ICF靶用酚醛类气凝胶的制备及氢、氘吸附应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳气凝胶具有独特的多孔结构,它的高比表面积、纳米级孔隙、纳米级骨架碳微粒以及非晶态的结构形态等特性,有利于增强碳气凝胶的表面吸附能力。碳气凝胶是通过多官能团的酚类化合物和醛在碱性催化剂作用下,经过溶胶-凝胶、酸洗老化、溶剂交换、超临界干燥以及高温碳化过程制备而成。碳气凝胶在力学、声学、电学、热学以及光学等领域都有潜在的应用价值,而在惯性约束聚变(ICF)和民用储氢方面的应用研究备受关注。
     本论文在制备酚醛类有机气凝胶和相应的碳气凝胶的过程中,改进了气凝胶的制备工艺,达到了缩短气凝胶制备周期、提高气凝胶质量和降低气凝胶制备成本的目的。
     在气凝胶制备的溶胶凝胶阶段,采用超声波恒温加热的方法提高了凝胶化速度,有效地抑制了凝胶过程中酚类物质氧化的影响,经过超声加热所制备的有机气凝胶其透明性较好,气凝胶的品质得到了改善。
     在溶剂交换过程中,采取了两种方式来加快溶剂交换的速度。一是采用低强度的超声波作用,使丙酮交换含水凝胶中水的速率提高了上万倍,同时通过控制作用时间,在提高交换速率的同时保持了凝胶结构不被破坏。二是采用由蠕动泵带动的循环流动法进行溶剂交换,对于高密度凝胶可以提高其交换速率,但由于存在一定的压力,低密度样品的形态受到一定的影响。
     在改进的工艺条件下制备了多种有机气凝胶及相应碳气凝胶材料。以间苯二酚和甲醛为原料,以水为溶剂制备了间苯二酚-甲醛(RF)气凝胶。制得的有机气凝胶透明性较好,碳化处理后气凝胶的结构均匀,其密度由反应物浓度和催化剂浓度控制;以间苯三酚和甲醛为原料,以乙醇-水混合物为溶剂制备出了透明性比RF气凝胶更好,密度更低(<20mg/cm~3)的间苯三酚-甲醛(PF)有机气凝胶和相应的碳化气凝胶(CPF);以对苯二酚和甲醛为原料,在高催化剂浓度(对苯二酚与催化剂的摩尔比H/C<100)条件下,成功制备出了对苯二酚-甲醛(HF)有机气凝胶和相应的碳气凝胶(CHF)样品,所制备的HF的透明性较RF的差,很难制备成低密度的HF气凝胶。
     为改善气凝胶的孔结构,进行了气凝胶的改性研究。以间苯二酚(R)、对苯二酚(H)以及甲醛为原料,合成了不同R:H配比的间苯二酚-对苯二酚-甲醛(RHF)复合有机气凝胶及相应的碳气凝胶(CRHF)。复合气凝胶的制备存在最佳的R:H比例关系,在最佳的R:H配比下,反应最容易进行,制备出的复合有机气凝胶透明性最好,密度可以进一步降低。
     开发了一种利用超声波粉碎机进行超声乳化,将RF反应体系均匀分散于不溶性油相中,经过乳液聚合和乙醇超临界干燥制备出了亚微米级有机气凝胶粉末,并建立了经
Carbonized aerogels have some excellent properties such as their special porous structure, larger specific surface area, nanoscale pore, nanoscale framework and non-crystalline structure, which are favourable to enhance the surface adsorption potential. The polymerization of resorcinol with formaldehyde catalyzed by alkali catalyst results in the formation of organic aerogel via a sol-gel process, acid aging process, and supercritical fluid drying. Upon pyrolysis of organic aerogel at high temperature, the carbonized aerogel can be obtained. The carbonized aerogel is widely used in the field of mechanics, acoustics, electricity, calorifics and optics, and it is noticeable in the application research of the inertial confinement fusion (ICF) and hydrogen storage used in the civil cases.
    This dissertation has firstly developed a new technology process to modify carbonized aerogels in the preparation of resorcinol-type organic aerogel and corresponding carbonized aerogel, which attains to the destination of shortening the preparation time of aerogels, increasing the quality of aerogels, and reducing the cost of aerogel's preparation.
