咪唑羧酸衍生物为配体的金属有机配位聚合物的合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技和社会的不断进步,设计和开发新材料已经成为当前化学领域最为热门的研究课题。金属有机配位聚合物材料作为化学领域一个重要的分支,在其蓬勃发展的短短二十年间,取得了许多喜人的成果,并在吸附、分离、催化、传感、光、电、磁等诸多领域显示出极为广阔的应用前景。设计和合成特定的结构是这类材料研究中的重要环节,而配体的选择对于这一环节则至关重要。通过对有机配体进行取代基修饰能够得到一系列具有结构新颖、功能独特的金属有机配位聚合物,这方面的研究近年来正受到材料化学家的广泛关注。本文中,我们通过对刚性配体4,5-咪唑二羧酸的2-位进行取代基修饰,得到了甲基,乙基,羟甲基,吡啶基和苯甲酸取代的五种咪唑羧酸衍生物,并以此作为有机配体来进行金属有机配位聚合物的合成,获得了九种结构共十五个化合物,并对它们进行了相关性质的表征。研究工作主要集中在以下三个方面:
     1.在混合溶剂热体系下,以2-甲基-4,5-咪唑二羧酸作为配体,草酸作为辅助配体,成功地制备了一系列稀土金属有机配位聚合物,|(H_2O)_4|[Ln_2(H_2O)_3(HMImDC)_2(OX)](Ln=Sm(1), Eu(2), Gd(3), Pr(4), Nd(5))。这五个化合物是晶体学同构的,该结构是由两种zigzag链(之字形链)组成的二维层通过金属与配体的二聚体单元进一步连接而形成的三维骨架,并且在a轴方向存在着孔径为8.9×3.8(?)的一维孔道。该系列化合物的结构特色是金属与2-甲基-4,5-咪唑二羧酸交替连接形成了围绕Ln-OX zigzag链旋转的螺旋链状结构,这在已报道的金属有机配位聚合物中是比较少见的;相同手性的螺旋链并排连接形成手性的层状结构,手性对应的层彼此交替相连进而形成内消旋的三维骨架结构。化合物1-5可以简化为4-节点(3,5)-连接的新颖拓扑结构,而且这也是第一例以2-甲基-4,5-咪唑二羧酸为配体的稀土金属有机配合物。通过固体荧光和变温磁化率的测定,化合物2在紫外光的激发下发出较强的红光,显示了较好的荧光性质。化合物3则显示出较弱的反铁磁性质。该系列化合物具有较好的热稳定性,骨架能稳定到350oC,可作为潜在的光学或磁学材料。
     2.选择烷基链稍长的2-乙基-4,5-咪唑二羧酸作为有机配体,分别以2-苯基咪唑和三乙烯二胺作为辅助配体,在混合溶剂热体系下合成了两个分别具有一维链状和二维层状结构的金属有机配位聚合物,[Zn(HEImDC)(PhIm)](6)和|DMA|[Zn_2(HEImDC)_2(dabco)](7);以草酸作为辅助配体,在水热体系下合成了三个三维的稀土金属有机配位聚合物,|H_2O|[Ln_2(H_2O)2(HEImDC)(OX)_2](Ln=Sm(8), Eu(9), Gd(10))。化合物6和7的结构中都存在着金属中心与配体形成的三角双锥型结构单元[ZnN_3O_2],这些结构单元通过2-乙基-4,5-咪唑二羧酸相连形成一维zigzag链状结构;化合物6中的zigzag链通过辅助配体2-苯基咪唑与相邻链上羧基之间的氢键作用进一步形成了具有类蜂窝状的超分子层状结构,化合物7中的zigzag链则通过三乙烯二胺分子彼此桥连而形成以-AB-的方式堆积的层状结构。化合物8-10是晶体学同构的,其结构是由金属四核簇相互连接构成的一维链通过辅助配体草酸在两个方向进一步相连而形成三维网络骨架,并且可以简化为2-节点(4,4)-连接新颖拓扑学结构。另外,该系列化合物的结构中存在着两组手性对应的螺旋链状结构,其中一组螺旋链是由-Ln1-OX-Ln2-HEImDC-Ln1-OX-Ln1-连接而形成的,并且两条手性对应的链之间通过Ln1-OX-Ln1相互连接;另一组是由-Ln2-OX-Ln1-HEImDC-Ln_2-HEImDC-Ln_2-构成的,两条手性对应的链之间通过Ln_2离子彼此相连。化合物9在紫外光的激发下发出红光,展现了较好的光学性质。
     3.为了对咪唑羧酸衍生物类配体进行系统性的研究,我们将取代基进行进一步拓展,选用目前研究较少的2-羟甲基-4,5-咪唑二羧酸,2-(4-吡啶基)-4,5-咪唑二羧酸和2-(4-苯甲酸)-4,5-咪唑二羧酸作为配体成功地制备了五个新颖的配位聚合物,|DMF|[Zn_2(H_2OMImDC)_2(4,4’-bipy)](11),Zn3(H_2O)_2(HOMImDC)_2(Im)_2(12),|DMF||H_2O|[Zn_2Mn_(1.5)(H_2O)_2(HOMImDC)_2(Tz)](13),Ni(DMF)_2(HPyImDC)(14)和Cd(H_2BCImDC)(15)。化合物11-13都是以2-羟甲基-4,5-咪唑二羧酸作为配体,分别以4,4’-联吡啶、咪唑和1,2,4-三氮唑作为辅助配体来进行合成的。在化合物11中,[ZnN_3O_2]结构单元与2-羟甲基-4,5-咪唑二羧酸以及4,4-联吡啶配体形成两种六员环的结构单元,这些六员环之间通过共边连接进一步形成一个具有一维六边形孔道的层状化合物。化合物12是锌离子与2-羟甲基-4,5-咪唑二羧酸和咪唑混合配体共同构筑的具有bto拓扑学结构的手性三维金属有机配位聚合物,其结构中存在着由两条左手螺旋的手性链并列缠绕而成的具有单一右手手性的螺旋管状通道,这在手性结构的配位聚合物中是不多见的;并且每条螺旋通道周围存在着两组共六条单一右手螺旋的链状结构。化合物13是以2-羟甲基-4,5-咪唑二羧酸作为配体,1,2,4-三氮唑作为辅助配体,通过引入Zn和Mn两种金属离子共同构筑的三维金属有机配位聚合物,并且该化合物展现出较好的反铁磁性质。化合物14选用带有含氮取代基的2-(4-吡啶基)-4,5-咪唑二羧酸作为配体,形成了一个具有零维四边形结构的金属有机配位聚合物,并且四边形与四边形之间通过氢键连接形成二维超分子结构。化合物15则选用含羧基取代基的2-(4-苯甲酸)-4,5-咪唑二羧酸作为配体,构筑了一个具有二维层状结构的金属有机配位聚合物,层与层之间通过氢键连接进一步形成三维超分子结构。
     本文较为系统地研究了2-位上不同取代基的咪唑羧酸衍生物配体在合成金属有机配位聚合物的过程中的影响,选用过渡金属和稀土金属作为金属源制备了一系列具有光学、磁学和手性结构等性质的多功能晶体材料。并且将适当的辅助配体引入到合成体系,从而实现了骨架结构从零维到三维的可调控性。这些都为设计和合成多功能的金属有机配位聚合物提供了很多有价值的数据和信息。
With the continuous advancement of technology and society, designing andexploiting new materials has become the most popular research topic in the fieldof chemistry. Metal-organic coordination polymers, as a very important branch inthe field of materials chemistry, has achieved many gratifying results andexhibited very broad potential applications in adsorption, separation, catalysis,sensors, luminescence, optoelectronics and magnetism during the two boomingdecades. The design and synthesis of specific structures is an important part ofsuch materials, in which it is crucial for the choice of ligands. In recent years,substituent modification on the organic ligands, as a effective way to construct aseries of metal-organic coordination polymers with novel structures and uniquefeatures, has attracted great attention of materials chemists. In this paper, weadopted five derivatives of the rigid ligands4,5-imidazole dicarboxylic acid, inwhich the hydrogen on2-position has been replaced by methyl, ethyl,hydroxymethyl, pyridyl and benzoic acid respectively, as ligands to guide thesynthesis of metal organic coordination polymers. Eventually, nine kinds ofstructure, total of fifteen compounds have been prepared and characterized, andall the results are mainly reflected in the following three aspects:
     1. A series of lanthanide-organic coordination polymers,|(H_2O)_4|[Ln_2(H_2O)_3(HMImDC)_2(OX)](Ln=Sm (1), Eu (2), Gd (3), Pr (4), Nd (5), H3MImDC=2-methyl-4,5-imidazoledicarboxylic acid, OX=oxalic acid), have beensuccessfully synthesized under solvothermal conditions by employing2-methyl-4,5-imidazoledicarboxylic acid and oxalate as mixed organic ligands.Compounds1-5are isostructural and exhibit novel3D architectures which constructed by layers consisted of two type of zigzag chains and dimmersconsisted of lanthanides and [HMImDC]~(2-)ligands, in addition, there are openchannels of8.9×3.8along a axis. The structural featuers of compound1-5arethat lanthanides linked by [HMImDC]~(2-)ligands alternately to form a helical chainaround the zigzag chain of Ln-OX, which is rare in the metal-organic coordinationpolymers reported. The same chiral helices are arranged in parallel forming achiral layer, and the enantiomers of chiral layers connect with each otheralternately leading to the formation of3D structure which is racemic. Compounds1-5can be simplified to a4-nodal (3,5)-net, which is a new topological structure,and they are the first lanthanide-organic coordination polymers based onH_3MImDC ligand. Furthermore, compound2exhibits strong red luminescenceemission depending on the characteristic of Eu~(3+)ions and compound3showsweak antiferromagnetic interactions by magnetic property investigation. All thecompounds can be stabilized up to350oC and may be used as a potential opticalor magnetic material.
     2. We take2-ethyl-4,5-imidazole dicarboxylic acid (H_3EImDC) with a longeralkyl chain as organic ligand,2-phenyl imidazole and1,4-Diazabicyclo[2.2.2]octane (dabco) as ancillary ligands, solvothermallysynthesized two1-D chain and2-D layered metal-organic coordination polymers,[Zn(HEImDC)(PhIm)](6) and|DMA|Zn_2(HEImDC)_2(dabco)](7), respectively;and oxalic acid as another auxiliary ligand hydrothermally synthesized three3-Dlanthanide-organic coordination polymers,|H_2O|[Ln2(H_2O)_2(HEImDC)(OX)_2](Ln=Sm (8), Eu (9), Gd (10)). The structure of compounds6and7both consist of[ZnN_3O_2] build units constructed by metal center and H_3EImDC ligands, whichare further connected by H_3EImDC to form a1-D zigzag chain structure. Incompound6, the adjacent zigzag chains connect with each other throughhydrogen-bonding interactions between2-phenyl-imidazoles and carboxylates togenerate a honeycomb-layered supramolecular structure, and compound7has aanalogous honeycomb-layered structure constructed by zigzag chains and dabcomolecules which described by an-AB-sequence along [101] direction. Compounds8-10are crystallography isomorphic and can be described as1Dchains consisted of lanthanide quad-core clusters connect with each other in twodirections through oxalate ancillary ligands forming3D architectures with2-nodal(4,4)-net. In addition, compounds8-10are corresponding to two sets ofopposite chiral helical chains. One set is formed by the connection of-Ln1-OX-Ln2-HEImDC-Ln1-OX-Ln1-, and two enantiomers with helicalcharacters link each other by Ln1-OX-Ln1units; the other formed by-Ln2-OX-Ln1-HEImDC-Ln2-HEImDC-Ln2-and the enantiomers shared withLn2ions. Furthermore, compound9emits intense red luminescence under UVexcitation which exhibit good luminescence properties.
     3. In order to systematically study the derivatives of4,5-imidazoledicarboxylic acid, we obtain three new ligands with extended substituents:2-(hydroxymethyl)-4,5-imidazoledicarboxylic acid (H4OMImDC),2-(4-pyridyl)-4,5-imidazoledicarboxylic acid (H_3PyImDC) and2-(4-benzoicacid)-4,5-imidazoledicarboxylic acid (H4BCImDC), and take them as bridgingligands successfully preparing five novel metal-organic coordination polymers,|DMF|[Zn_2(H_2OMImDC)_2(4,4'-bipy)](11), Zn3(H_2O)_2(HOMImDC)_2(Im)_2(12),|DMF||H_2O|[Zn_2Mn1.5(H_2O)_2(HOMImDC)_2(Tz)](13), Ni(DMF)_2(HPyImDC)(14)and Cd(H2BCImDC)(15). Compounds11-13use H4OMImDC as the ligands,4,4'-bipyridine, imidazole (Im), and1,2,4–triazole (Tz) as auxiliary ligands,respectively. Compound11is a layered structure constructed from two types ofsix-membered metallocycles, with1-D hexagonal channel along c axis.Compound12is a3-D metal-organic coordination polymer with bto topologyconstructed from zinc ions, H4OMImDC and Im mixed-ligands, which has a rareright-handed chiral spiral tubular channel winded by two left-handed helices, aswell as two sets, total six of right-hand helical chains arranged alternately aroundthe tubular channel. Compound13is based on H4OMImDC as a main ligand, Tzas an auxiliary ligand, through the introduction of Zn~(2+)and Mn~(2+)ions together tobuild a3-D coordination polymer, and it exhibits good antiferromagneticinteractions. Compounds14uses H_3PyImDC as ligand to form a0-D quadrilateral structure, which connects with the neighbors via hydrogen-bonding interactions toform a2-D supramolecular structure; compound15is a2-D layered structurebased on H4BCImDC, with the hydrogen-bonding interactions between the layers,it can be realized as a3-D supramolecular structure.
     In summary, we systematically discuss the impacts of the different2-positionsubstituents in4,5-imidazoledicarboxylic acid derivatives on the synthesis ofmetal organic coordination polymers, and successfully prepare a series oftransition metal and lanthanide organic crystal materials with multi-functions suchas luminescence, magnetism and chirality. Furthermore, through the introductionof appropriate ancillary ligands into the synthetic system, the structures of somecompounds can be transformed from0-D to3-D. This work will provide a lot ofvaluable data and information for the design and synthesis of multifunctionalmetal-organic coordination polymers.
引文
[1] Robin A Y, Fromm K M, Coordination polymer networks with O-and N-donors:What they are, why and how they are made [J]. Coordination ChemistryReviews,250,2006,250:2127-2157.
    [2] Zhao D, Timmons D J, Yuan D Q, Zhou H C, Tuning the topology andfunctionality of metal-organic frameworks by ligand design [J]. Accounts ofChemical Research,2011,44:123-133.
    [3] Gu Z Y, Yang C X, Chang N, Yan X P, Metal-organic frameworks for analyticalchemistry: from sample collection to chromatographic separation [J]. Accountsof Chemical Research,2012.
    [4] Férey G, Hybrid porous solids: past, present, future [J]. Chemical SocietyReviews,2008,37:191-214.
    [5] Kitagawa S, Kitaura R, Noro S, Functional porous coordination polymers [J].Angewandte Chemie International Edition,2004,43:2334-2375.
    [6] Wells A F, Structural inorganic chemistry (fifth)[C], Oxford University:1984.
    [7] Wells A F, Oxford University, Press,1983.
    [8] Wells A F, Three dimensional nets and polyhedra [R]. New York:1977.
    [9] Hoskins B, Robson R, Infinite polymeric frameworks consisting of threedimensionally linked rod-like segments [J]. Journal of the American ChemicalSociety,1989,111:5962-5964.
    [10] Hoskins B, Robson R, Design and construction of a new class ofscaffolding–like materials comprising infinite polymeric frameworks of3D–linked molecular rods. A reappraisal of the zinc cyanide and cadmiumcyanide structures and the synthesis and structure of the diamond-relatedframeworks [N(CH3)4][CuIZnII(CN)4] and CuI[TMPC]BF4·xC6H5NO2[J].Journal of the American Chemical Society,1990,112:1546-1554.
    [11] Fujita M, Kwon Y J, Preparation, clathration ability, and catalysis of atwo-dimensional square network material composed of cadmium(Ⅱ) and4,4'-Bipyridine [J]. Journal of the American Chemical Society,1994,116:1151.
    [12] Gardner G B, Venkataraman D, Moore J S, Lee S, Spontaneous assembly of ahinged coordination network [J]. Nature,1995,374:792.
    [13] Eddaoudi M, Moler D B, Li H L, Chen B L, Reineke T M, O’Keeffe M, YaghiO M, Modular chemistry: secondary building units as a basis for the design ofhighly porous and robust metal-organic carboxylate frameworks [J]. Accountsof Chemical Research,2001,34:319.
    [14] Yaghi O M, O’Keeffe M, Ockwig N, Chae H, Eddaoudi M. Kim J, Reticularsynthesis and the design of new materials [J]. Nature,2003,423:705-714.
    [15] Li H, Eddaoudi M, O'Keeffe M, Yaghi O M, Design and synthesis of anexceptionally stable and highly porous metal-organic framework [J], Nature,1999,402:276-279.
    [16] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi OSystematic design of pore size and functionality in isoreticular MOFs and theirapplication in methane storage [J]. Science,2002,295:469-472.
    [17] Zhou H C, Long J R, Yaghi O M, Introduction to metal-organic frameworks,Chemical Reviews,2012,112:673-674.
    [18] Sumida K, Hill M R, Horike S, Dailly A, Long J R, Synthesis and hydrogenstorage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4[J]. Journal of theAmerican Chemical Society,2009,131:15120-15121.
    [19] Zheng S T, Bu J T, Li Y F, Wu T, Zuo F, Feng P Y, Bu X H, Pore space partitionand charge separation in cage-within-cage indium-organic frameworks withhigh CO2uptake [J]. Journal of the American Chemical Society,2010,132:17062-17064.
    [20] Ma S Q, Wang X S, Yuan D Q, Zhou H C, A coordinatively linked Ybmetal-organic framework demonstrates high thermal stability and uncommongas-adsorption selectivity [J]. Angewandte Chemie International Edition,2008,47:4130-4133.
    [21] Zhang J, Wu T, Chen S M, Feng P Y, Bu X H, Versatile structure-directing rolesof deep-eutectic solvents and their implication in the generation of porosity andopen metal sites for gas storage [J]. Angewandte Chemie International Edition,2009,48:3486-3490.
    [22] Sava D F, Kravtsov V C, Nouar F, Wojtas L, Eubank J F, Eddaoudi M, Questfor zeolite-like metal-organic frameworks: on pyrimidinecarboxylatebis-chelating bridging liga [J]. Journal of the American Chemical Society,2008,130:3768-3770.
    [23] Barman S, Furukawa H, Blacque O, Venkatesan K, Yaghi O M, Jin G X, BerkeH, Incorporation of active metal sites in MOFs via in situ generated ligandde?cient metal–linker complexes, Chemical Communications,2011,47:11882-11884.
    [24] Eubank J F, Mouttaki H, Cairns A J, Belmabkhout Y, Wojtas L, Luebke R,Alkordi M, Eddaoudi M, The quest for modular nanocages: tbo-MOF as anarchetype for mutual substitution, functionalization, and expansion ofquadrangular pillar building blocks [J]. Journal of the American ChemicalSociety,2011,133:14204-14207.
    [25] Lu W G, Yuan D Q, Makal T A, Li J R, Zhou H C, A highly porous and robust(3,3,4)-connected metal-organic framework assembled with a90obridging-angle embedded octacarboxylate ligand [J]. Angewandte ChemieInternational Edition,2012,51:1580-1584.
    [26] Li J R, Zhou H C, Metal-organic hendecahedra assembled from dinuclearpaddlewheel nodes and mixtures of ditopic linkers with120and90obendAngles [J]. Angewandte Chemie International Edition,2009,48:8465–8468.
    [27] Koh K, Wong-Foy A J, Matzger A J, A porous coordination copolymer withover5000m2/g BET surface area [J], Journal of the American ChemicalSociety,2009,131:4184-4185.
    [28] Pickering A L, Long D L, Cronin L, Coordination networks through thedimensions: from discrete clusters to1D,2D, and3D silver(I) coordinationpolymers with rigid aliphatic amino ligands [J]. Inorganic Chemistry,2004,43:4953-4961.
    [29] Zhuang W J, Zheng X J, Li L C, Liao D Z, Ma H, Jin L P, Structural diversityand properties of M(II)4-carboxyl phenoxyacetate complexes with0D-,1D-,2D-and3D M-cpoa framework [J]. CrystEngComm,2007,9:653-667.
    [30] Park Y K, Choi S B, Kim H, Kim K, Won B H, Choi K, Choi J S, Ahn W S,Won N, Kim S, Jung D H, Choi S H, Kim G H, Cha S S, Jhon Y H, Yang J K,Kim J, Crystal structure and guest uptake of a mesoporous metal-organicframework containing cages of3.9and4.7nm in diameter [J]. AngewandteChemie International Edition,2007,46:8230-8233.
    [31] Gu X J, Lu Z H, Xu Q, High-connected mesoporous metal-organic framework[J]. Chemical Communications,2010,46:7400-7402.
    [32] Babarao R, Jiang J W, Unprecedentedly high selective adsorption of gasmixtures in rho zeolite-like metal-organic framework: a molecular simulationstudy [J]. Journal of the American Chemical Society,2009,131:11417-11425.
    [33] McKinlay A C, Morris R E, Horcajada P, Férey G, Gref R, Couvreur P, Serre C,BioMOFs: metal-organic frameworks for biological and medical applications[J]. Angewandte Chemie International Edition,2010,49:6260-6266.
    [34] Wang B, C téA P, Furukawa H, O'Keeffe M, Yaghi O M, Colossal cages inzeolitic imidazolate frameworks as selective carbon dioxide reserviors [J].Nature,2008,453:207-211.
    [35] O'Keeffe M, Peskov M A, Ramsden S J, Yaghi O M, The reticular chemistrystructure resource (RCSR) database of, and Symbols for, Crystal Nets [J].Accounts of Chemical Research,2008,41:1782-1789.
    [36] Li Q, Zhang W, Miljani O, Sue C H, Zhao L Y, Liu L, Knobler C B, StoddartJ F, Yaghi O M, Docking in metal-organic frameworks [J]. Science,2009,325:855-859.
    [37] Deng H, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, WangB, Yaghi O M, Multiple functional groups of varying ratios in metal-organicframeworks [J]. Science,2010,327:846-850.
    [38] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A O, SnurrR Q, O'Keeffe M, Kim J, Yaghi O M, Ultra-high porosity in metal-organicframeworks [J]. Science,2010,239:424-428.
    [39] Dinc M, Long J R, Hydrogen storage in microporous metal-organicframeworks with exposed metal sites [J]. Angewandte Chemie InternationalEdition,2008,47:6766-6779.
    [40] Karunadasa H I, Long J R, Synthesis and redox-induced structuralisomerization of the pentagonal bipyramidal complexes [W(CN)5(CO)2]3-/2-[J].Angewandte Chemie International Edition,2009,48:738-741.
    [41] Rinehart J D, Kozimor S A, Long J R, Tetranuclear uranium clusters byreductive cleavage of3,5-dimethylpyrazolate [J]. Angewandte ChemieInternational Edition2010,49:2560-2564.
    [42] Bechlars B, D'Alessandro D M, Jenkins D M, Iavarone A T, Glover S D,Kubiak C P, Long J R, High-spin ground states via electron delocalization inmixed-valence imidazolate-bridged divanadium complexes [J]. NatureChemistry,2010,2:362-368.
    [43] Wiers B M, Foo M L, Balsara N P, Long J R, A solid lithium electrolyte viaaddition of lithium isopropoxide to a metal-organic framework with open metalsites [J]. Journal of the American Chemical Society,2011,133:14522-14525.
    [44] Li J R, Timmons D J, Zhou H C, Interconversion between Molecular Polyhedraand Metal-Organic Frameworks [J]. Journal of the American Chemical Society,2009,131:6368-6369.
    [45] Zhao D, Yuan D, Sun D, Zhou H C, Stabilization of metal-organic frameworkswith high surface areas by the incorporation of mesocavities withmicrowindows [J]. Journal of the American Chemical Society,2009,131:9186-9188.
    [46] Yuan D, Sun D, Zhou H C, An isoreticular series of metal-organic frameworkswith dendritic hexa-carboxylate ligands and exceptionally high gas uptakecapacity [J]. Angewandte Chemie International Edition,2010,49:5357-5361.
    [47] Li J R, Zhou H C, Bridging-ligand-substitution strategy for the preparation ofmetal-organic polyhedra [J]. Nature Chemistry,2010,2:893-898.
    [48] Yuan D, Lu W, Zhao D, Zhou H C, Highly stable porous polymer networkswith exceptionally high gas-uptake capacities [J]. Advanced Materials,2011,23:3723-3725.
    [49] Rieter W J, Pott K M, Taylor K M L, Lin W B, Nanoscale coordinationpolymers for platinum-based anticancer drug delivery [J]. Journal of theAmerican Chemical Society,2008,130:11584-11585.
    [50] Taylor K M L, Rieter W J, Lin W B, Manganese-based nanoscale metal-organicframeworks for magnetic resonance imaging [J]. Journal of the AmericanChemical Society,2008,130:14358-14359.
    [51] Lin W B, Rieter W J, Taylor K M L, Modular synthesis of functional nanoscalecoordination polymers [J]. Angewandte Chemie International Edition,2009,48:650-658.
    [52] Ma L Q, Lin W B, Unusual interlocking and interpenetration lead to highlyporous and robust metal-organic frameworks [J]. Angewandte ChemieInternational Edition,2009,48:3637-3640.
    [53] Ma L Q, Mihalcik D J, Lin W B, Highly porous and robust4,8-connectedmetal-organic frameworks for hydrogen storage [J]. Journal of the AmericanChemical Society,2009,131:4610-4612.
    [54] Férey G, Supertetrahedra in sulfides: matter against mathematical series [J].Angewandte Chemie International Edition,2003,42:2576-2579.
    [55] Férey G, Serre C, Mellot-Draznieks C, A hybrid solid with giant pores preparedby a combination of targeted chemistry, simulation, and powder diffraction [J].Angewandte Chemie International Edition,2004,43:6296-6301.
    [56] Férey G, Mellot-Draznieks C, Serre C, A chromium terephthalate-based solidwith unusually large pore volumes and surface area [J]. Science,2005,309:2040-2042.
    [57] Serre C, Mellot-Draznieks C, SurbléS, Audebrand N, Filinchuk Y, Férey G,Role of solvent-host interactions that lead to very large swelling of hybridframeworks [J]. Science,2007,315:1828-1831.
    [58] Bradshaw D, Warren J E, Rosseinsky M J, Reversible concerted ligandsubstitution at alternating metal sites in an extended solid [J]. Science,2007,315:5841.
    [59] Tenailleau C, Allix M, Claridge J B, Hervieu M, Thomas M F, Hirst J P,Rosseinsky M J, Modular construction of oxide structures-compositionalcontrol of transition metal coordination environments [J]. Journal of theAmerican Chemical Society,2008,130:7570.
    [60] Wood C D, Tan B, Trewin A, Su F, Rosseinsky M J, Bradshaw D, Sun Y, ZhouL, Cooper A I, Microporous organic polymers for methane storage [J].Advanced Materials,2008,20:1916.
    [61] Bureekaew S, Horike S, Higuchi M, Mizuno M, Kawamura T, Tanaka D, YanaiN, Kitagawa S, One-dimensional imidazole aggregate in aluminum porouscoordination polymers with high proton conductivity [J]. Nature Materials,2009,8:831-836.
    [62] Sato H, Matsuda R, Sugimoto K, Takata M, Kitagawa S, Photoactivation of ananoporous crystal for on-demand guest trapping and conversion [J]. NatureMaterials,2010,9:661-666.
    [63] Yanai N, Kitayama K, Hijikata Y, Sato H, Matsuda R, Kubota Y, Takata M,Mizuno M, Uemura T, Kitagawa S, Gas detection by structural variations offluorescent guest molecules in a flexible porous coordination polymer [J].Nature Materials,2011,10:787-793.
    [64] Hirai K, Furukawa S, Kondo M, Uehara H, Sakata O, Kitagawa S, Sequentialfunctionalization of porous coordination polymer crystals [J]. AngewandteChemie International Edition,2011,50:8057-8061.
    [65] Seo J S, Whang D, Lee H, Kim K, A homochiral metal-organic porous materialfor enantioselective separation and catalysis [J]. Nature,2000,404:982-986.
    [66] Lee J W, