unit vectors of active and reactive power in phase are derived using the three-phase voltages and a quadrature transformation. The total reference currents, which are equivalent to vector control, can be computed with the unit vectors. The sensorless control system is based on phase voltage estimation and virtual flux(VF) estimation. The VF are estimated using phase voltage of PWM converter with project integrator instead of traditional derivation. In NC-DPC, there are internal current loop and external power loop. Compared to the conventional control method, the natural coordinate control method has some advantages, such as no coordinate transformation, no trigonometric function and clear physical concept. The steady and transient simulation results are given and the results show the excellent performance of the proposed method for PWM converter control.
     5) A PWM converter integrated real-time control platform based on dSPACE is developed for experimental tests according to the V-cycle development process. The power circuit, voltage and current measurement circuit, PWM drive circuit, power supply circuit, fault diction and protection circuit are designed. The experimental tests for power quality and energy conversion are introduced including distribution static synchronous compensator(DSTATCOM), dynamic voltage restorer(DVR), unified power quality conditioner(UPQC), PWM rectifier/inverter and so on. The corresponding static and dynamic experimental results are given, and show the excellent performance of the proposed method for PWM converter control. The dynamic and static characteristics are improved compared to the method of DPC-SVM.
     6) A PWM converter control system is developed based on DSP. The development of50kvar DSTATCOM experimental prototype based on32-bit high-performance processor TMS320F2812is proposed. The implementation process, experimental tests and experimental results are introduced in detail.
     The simulation results and experimental results in this dissertation show that the proposed method of signal detection and control method for PWM converter has better detection performance and real-time control performance. The research can play a certain theory assurance and technical support for the study of power quality controller and power conversion systems and the system implementation can also provide a reference for the development of intelligent power equipments.
引文
[1]刘振亚.大力发展特高压技术,推动能源利用方式创新与变革[C].2009特高压输电技术国际会议,北京,中国,2009.
    [2]张文亮,刘壮志,王明俊,等.智能电网的研究进展及发展趋势[J].电网技术,2009,33(13):1-11.
    [3]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7.
    [4]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报,2009,29(34):1-8.
    [5]Guerrero J M, Chandorkar M, Lee T, et al. Advanced control architectures for intelligent microgrids-Part Ⅰ:Decentralized and hierarchical control[J]. IEEETransactions on Industrial Electronics,2013,60(4):1254-1262.
    [6]Enslin J H R, Heskes P J M. Harmonic interaction between a large number of distributed power inverters and the distribution network[J]. IEEE Transactions on PowerElectronics, 2004,19(6):1586-1593.
    [7]Bollen M H, Hassan F. Integration of distributed generation in the power system[M]. Wiley-IEEE Press,2011.
    [8]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,32(20):1-4.
    [9]Lasseter R H. Microgrids[C]//IEEE Power Engineering Society Winter Meeting. Columbus, Ohio, USA:IEEE,2001:146-149.
    [10]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14,23.
    [11]鲁宗相,王彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,31(19):100-107.
    [12]D'Adamo C, Jupe S, Abbey C. Global survey on planning and operation of active distribution networks:update of CIGRE C6.11 working group activities[C]//CIRED 2009(20th International Conference on Electricity Distribution). Prague, CZ:IET Services Ltd,2009: 1-4.
    [13]范明天.2010年国际大电网会议配电系统及分散发电组研究进展与方向[J].电网技术,2010,34(12):6-10.
    [14]Pilo F, Pisano G, Soma G G. Optimal coordination of energy resources with atwo-stage online active management[J]. IEEE Transactions on Industrial Electronics,2011,10(58): 4526-4537.
    [15]Borges C L T, Martins V F. Multistage expansion planning for active distribution networks under demand and distributed distributed generation uncertainties[J]. Electrical Powe & Energy Systems,2012,36(1):107-116.
    [16]Khalesi N, Rezaei N, Haghifam M R. DG allocation with application of dynamic programming for loss reduction and reliability improvement[J]. Electrical Powe & Energy Systems,2012,33(2):288-295.
    [17]Martins V F, Borges C L T. Active distribution network integrated planning incorporating distributed generation and load response uncertainty[J]. IEEE Transactions on Power Systems,2011,26(4):2164-2172.
    [18]尤毅,刘东,于文鹏,等.主动配电网技术及其进展[J].电力系统自动化,2012,36(18):10-16.
    [19]范明天,张祖平,苏傲雪,等.主动配电系统可行技术的研究[J].中国电机工程学报,2013,33(22):12-18.
    [20]张文亮,汤广福,查鲲鹏,贺之渊.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010,30(4):1-7.
    [21]郑健超.智能电力设备与半波长交流输电[C].中国电机工程学会第九次全国会员大会学术报告会,北京,中国,2009.
    [22]Huang A Q, Crow M L, Heydt G.T, et al. The Future Renewable Electric Energy Delivery and Management (FREEDM) System:The Energy Internet[J]. Proceedings of the IEEE, 2011,99(1):133-148.
    [23]Chowdhury B H. Power quality[J]. IEEE Potentials,2001,20(2):5-11.
    [24]程浩忠,艾芊,张志刚等.电能质量[M].北京:清华大学出版社,2006.
    [25]林海雪.现代电能质量的基本问题[J].电网技术,2001,25(10):10-12.
    [26]肖湘宁,徐永海.电能质量问题剖析[J].电网技术,2001,25(3):66-69.
    [27]Kusko A, Thompson M T. Power Quality in Electrical Systems[M]. New York:McGraw-Hill Inc., 2007.
    [28]Hingorani N G. Introducing custom power[J]. IEEE Spectrum,1995,32(6):44-48.
    [29]Pal Y, Swarup A, Singh B. A review of compensating type custom power devices for power quality improvement[C]. Power System Technology and IEEE Power India Conference, New Delhi, India, 2008.
    [30]罗安.电网谐波治理和无功补偿技术及装备[M].北京:中国电力出版社,2006.
    [31]Asiminoaei L, Rodriguez P, Blaabjerg F. Application of discontinuous PWM modulation in active power filters[J]. IEEE Transactions on Power Electronics,2008,23(4):1692-1706.
    [32]乐江源,谢运祥,张志,等.三相有源电力滤波器精确反馈线性化空间矢量PWM复合控制[J].中国电机工程学报,2010(15):32-39.
    [33]Verma V, Singh B. Design and implementation of a current-controlled parallel hybrid power filter[J]. IEEE Trans. on Industry Applications,2009,45(5):1910-1917.
    [34]Fujita H, Akagi H. Voltage-regulation performance of a shunt active filter intended for installation on a power distribution system[J]. IEEE Transactions on Power Electronics,2007,2(3):1046-1053.
    [35]Asiminoaei L, Blaabjerg F, Hansen S, et al. Adaptive compensation of reactive power with shunt active power filters[J]. IEEE Transactions on Industry Applications,2008,44(3):867-877.
    [36]Vodyakho O, Kim T, Kwak S, et al. Comparison of the space vector current controls for shunt active power filters[J]. IET Power Electronics,2008,2(6):653-664.
    [37]韩民晓,尤勇,刘昊.线电压补偿型动态电压恢复器(DVR)的原理与实现[J].中国电机工程学报,2003,23(12):49-53.
    [38]王同勋,薛禹胜,Choi S S.动态电压恢复器研究综述[J].电力系统自动化,2007,31(9):101-107.
    [39]Ali Y G, Seyed H H, Mehran S, et al. Three-phase HFL-DVR with independently controlled phases[J]. IEEE Transactions on Power Electronics,2012,27(4):1706-1718.
    [40]Cheng P T. Chen J M, Ni C L. Design of a state-feedback controller for series voltage-Sag compensators[J]. IEEE Transactions on Industry Application,2009,45(1):260-267.
    [41]Barros J D, Silva J F. Multilevel optimal predictive dynamic voltage restorer[J]. IEEE Transactions on Industrial Electronics,2010,57(8):2747-2760.
    [42]Andres E L, Marcelo F F, Jorge A S, et al. Control strategy of a DVR to improve stability in wind farms using squirrel-cage induction generators[J]. IEEE Transactions on Power Systems,2011, 26(3):1609-1617.
    [43]邓卫华,张波,丘东元.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103.
    [44]李冬,阮新波.高效率的BOOST型功率因数校正预调节器[J].中国电机工程学报,2004,2(10):153-156.
    [45]Garcia O, Cobos J A, Prieto R, et al. Single phase power factor correction:a survey [J]. IEEE Transactions on Power Electronics,2003,18(3):749-755.
    [46]AL-Saffar M A, Ismail E H, Sabzali A J. Integrated buck-boost quadratic buck PFC rectifier for universal input applications[J]. IEEE Transactions on Power Electrics,2009,24(12):2886-2896.
    [47]Zhang Q, HuHB, Osama A R, et al. A snubber cell for single-stage PFC with a boost type input current shaper and isolated DC/DC converter[C]//IEEE Energy Conversion Congress and Exposition. Phoenix, AZ, United State:IEEE,2011:2609-2613.
    [48]许树楷,宋强,刘文华,等.配电系统大功率交流电弧炉电能质量问题及方案治理研究[J].中国电机工程学报,2007,27(19):93-98.
    [49]罗安,欧剑波,唐杰,等.补偿配电网电压不平衡的静止同步补偿器控制方法研究[J].中国电机工程学报,2009,29(6):55-60.
    [50]Singh B, Saha R, Chandra A, et al. Static synchronous compensators (STATCOM):a review[J]. IET Power Electronics,2009,2(4):297-324.
    [51]Hill J E. A practical example of the use of distribution static compensator (D-STATCOM) to reduce voltage fluctuations[C]. IEE Colloquium on Power Electronics for Renewable Energy, London, UK,1997.
    [52]Sensarma P S, Padiyar K R, Ramanarayanan V. Analysis and performance evaluation of a distribution STATCOM for compensation voltage fluctuations[J]. IEEE Transactions on Power Delivery,2001, 16(2):259-264.
    [53]Ghosh A, Ledwich G. Load compensating DSTATCOM in weak AC systems[J]. IEEE Transactions on Power Delivery,2003,18(4):1302-1309.
    [54]Shukla A, Ghosh A, Joshi A. State feedback control of multilevel inverters for DSTATCOM application [J]. IEEE Transactions on Power Delivery,2007,22(4):2409-2418.
    [55]Singh B, Jayaprakash P, Kothari D P. A T-connected transformer and three-leg VSC based DSTATCOM for power quality improvement[J]. IEEE Transactions on Power Electronics,2008, 23(6):2710-2718.
    [56]Shukla A, Ghosh A, Joshi A. Control schemes for DC capacitor voltages equalization in diode-clamped multilevel inverter-based DSTATCOM [J]. IEEE Transactions on Power Delivery, 2008,23(2):1139-1149.
    [57]George V, Mishra M K. Design and analysis of user-defined constant switching frequency current-control-based four-leg DSTATCOM[J]. IEEE Transactions on Power Electronics,2009. 24(9):2148-2158.
    [58]万健如,裴玮,张国香.统一电能质量调节器同步无差拍控制方法研究[J].中国电机工程学报,2005,25(13):63-67.
    [59]Fuji H, Akagi H. The unified power quality conditioner:the integration of series- and shunt-active filters[J]. IEEE Transactions on Power Electronics,1998,13(2):315-322.
    [60]梁祖权,束洪春,刘志坚.新型统一电能质量调节器解耦控制方法[J].中国电机工程学报,2009,29(19):99-104.
    [61]Khadkikar V. Enhancing electric power quality using UPQC:a comprehensive overview[J]. IEEE Transactions on Power Electronics,2012,27(5):2284-2297.
    [62]Moran S. A line voltage regulator/conditioner for harmonic-sensitive load isolation[C]. the 1989 IEEE/Industry Applications Society Annual Meeting,1989,947-951.
    [63]Muthu S, Kim J M S. Steady-state operating characteristics of unified active power filters[C]. Applied Power Electronics (APEC),1997,199-205.
    [64]Kamran F, Habetler T G. Combined deadbeat control of a series-parallel converter combination used as a universal power filter[J]. IEEE Transactions on Power Electronics,1998,13(1):160-168.
    [65]Aredes M, Heumann K, Watanabe E H. An universal active power line conditioner[J]. IEEE Transactions on Power Delivery,1998,13(2):545-551.
    [66]Graovac D, Katic V, Rufer A. Power quality compensation using universal power quality conditioning system[J]. IEEE Power Engineering. Review,2000,20(12):58-60.
    [67]Singh B N, Chandra A, Al-Haddad K, et al. Fuzzy control algorithm for universal active filter[C]. Harmonics and Quality of Power,1998,73-80.
    [68]Eakburanawat J, Darapong P, Yangyuen U, et al. A simple control scheme of single phase universal active filter for power quality improvement[C]. IEEE TENCON,2004,248-251.
    [69]Prieto J, Salmeron P, Vazquez J R, et al. A series-parallel configuration of active power filters for Var and harmonic compensation[C]. Industrial Electronics Society,2002,2945-2950.
    [70]Prieto J, Salmeron P, Herrera R S. A unified power quality conditioner for wide load range:Practical design and experimental results[C]. Power Tech.,2005,1-7.
    [71]Gyugyi, L. Unified power-flow control concept for flexible AC transmission systems[J]. IEE Proceedings-C Generation, Transmission and Distribution,1992,139(4):323-331.
    [72]Xu L, Agelidis V G, Acha E. Development considerations of DSP-controlled PWM VSC-based STATCOM[J]. IEE Proceedings Electric Power Applications,2001,148(5):449-455-
    [73]Singh B, Al-Haddad K, Chandra A. A review of active filters for power quality improvement[J]. IEEE Transactions on Industrial Electronics,1999,46(5):960-971.
    [74]El-Habrouk M, Darwish M K, Mehta P. Active power filters:a review[J]. IEE Electric Power Applications,2000,147(5):403-413.
    [75]Meli n P E, Espinoza J R, Munoz J A, et al. Decoupled control of a unified power quality conditioner based on a current source topology for fast AC mains disturbance compensation[C]. Industrial Technology (ICIT),2010,730-736.
    [76]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿(第二版)[M].北京:机械工业出版社,2006.
    [77]Chakraborty S, Weiss M, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics,2007, 54(1):97-109.
    [78]Rong Y, Li C, Tang H, et al. Output feedback control of single-phase UPQC based on a novel model[J]. IEEE Transactions on Power Delivery,2009,24(3):1586-1597.
    [79]Chakraborty S, Simoes M G. Experimental evaluation of active filtering in a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Energy Conversion,2009,24(3):673-682.
    [80]Kolhatkar Y, Das S. Experimental investigation of a single-phase UPQC with minimum VA loading[J]. IEEE Transactions on Power Delivery,2007,22(1):371-380.
    [81]Nasiri A, Emadi A. Different topologies for singlephase unified power quality conditioners[C]. Industrial Applications conference (IAS),2003,976-981.
    [82]Kwan K H, ChuYC, So P L. Model-based H-∞ control of a unified power quality conditioner[J]. IEEE Transactions on Industrial Electronics,2009,56(7):2493-2504.
    [83]Han B, Bae B, Kim H, et al. Combined operation of unified power-quality conditioner with distributed generation[J]. IEEE Transactions on Power Delivery,2006,21(13):330-338.
    [84]Khadkikar V, Chandra A. A new control philosophy for a unified power quality conditioner (UPQC) to coordinate load-reactive power demand between shunt and series inverters[J]. IEEE Transactions on Power Delivery,2008,23(4):2522-2534.
    [85]Axente I, Ganesh J N, Basu M, et al. A 12-kVA DSP-controlled laboratory prototype UPQC capable of mitigating unbalance in source voltage and load current[J]. IEEE Transactions on Power Electronics,2010,25(6):1471-1479.
    [86][41] Axente I, Basu M, Conlon M F, et al. Protection of unified power quality conditioner against the load side short circuits[J]. IET Power Electronics,2010,3(4):542-551.
    [87]Lee W C, Lee D M, Lee T K. New control scheme for a unified power-quality compensator-Q with minimum active power injection[J]. IEEE Transactions on Power Delivery,2010,25(2):1068-1076.
    [88]Khadkikar V, Chandra A. A novel structure for three-phase four-wire distribution system utilizing unified power quality conditioner (UPQC)[J]. IEEE Transactions on Industry Applications,2009, 45(5):1897-1902.
    [89]Chen S, Joos G. Rating issues of unified power quality conditioners for load bus voltage control in distribution systems[C]. Power Engineering Society Winter Meeting (PESGM),2001,944-949.
    [90]王群,耿云玲,何益宏.不同系统联结方式下通用电能质量控制器的功率分析[J].中国电机工程学报,2005,25(21):98-105.
    [91]Jindal A K, Ghosh A, Joshi A. Interline unified power quality conditioner[J]. IEEE Transactions on Power Delivery,2007,22(1):364-372.
    [92]Han B, Bae B, Jang G. New configuration of UPQC for medium-voltage application[J]. IEEE Transactions on Power Delivery,2006,21(3):1438-1444.
    [93]Lai J S, Peng F Z. Multilevel converters-a new breed of power converters[J]. IEEE Transactions on Industry Applications,1996,32(3):509-517.
    [94]Rodriguez J, Lai J S, Peng F Z. Multilevel inverters:a survey of topologies, controls, and applications [J]. IEEE Transactions on Industrial Electronics,2002,49(4):724-738.
    [95]Rodriguez J, Franquelo L G, Kouro S, et al. Multilevel converters an enabling technology for high-power applications [J]. Proceedings of the IEEE,2009,97(11):1786-1817.
    [96]Rubilar I, Espinoza J, Munoz J, et al. DC link voltage unbalance control in three-phase UPQCs based on NPC topologies[C]. Indust. Electro. Appls. (IECON),2007,597-602.
    [97]Farokhnia N, Fathi S H, Toodeji H R. Voltage sag and unbalance mitigation in distribution systems using multilevel UPQC[C]. Power Quality Conf. (PQC),2010,1-5.
    [98]Mastromauro R, Liserre M, Dell'Aquila A. Single-phase grid-connected photovoltaic systems with power quality conditioner functionality[C]. Power Electro. Appls,2007,1-11.
    [99]Davari M, Ale-Emran S M, Yazdanpanahi H, et al. Modeling the combination of UPQC and photovoltaic arrays with Multi-Input Single-Output DC-DC converter[C]. Power Systems Conference & Exposition,2009,1-7.
    [100]Toodeji H, Fathi S H, Gharehpetian G B, et al. Power management and performance improvement in integrated system of variable speed wind turbine and UPQC[C]. Clean Electrical Power,2009, 609-614.
    [101]谭智力,李勋,陈坚,等.基于简化p-q-r理论的统一电能质量调节器控制策略[J].中国电机工程学报,2007,27(36):85-91.
    [102]Khadkikar V, Agarwal P, Chandra A, et al. A simple new control technique for unified power quality conditioner (UPQC)[C].11th International Conference on Harmonics and Quality of Power, Lake Placid, NY, United States,2004.
    [103]朱鹏程,李勋,康勇,等.统一电能质量控制器控制策略研究[J].中国电机工程学报,2004,24(8):67-73.
    [104]Akagi H, Kanazawad Y, Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Transactions on Industry Applications,1984, 20(3):625-630.
    [105]Bhattacharya S, Divan D. Synchronous frame based controller implementation for a hybrid series active filter systems[C].1995 IEEE Industry Applications Conference, Orlando, Florida, USA, 1995.
    [106]Khadkikar V, Chandra A, Singh B N. Generalized single-phase p-q theory for active power filtering: Simulation and DSP based experimental investigation[J]. IET Power Electronics,2009,2(1):67-78.
    [107]李鹏,杨以涵.基于H∞控制理论的UPQC串并联单元协调控制的实现[J].中国电机工程学报,2006,26(20):91-97.
    [108]黄敏,查晓明,陈允平.并联型电能质量调节器的模糊变结构控制[J].电网技术,2002,26(7):11-14.
    [109]Tey L H. So P L, Chu Y C. Unified power quality conditioner for improving power quality using ANN with hysteresis control[C].2004 International Conference on Power System Technology, Singapore,2004.
    [110]时颖,周雒维,谢品芳.基于单周期控制的半桥结构电能质量调节器[J].电源世界,2005(7):18-21.
    [111]张旭,杨学友,刘常杰.模型预测控制在统一电能质量调节器中的应用[J].电网技术,2010,34(5):3540.
    [112]Karanki S B, Mishra M K, Kumar B K. Particle swarm optimization-based feedback controller for unified power-quality conditioner[J]. IEEE Transactions on Power Delivery,2010,25(4):2814-2824.
    [113]Kian Hoong Kwan, Ping Lam So, Yun Chung Chu. An output regulation-based unified power quality conditioner with Kkalman filters[J]. IEEE Transactions on Industrial Electronics,2012,59(11): 4248-4262.
    [114]Khadkikar V. Fixed and variable power angle control methods for unified power quality conditioner: operation, control and impact assessment on shunt and series inverter kVA loadings[J]. IET Power Electronics,2013,6(7):1299-1307.
    [115]Kinhal V G, Agarwal P, Gupta H O. Performance investigation of neural-network-based unified power-quality conditioner[J]. IEEE Transactions on Power Delivery,2011,26(1):431-437.
    [116]Zhang Hui, Liu Jinjun, Huang Xinming, et al. Design of a new DC link voltage controller for universal power quality controllers[C]. Twenty Second Annual IEEE Applied Power Electronics Conference,2007.
    [117]Ruiye Liu, Ning Xia, Xiaonan Wang. The research on fuzzy-PID control in unified power quality conditioner[C].
    [118]李时杰,李耀华,陈睿.背靠背变流系统中优化前馈控制策略的研究[J].中国电机工程学报,2006,26(22):74-79.
    [119]刘颖英,肖湘宁,徐永海,等.串联型电能质量调节器的阶段式补偿控制策略[J].中国电机工程学报,2010,30(28):100-106.
    [120]黄新明,刘进军.无额外直流储能元件的串联型电能质量控制器新型控制策略[J].中国电机工程学报,2009,29(18):8-14.
    [121]童力,邹旭东,张允,等.基于自适应滤波的单相统一电能质量控制器研究[J].中国电机工程学报,2011,31(24):9-19.
    [122]Teke A, Saribulut L, Tumay M. A novel reference signal generation method for power-quality improvement of unified power-quality conditioner[J]. IEEE Transactions on Power Delivery,2011, 26(4):2205-2214.
    [123]曾正,赵荣祥,汤胜清,等.可再生能源分散接入用先进并网逆变器研究综述[J].中国电机工程学报,2013,33(24):1-12.
    [124]张强,张崇巍,张兴,等.风力发电用大功率并网逆变器研究[J].中国电机工程学报,2007,27(16):54-49.
    [125]李建林,许洪华.风力发电系统低电压运行技术[M].北京:机械工业出版社,2008.
    [126]Peng Fangzheng. Z-source Inverter[J]. IEEE Transactions on Industry Application,2003,39(2): 504-510.
    [127]Yu Tang, Shaojun Xie, Chaohua Zhang. An Improved Z-Source Inverter[J]. IEEE Transactions on Power Electronics,2011,26(12):3865-3868.
    [128]赵彪,于庆广,王立雯.Z源双向DC-DC变换器及其移相直通控制策略[J].中国电机工程学报,2011,31(9):43-49.
    [129]王强,胡伟芳,白亚亚.新型高频隔离型并网逆变器[J].低压电器,2012(4):31-34.
    [130]沈国桥.燃料电池并网逆变技术研究[D].杭州:浙江大学,2008.
    [131]胡雪峰,韦徵,陈轶涵,等.LCL滤波并网逆变器的控制策略[J].中国电机工程学报,2012,32(27):142-148.
    [132]顾和荣,扬子龙,邬伟杨.并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工程学报,2006,26(9):108-112.
    [133]Timbus A V, Teodorescu R, Blaabjerg F, et al. Linear and nonlinear control of distributed power generation systems[C]. IEEE Industry Application Conference, Tampa, USA,2006.
    [134]Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of control and grid synchronization for distributed power generation systems[J]. IEEE Transactions on Industrial Electronics,2006,53(3): 1398-1409.
    [135]王成山,李琰,彭克.分布式电源并网逆变器典型控制方法综述[J].电力系统及其自动化学报,2012,24(2):12-20.
    [136]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2005.
    [137]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多环反馈控制策略[J].电工技术学报,2009,24(2):100-107.
    [138]Wang C, Nehrir M, Gao H. Control of PEM fuel cell distributed generation systems[J]. IEEE Transactions on Energy Conversion,2006,21(2):586-595.
    [139]De Brabandere K, Vanthournout K, Driesen J, et al. Control of microgrids[C]. IEEE Power Engineering Society General Meeting, Tampa, USA,2007.
    [140]王成山,高菲,李鹏,等.低压微网控制策略研究[J].中国电机工程学报,2012,32(25):2-8.
    [141]张兴,张崇巍,曹仁贤.光伏并网逆变器非线性控制策略的研究[J].太阳能学报,2002,23(6):770-773.
    [142]Teodorescu R, Blaabjerg F, Liserre M, et al. Proportional-resonant controllers and filters for grid-connected voltage-source converters[J]. IEE Proceedings-Electric Power Applications,2006, 153(5):750-762.
    [143]Moreno J C, Huerta J M E, Gil R G, et al. A robust predictive current control for three-phase grid-connected inverters[J]. IEEE Transactions on Industrial Electronics,2009,56(6):1993-2004.
    [144]Gabe I J, Montagner V I F, Pinheiro H. Design and implementation of a robust current controller for VSI connected to the grid through an LCL filter[J]. IEEETransactions on Power Electronics,2009, 24(6):1444-1452.
    [145]曾正,杨欢,赵荣祥,等.基于无源哈密尔顿系统理论的LC滤波并网逆变器控制[J].电网技术,2012,36(4):207-212.
    [146]张国荣,张铁良,丁明,等.具有光伏并网发电功能的统一电能质量调节器仿真[J].中国电机工程学报,2007,27(14):82-86.
    [147]Castilla M, Miret J, Sosa J L, et al. Grid-fault controlscheme for three-phase photovoltaic inverters withadjustable power quality characteristics[J]. IEEETransactions on Power Electronics,2010, 25(12):2930-2940.
    [148]周林,曾意,郭列,等.具有电能质量调节功能的光伏并网系统研究进展[J].电力系统保护与控制,2012,40(9):137-145.
    [149]姚骏,夏先锋,陈西寅,等.风电并网用全功率变流器谐波电流抑制研究[J].中国电机工程学报,2012,32(16):17-25.
    [150]谢小荣,姜齐荣.柔性交流输电系统的原理与应用[M].北京:清华大学出版社,2006.
    [151]王兆安,刘进军.电力电子技术(第5版)[M].北京:机械工业出版社,2011.
    [152]Rim C T. Hu D Y, Cho Gyu H. Transformers as equivalent circuits for switches:general proofs and D-Q transformation-based analyses[J]. IEEE Transactions on Industry Applications,1990,26(4): 777-785.
    [153]Noguchi T, Tomiki H, Kondo S. et al. Direct power control of PWM converter without power-source voltage sensors[J]. IEEE Transactions on Industry Applications,1998,34(3):473-479.
    [154]Leonhard W. Electrical Engineering between Energy and Information[C]. The Third International Power Electronics and Motion Control Conference, Beijing, China,2000.
    [155]Clarke E. Circuit Analysis of A-C Power Systems, Vol. I-Symmetrical and Related Components[M]. Wiley,1943.
    [156]Malinowski M, Jasinski M, Kazmierkowski M P. Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)[J]. IEEE Transactions on Industrial Electronics, 2004,51(2):447-454.
    [157]孙树勤.无功补偿的矢量控制[M].北京:中国电力出版社,2000.
    [158]Malinowski M, Kazmierkowski M P, Hansen S, et al. Virtual-flux-based direct power control of three-phase PWM rectifiers[J]. IEEE Transactions on Industry Applications,2001,37(8):1019-1027.
    [159]陶顺,肖湘宁,刘晓娟.电压暂降对配电系统可靠性影响及评估指标的研究[J].中国电机工程学报,2005,25(21):63-69.
    [160]彭春萍,陈允平,孙建军.动态电压恢复器及其检测方法的探讨[J].电力自动化设备,2003,23(1):68-71.
    [161]Fitzer C, Barnes M, Green P. Voltage sag detection technique for a dynamic voltage restorer[J]. IEEE Transactions on Industry Applications,2004, (40):203-212.
    [162]周晖,齐智平.动态电压恢复器检测方法和补偿策略综述[J].电网技术,2006,30(6):23-29.
    [163]冯小明,杨仁刚.动态电压恢复器的形态学—dq变换综合检测算法[J].中国电机工程学报,2004,24(11):193-198.
    [164]薛尚表,蔡金锭.三相电压跌落检测新方法[J].中国电机工程学报,2012,32(34):91-97.
    [165]Bae B, Jeong J, Lee J, et al. Novel sag detection method for line-interactive dynamic voltage restorer[J]. IEEE Transactions on Power Delivery,2010,25(2):1210-1211.
    [166]Middlekauff S W, Collins E R Jr. System and customer impact:considerations for series custom power devices[J]. IEEE Transactions on Power Delivery,1998,13(1):278-282.
    [167]肖湘宁,徐永海,刘昊.电压凹陷特征量检测算法研究[J].电力自动化设备,2002,22(1):19-22.
    [168]杨亚飞,颜湘武,楼尧林.一种新的电压骤降特征量的检测方法[J].电力系统自动化,2004,28(2):41-44.
    [169]瞿硕,黄纯,江亚群,等.DVR电压暂降检测新方法[J].电工技术学报,2013,28(4):234-239.
    [170]曹立志,王小君,和敬涵,等.基于DSP的电压暂降检测方法研究[J].电力系统保护与控制,2012,40(13):78-83.
    [171]Akagi H, Watanabe E H, Aredes M. Instantaneous power theory and applications to power conditioning[M]. New Jersey:John Wiley & Sons Inc,2007:1-17.
    [172]Holmes D G, Lipo T A. Pulse width modulation for power converters:principles and practices[M]. New Jersey:John Wiley & Sons Inc,2003.
    [173]刘昊.非正交坐标系SVPWM理论分析与混合型APF应用研究[D].北京:华北电力大学,2004.
    [174]熊健,康勇,张凯,等.电压空间矢量调制与常规SPWM的比较研究[J].电力电子技术,1999(1):25-28.
    [175]刘昊,肖湘宁,刘宝志,等.一种非正交坐标系下N电平逆变器SVPWM的研究[J].华北电力大学学报,2004,31(4):24-28.
    [176]周卫平,吴正国,夏立,等.SVPWM的等效算法及SVPWM与SPWM的本质联系[J].中国电机工程学报,2006,26(2):133-137.
    [177]Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage-source PWM converters:a survey[J]. IEEE Transactions on Industrial Electronics.1998,45(5):691-703.
    [178]Tan Tianyuan, Jiang Qirong, Li Gang et al. Comparison of direct and indirect current control strategy for DSTATCOM[C].2006 International Conference on Power System Technology, chongqing, China,2006.
    [179]Ohnishi T. Three phase PWM converter/inverter by means of instantaneous active and reactive power control[C]//IEEE IECON'1991. Kobe, Japan:IEEE,1991:819-824.
    [180]李宁,王跃,雷万钧,等.电力电子变流器中的直接功率控制策略研究综述[J].电源学报,2013,(1):45-52.
    [181]王久和,李华德,杨立永.设置扇形边界死区的电压型PWM整流器直接功率控制[J].北京科技大学学报,2005,27(3):380-384.
    [182]王久和,李华德.一种新的电压型PWM整流器直接功率控制策略[J].中国电机1工程学报,2005,25(16):47-52.
    [183]陈伟,邹旭东,唐健,等.三相电压型PWM整流器直接功率控制调制机制[J].中国电机工程学报,2010,30(3):35-41.
    [184]Bouafia A, Gaubert J-P, Krim F. Predictive direct power control of three-phase pulse width modulation (PWM) rectifier using space-vector modulation (SVM)[J]. IEEE Transactions on Power Electronics,2010,25(1):228-236.
    [185]A. S. R. Hadian,徐殿国,郎永强.一种PWM整流器直接功率控制方法[J].中国电机工程学报,2007,27(25):78-84.
    [186]李子欣,李耀华,王平,等.PWM整流器在静止坐标系下的准直接功率控制[J].中国电机工程学报,2010,30(9):47-52.
    [187]赵振波,李和明,董淑惠.采用电流滞环调节器的电压矢量控制PWM整流器系统[J].电工技术学报,2004,19(1):31-34,43.
    [188]郭文勇,赵彩宏,张志丰,等.电压型超导储能系统的统一直接功率控制方法[J].电网技术,2007,31(9):58-63.
    [189]Ye Z Z, Jovanovic M M. Implementation and performance evaluation of DSP-based control for constant-frequency discontinuous-conduction- mode boost PFC front end[J]. IEEE Transactions on Industrial Electronics,2005,52(1):98-107.
    [190]Seul Jung, Sung su Kim. Hardware implementation of a real-time neural network controller with a DSP and an FPGA for nonlinear systems[J]. IEEE Transactions on Industrial Electronics,2007, 54(1):265-271.
    [191]杨达亮,卢子广,杭乃善,等.三相电压型PWM整流器准定频直接功率控制[J].中国电机工程学报,2011,31(27):66-73.
    [192]Singh B, Solanki J. A comparison of control algorithms for DSTATCOM[J]. IEEE Transactions on Industrial Electronics,2009,56(7):2738-2745.
    [193]杨达亮,卢子广,姚普粮.直接电流控制的配电网静止无功补偿器研制[J].电力电子技术,2010,44(2):51-53.
    [194]柳勇军,闵勇,梁旭.电力系统数字混合仿真技术综述[J].电网技术,2006,30(13):38-43.
    [195]Mohan N, Robbins W P, Imbertson P, et al. Restructuring of first courses in power electronics and electric drives that integrates digital control[J]. IEEE Transactions on Power Electronics,2003, 18(1):429-437.
    [196]Veselic B, Perunicic-drazenovic B, Milosarljevic C. High-performance position control of induction motor using discrete-time sliding-mode control[J]. IEEE Transactions on Industrial Electronics, 2008,55(11):3809-3817.
    [197]卢子广,柴建云,王祥珩,等.电力驱动系统实时控制虚拟实验平台[J].中国电机工程学报,2003,23(4):119-123.
    [198]zmierkowski M P, Jasinski M, Wrona G. DSP-based control of grid-connected power converters operating under grid distortions[J]. IEEE Transactions on Industrial Informatics,2011,7 (2): 204-211.
    [199]Buccella C, Cecati C, Latafat H. Digital control of power converters-a survey[J]. IEEE Transactions on Industrial Informatics,2012,8 (3):437-447.
    [200]何湘宁,陈阿莲.多电平变换器的理论和应用技术[M].北京:机械工业出版社,2007:221-225.
    [201]TMS320x281x Multichannel Buffered Serial Port (McBSP) Reference Guide (Rev. B). Texas Instruments, November,2004.
    [202]TMS320x281x,280x DSP Peripherals Reference Guide (Rev. B). Texas Instruments, November, 2004.
    [203]TMS320F28x Serial Peripheral Interface (SPI) Reference Guide (Rev. B). Texas Instruments, November,2004.
    [204]徐科军,张瀚,陈智渊.TMS320X281x DSP原理与应用[M].北京:北京航空航天大学出版社,2006.
    [205]TMS320x281x System Control and Interrupts Reference Guide (Rev. C). Texas Instruments, March, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700