    In the sol-gel process of preparing the organic aerogel, the gelation speed is increased by means of ultrasonic heating at constant temperature, which is efficient to inhibit the oxidation of resorcinol-type substance in the gel process. The transparency of the prepared organic aerogel is excellent, and the aerogel's quality is improved.
    In the course of solvent's exchange, two kinds of methods have been adopted to expedite the solvent's exchange speed. Firstly, low-intensity ultrasonic is used to elevate the exchange speed of acetone replacing water from the aerogel containing water up to ten thousand times. Meanwhile, the aerogel structure can be kept through controlling the exchange time. Secondly, the solvent exchange is circularly employed. It is easy to raise the exchange rate for the high-density aerogel, while it has some effect on the low-density aerogel due to the pressure.
    Several kinds of organic aerogels and corresponding carbonized aerogels are prepared according to the modified technology process. The resorcinol-formaldehyde (RF) aerogel is prepared through the polymerization of resorcinol (R) with formaldehyde (F), and water is used as the solvent. The prepared organic aerogel is transparent, the structure of carbonized aerogel is uniform, and its density is controlled by the reactant concentration and catalyst concentration. When the mixture of alcohol and water is used as the solvent, the transparency of the PF and corresponding CPF aerogels from the polymerization of phloroglucinol and formaldehyde is better than that of RF aerogel, and their densities are lower (< 20 mg/cm~3).
引文
1 胡子龙,储氢材料[M],化学工业出版社,2002,1
    2 王淦昌 袁之尚,惯性约束核聚变[M],合肥:安徽教育出版社,1996,p22。
    3 唐永建,赵永宽,蒋伟阳等,等温环境中激光惯性约束聚变冷冻靶丸内部液氢层分布[J],物理学报,1999,48(12),2208-2214。
    4 Alexander J. Glass, An historic overview of inertial confinement fusion: What have we learned [J]? J. Vac. Sci. Technol. A4/(1986) 1098-1103。
    5 R. W. Petzoldt, Inertial fusion energy target injection, tracking, and beam pointing[R], DOE reports No. UCRL-LR-120192, 1995。
    6 B. A. Hammel, T. P. Bernat, G. W. Collins, et al, Recent advances in indirect drive ICF target physics at LINE[R], DOE reports No. UCRL-JC-130302, 1998。
    7 C. Dillon, M. J. Heben, Hydrogen storage using carbon adsorbents: past, present and future[J], Appl. Phys. A 72, 133-142(2001)
    8 Hynek S., Fuller W., Bentley J., Hydrogen storage by carbon sorption[J]. Int J. of Hydrogen Energy 1997, 22(6), 601-610
    9 中国氢能技术路线图研讨会行动纲领,北京,2005
    10 Abdual M. S., David M. A., Recent Advances in Hydrogen Storage in Metal-Containing Inorganic Nanostructures and Related Materials[], Advanced Materials, 2004, 16(9), 765-777
    11 Schlapbach, L, Zuttel, A, Hydrogen-storage materials for mobile application[J], Nature 2001, 414, 353
    12 C. T. Alviso, R. W. Pekala, J. Gross, Resorcinol-formaldehyde and carbon aerogel microspheres [R], DOE reports No. UCRL-JC-123478, 1996
    13 Sastari, M. V. C., Viswanathan, B., Srinivasa Murthy, S., Metal Hydrides: undamentals and applications, Springer-Verlag, 1998
    14 Bogdanovic, B., Schwickardi, M., Resonance Studies of Hydrogen Diffusion in the Layer-Structured System ZrClHx [J], J. Alloys Compd., 1997, 253-254
    15 Jensen, C. M., Zidan R., Mariels N., et al. Advanced titanium doping of sodium aluminum hydride:. segue to a practical hydrogen storage material[J]? Int. J. Hydrogen energy, 1999,24, 461-465
    16 Nijkamp, M.G., Raaymakers J.E.M.J., van Dillen A.J., et al., Hydrogen storage using physisorption—materials demands[J], Appl. Phys. A,2001,72, 619-623
    17 Kidnay A.J., Hiza M.J., Reversible Pulse Tube Refrigeration[J], Adv. Cryog. Eng. 1967,12,730-740
    18 Agarwal, R.K., Schwarz J.A.,Davini P., Effect of Surface Acidity Activated Carbon on Hydrogen Storage[J], Carbon, 1987, 25, 219
    19 Noh J. S., Agarwal R. K., Hydrogen storage systems using activated carbon[J], Int. J. Hydrogen energy, 1987, 12, 693-700
    20 Schwarz J.S., Activated Carbon-Based Hydrogen Storage System, Proceedings of the 1993 DOE/NREL Hydrogen Program Review, Cocoa Beach, FL, 1993, 89-102
    21 Carpetis C., Peschka W., A Study of Hydrogen Storage by Use of Cryoadsorbents[J], Int. J. Hydrogen energy, 1980, 5, 539-554
    22 Cheng H., Pez G.P, Cooper A.C, Mechanism of Hydrogen Sorption in Single-Waled Carbon Nanotubes [J], J. Am. Chem. Soc., 2001, 123, 5845-5846
    23 Saito R., Fujita M., Dresselhaus G., et al., Electronic structure of graphene tubules based on C60", R. Saito, M. Fujita, G. Dresselhaus and MS Dresselhaus[J], Phys. Rev. B, 1992, 46, 1804
    24 Stan G, Cole M W. Low coverage adsorption in cylindrical pores. Surface Science, 1998, 395(2-3): 280-291
    25 Krishnankutty N., Rodriguez N.M., Baker R.T.K., Effect of copper on the decomposition of ethylene over an iron catalyst [J], J. Catal. 1996,158,217
    26 Kim M.S., Rodriguez N.M., Baker R.T.K., The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments [J], J. Catal. 1991,131, 60-73
    27 Kim M.S., Rodriguez N.M., Baker R.T.K., The role of intergacial phenomena in. the structure of carbon deposits [J], J. Catal. 1992, 154, 253
    28 Gupta B.K., Srivastava O.N., On Srivastav: Synthesis and hydrogenation behaviour of graphitic nanofibres[J], Int. J. Hydrogen Energy 2000,25, 825
    29 Gupta B.K., Srivastava O.N., Further Studies on Microstructural Characterization, and Hydrogenation behaviour of Graphitic Nanofibers[J], Int. J. Hydrogen Energy 2000, 26, 857-862
    30 Dillon A.C., Jones K.M., Bekkedahl T.A., et al., Storage of hydrogen in single walled carbon nanotubes[J], Nature 1997, 386, 377-379
    31 Hirscher M., Becher M., Haluska M., et al., Hydrogen storage in sonicated carbon nanotubes [J], Appl. Phys. A 2001, 72, 129-132
    32 Dillon A.C., Gennet T., Alleman J.L., et al., Hydrogen Storage for Fuel Cell Vehicles, In Proc. 2000 U.S. DOE Hydrogen program review, 2000
    33 Ye Y., Ahn C, Witham C, et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes[J], Appl. Phys. Lett. 1999, 74, 2307
    34 Liu C, Fan Y.Y., Liu M., et al., Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature [J], Science 1999, 286, 1127-1129
    35 Pradhan B.K., Harutyunyan A.R., Stojkovic D., et al., Large Cryogenic Storage of Hydrogen in Carbon Nanotubes at Low Pressures [J], J. Mater. Res. 2002, 17, 2209
    36 Chambers A., Park C, Baker R.T.K., et al., Computer simulations of vapour-liquid phase equilibria on n-alkanes [J], J. Phys. Chem. B 1998, 102, 4253
    37 Tibbetts G.G, Meisner G.P., Olk C.H., Hydrogen Storage Capacity of Carbon Nanotubes, Filaments, and Vapor-Grown Fibers[J], Carbon 2001, 39, 2291
    38 Strobel R., Jorissen L., Schliermann T., Hydrogen adsorption on carbon materials[J], J. Power Sources 1999, 84, 221
    39 Park C, Anderson P.E., Chambers A., et al., Further studies of the interaction of hydrogen with graphite nanofibers[J], J. Phys. Chem. B 1999,103,10572
    40 Browning D.J., Gerrard M.L., Lakeman J.B., et al., Studies into the Storage of Hydrogen in Carbon Nanofibers: Proposal of a Possible Reaction Mechanism[J], Nano Lett. 2002, 2, 201
    41 Lee H., Kang Y.S., Kim S.H., et al., Hydrogen desorption properties of multiwall carbon nanotubes with closed and open structures[J], Appl. Phys. Lett. 2002,80, 577-579
    42 Li X., Zhu H., Ci L. et al., Hydrogen uptake by graphitized multi-walled carbon nanotubes under moderate pressure and at room temperature [J], Carbon 2002,39,2077
    43 Hou P.X., Yang Q.H., Bai S., at al., Bulk Storage Capacity of Hydrogen in Purified Multiwalled Carbon Nanotubes[J], J. Phys. Chem. B. 2002,106,963
    44 R.W. Pekala, P. R. Coronado, D. F. Calef, Synthesis Characterization and Modeling of Hydrogen Storage in Carbon Aerogels[R], UCRL-JC-120315(CONF-9504160-8)
    45 Chen P., Wu X., Lin J., et al., High H_2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures[J], Science 1999,285, 91-93
    46 Yang R.T., Hydrogen storage by alkali-doped carbon nanotubes-revisited[J], Carbon 2000, 38,623
    47 Pinkerton F.E., Wicke B.G., Olk C.H., Thermogravimetric Measurement of Hydrogen Absorption in Alkali-Nodified Carbon Materials [J], J. Phys. Chem. B. 2000, 104, 9460
    48 Zhong Z. Y., Xiong Z.T., Sun L.F., Nanosized Nickel(or Cobalt)/Graphite Composites for Hydrogen Storage [J], J. Phys. Chem B, 2002, 106, 9507
    49 王朝阳,李波,张占文等,塑料为求高压充氢工艺研究[J],原子能科学技术,2002,36(04/05),357-360。
    50 唐永建 蒋伟阳,强激光与粒子束 1998,10(1),155.160。
    51 Pekala R W, Alviso C T, et al., Aerogels derived from multifunctional organic monomers[J], J. Non-cryst. Solids, 1992, 145(1-3), 90-98
    52 Pekala R W. J., Organic aerogels from the polycondensation of resorcinol with formaldehyde[J], Mater. Sci., 1989, 24: 3221
    53 蒋伟阳,王珏,沈军,周斌,RF气凝胶的性能测试和应用研究[J],同济大学学报 1997,25(2),248-251
    54 蒋伟阳,孙颖,唐永建,陈志梅,碳气凝胶作为电双层电容器电极材料的研究[J],高电压技术,1997,23(1)95-96
    55 Biljanababi, Divnadjoki, Nedeljko Krstaji, Characterization of carbon cryogels synthesized by sol-gel polycondensation [J], J. Serb. Chem. Soc. 70 (1) 21-31 (2005)
    56 V. Bock, A. Emmerling, J. Fricke, Influence of monomer and catalyst concentration on RF and carbon aerogel structure [J], J. Non-cryst. Solids 1998, 225, 69-73
    57 George W. SchererU, Characterization of aerogels[J], Advances in Colloid and Interface Science, 1998, 76-77, 321-339
    58 G. D. Berry, J.R. Smith, R.N. Schock A smooth transition to hydrogen transportation fuel[R], USA DOE report No. UCRL-JC-120152
    59 R. W. Pekala, C. T. Aviso, F.M. Kong, Structure-property relationships of carbon aerogels[R], USA DOE report No. UCRL-JC-114787
    60 C. I. Merzbacheer, S. R. Meier, J. R. Pierce, et.al., 2001,285 210-215
    61 Lawrence W. Hrubesh, Technical Applications of Aeroge[R], DOE report No. UCRL-JC-127015
    62 刘振宇,郑经堂,王茂章等,多孔炭的纳米结构及其解析[J],化学进展,13-1(2001)10-18
    63 H. Takaba, M. Katagiri, M. kubo, et al., Microporos Materials 1995, 3, 449-455
    64 T.Yamamoto, T. Nishimura, T. Suzuki, et.al, Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying[J], J. Non-tryst. Solids, 288 (2001) 46-55
    65 杨全红,刘敏,成会明,王茂章,纳米碳管的孔结构、相关物性和应用,材料研究学报,2001,15(4),375-386
    66 J. Fricke and A. Emmerling, Aerogels-recent process in production techniques and novel applications[J], Journal of Sol-Gel Science and Technology 13 (1998), 299-303
    67 R. W. Pekala, J. C. Farmer, C. T. Alviso, Carbon aerogels for electrochemical applications[J], Journal of Non-Crystalline Solids 225 1998 74-80
    68 Mayer, S. T., Pekala, R. W., Kaschmitter, J. L., The aerocapacitor: an electrochemical double-layer energy storage device[J], J. Electrochern. Soc., 1993, 140, 446-451
    69 G.E. Overturf, D. Schroen-Carey, B. Reibold, R. C. Cook, Foam shell project: Progress report [R], DOE report No. UCRL-ID 116779
    70 M. bououdins, Z. X. Guo, Mat. Tech. & Adv. Pref. Mat. 15.4 (2000) 169-289
    71 C. Dillon, M. J. Heben, Hydrogen storage using carbon adsorbents past,present and future [J], Applied Physics A: Materials Science & Processing, 72 (2001) 133-142
    72 Petricevic, R.; Glora, M.; Fricke, J. Planar fibre reinforced carbon aerogels for application in PEM fuel cells[J], Carbon, 39(6), 857-867 (2001)
    73 H. Tamon, H. Ishizaka, T. Araki, et al., Control of mesoporous structure of organic and carbon aerogels[J], Carbon 1998, 36(9), 1257-1262
    74 Barbieri, F.E. Dolle, T.P. Picker, et.al., Small-angle X-ray scattering of a new series of organic aerogels[J], J. Non-cryst. Solids 2001, 285, 109-115
    75 Wtten T.A., Sander L.M., Diffusion-limitted aggregation,a kinetic critical phenomenon[J], Phys. Rev. Lett. 1981, 47(19), 1400
    76 Meakin p. Formation of fractal clusters and networks by irreversible diffusion-limitted aggregation[J], Phys. Rev. Lett. 1983, 51(13), 1119-1122
    77 蒲敏,王海霞,气凝胶分形结构的生长机制模型与计算机模拟[J],西安交通大学学报,1999,33(6),68-71
    78 Sandra Gavalda, Katsumi Kaneko, Kendall T. Thomson, et al., Molecular modeling of carbon aerogels[J], Colloids and Surfaces A, 187-188 (2001) 531-538
    79 Bisi, N.H. March, Chemical bonding and properties of condensed phases of carbon and silico[J], Journal of Molecular Structure(Theochem), 1995,338,175-189
    80 M. Mizuno, Rie Tonomori, K. Sakaki, First-principles calculations of positron lifetimes of lattice defects induced by hydrogen absorption[J], Solid State Ionics 172 (2004) 149-153
    81 S.S.Kisteler, Coherent Expanded-Aerogels[]], J.Phys.Chem.,1932,36,52-64
    82 陈龙武,甘礼华,气凝胶[J],化学通报 1997,8,21-27
    83 Hanzawa Y., Kaneko K., Pekala R. W., et al., Activated Carbon Aerogels[J], Langmuir,1996, 12: 6167
    84 S. A. Al-Muhtaseb, J. A. Ritter, Preparation and properties of resorcinol-formaldehyde organic and carbon gels, Adv. Mater. 2003, 15(2): 101-114
    85 Pekala RW, Organic aerogels from the polycondensatoin of resorcinol with formaldehyde[J], J. Mater Sci., 1989, 24: 3221
    86 李文翠 朱盛维,郭树才,催化剂种类对间苯二酚甲醛气凝胶结构的影响,大连理工大学学报,40.4(2000)417-419
    87 C. I. Merzbacheer, S. R. Meier, J. R. Pierce, et.al., Carbon aerogels as broadband non-reflective materials[J], Journal of Non-Crystalline Solids 285 (2001) 210-215
    88 Qin, Guotong; Guo, Shucai; Preparation of RF organic aerogels and carbon aerogels by alcoholic sol-gel process., Carbon, 39(12), 1935-1937 (2001)
    89 Gavalda, S.; Kaneko, K.; Thomson, K. T.; Gubbins, K. E., Molecular modeling of carbon aerogels. Colloids Surf., A, 187-188,531-538 (English) 2001
    90 Petricevic, R.; Glora, M.; Fricke, J. Planar fiber reinforced carbon aerogels for application in PEM fuel cells. Carbon, 39(6), 857-867 (2001)
    91 H. Tamon, H. Ishizaka, T. Araki, et al., Control of Mesoporous Structure of Organic and Carbon Aerogels, Carbon Vol. 36, No. 9(1998), pp. 1257-1262
    92 Zhonghua Hu, M. P. Srinivasan, Yaming Ni, Novel activation Process for preparing highly microporous and mesoporous activated carbons. Carbon, 39(6), 877-886 (2001)
    93 Wen-Cui Li, An-Hui Lu, Shu-Cai Guo, Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol-formaldehyde, Carbon 39 (2001) 1989-1994
    94 李冀辉,胡劲松,有机气凝胶研究进展(Ⅰ)有机气凝胶发展、制备与分析[J],河北师范大学学报,2001,25(4):506~511
    95 T. Yamamoto, T. Nishimura, T. Suzuki, et.al, Control of mcsoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying[J], Journal of Non-Crystalline Solids 288 (2001) 46-55
    96 M. Glora, M. Wiener, R. Petricevic, et. al., Integration of carbon aerogels in PEM fuel cells[J], Journal of Non-Crystalline Solids 285 (2001) 283-287
    97 Barbieri, F. E. Dolle, T. P. Pieker, et.al., Small-angle X-ray scattering of a new series of organic aeorgels[J], Journal of Non-Crystalline Solids 285 (2001) 109-115
    98 蒋伟阳,黄蒙恩,CRF——一种超级双电层电容器的理想电极材料[J],材料导报,1995,6:51
    99 蒋伟阳,唐永建.RF、CRF气凝胶的制备、性能测试和SEDLCs应用研究,1996
    100 李冀辉,胡劲松,有机气凝胶研究进展(Ⅱ)-有机气凝胶的特性与应用,湖北师范大学学报(自然科学版),2001,25(3),374-394
    101 蒋伟阳,张波,蒋伟阳.张波,周斌.等.间苯二酚-甲醛有机气凝胶的结构控制研究[J],.材料科学与工艺,1996,4(2):P70-75
    102 R.Petricevic, M. Glora, A. Moginger, et al. Skin formation on RF aerogel sheets[J]. Journal of Non-Crystalline Solids, 285(2001): 272-276
    103 赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M],科学出版社,P15,P65
    104 李姜,梁梅,林影,等.超声技术在高分子材料中应用研究进展[J],应用声学,24(1):53-58,2005
    105 朱冬梅,韩建军,徐甲强,等.超声辐射溶胶-凝胶法制备纳米In2O3气敏材料[J],郑州轻工业学院学报,19(4),34-36,2004
    106 F. M. Kong, S. R. Buckley, C. L. Giles, et al., Low-Density Carbonized Resorcinol-Formaldehyde Foams[R], USA DOE report, No. UCRL-LR-10946(DE92 004848)
    107 R. W. Pekala, J. C. Farmer, C. T. Alviso et al. Carbon aerogels for electrochemical applications[J], Journal of Non-Crystalline Solids 225(1998): 74-80
    108 Inertial Confinement Fusion Target Component Fabrication and Technology Development Support[R], FY98 ICF Annual Report, GA-A22995 UC-712
    109 Inertial Confinement Fusion Target Component Fabrication and Technology Development Support[R], FY99 ICF Annual Report, GA-A23240 4-9
    110 Inertial Confinement Fusion Target Component Fabrication and Technology Development Support[R], FY00 ICF Annual Report GA-A23537
    111 Inertial Confinement Fusion Target Component Fabrication and Technology Development Support[R], FY01 ICF Annual Report, GA-A23852
    112 K. R. Schultz, Inertial Fusion Target Development[R], USA GA report, A22219
    113 R. C. Cook, S. A. Letts, G.E. Overturf, Ⅲ, et al. low-density foam shells[R], LLNL ICF Annual Report 1997, DOE report UCRL-LR-105821-97
    114 李悦,陈艾,吴孟强等,RF气凝胶分形生长过程的计算机模拟[J],电子元件与材料,2004,23(1):52-56
    115 李孝武,刘景利,刘焕桥等,力学计量[M],中国计量出版社,1999
    116 杜学信,王韶辉,粘度的快速测量[J],河北地质学院学报,1995,18(1),96-99
    117 陈玉銮,孟伟,周祝敏等,卡尔曼滤波紫外光度法同时测定邻、间、对苯二酚[J],分析测试技术与仪器,1995,1(4):21-25
    118 L.J.Gibson,M.F.Ashby(著),刘培生(译),多孔固体结构与性能(第2版)[M],清华大学出版社,北京,2003,2-3
    119 别利剑,尹静,溶胶-凝胶法及其在无机新材料制备中的应用[J],临沂师专学报,1994年第6期
    120 赵瑶兴,孙祥玉,有机分子结构光谱鉴定[M],科学出版社,P15,P65
    121 蒋伟阳,唐永建,RF气凝胶的性能测试和应用研究[J],同济大学学报,1997,25(2):247~251
    122 蒋伟阳,张波,等.间苯二酚-甲醛有机气凝胶的结构控制研究[J],材料科学与工艺,1996,4(2):70~75
    123 Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T., IUPAC Recommendations 1984, Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface Area and Porosity[M], Pure & Appl. Chem., 57, 1985, pp. 603-619.
    124 Mizushima Y., Hori M., Sasaki M., ~(27)Al MAS-NMR spectra of alumina aerogels[J], J. Mater. Res., 1993, 8 (9): 2109
    125 Wo ignier T, Sauvajo 1 J L, Pelous J, et al., Aerogel to glass transformation studied by low frequency Raman scattering[J], J. Non-Cryst. So lids, 1990, 121: 206-210
    126 Fricke J, Emmerling A, Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Speciality Shapes[J], Struct. Bonding (Berlin), 1992, 77: 89
    127 Ralph T. Yang, Adsorbents: Fundamentals and Application[M]s, John Wiley & Sons, Inc., Hoboken, New Jersey. 2003, 8-17
    128 K. E. Gubbins, in J. Fraissard (ed), Physical Adsorption: Experiment, Theory and Applications[M], Kluwer Academic Publisher, 1997
    129 C. Lastoskie, K. E. Gubbins, and N. Quirke, Pore size distribution analysis of mieroporous carbons: a density functional theory approach[J], J. Phys. Chem. 97, 4786-4796 (1993)
    130 A. V. Neimark, P. I. Ravikovitch, Capillary Condensation in Mesoporous Molecular Sieves and Pore Structure Characterization[J], Microporous and Mesoporous Materials 44-45, 697 (2001);
    131 P. I. Ravikovitch, A. V. Neimark, Characterization of nanoporous materials from adsorption and desorption isotherms[J], Colloids and Surfaces A, 2001, 187-188(31), 11-21
    132 A. Vishnyakov, P. I. Ravikovitch, A. Neimark, Molecular Level Models for CO_2 Sorption in Nanoporos[J], Langmuir 15, 8736 (1999)
    133 JPRB Walton, N. Quirke, Mol. Simul. 2, 361 (1989)
    134 C. G. Sonwane and S. K. Bhatia, Characterization of Pore Size Distributions of Mesoporous Materials from Adsorption Isotherms[J], J. Phys. Chem B 104,9099 (2000)
    135 严继民,张启元,高敬碂,吸附与凝聚-固体的表面与孔[M],科学出版社,北京,1986,95-137
    136 杨孔章,胶体·吸附·催化科技词义汇编[M],山东大学出版社,济南,1989,75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700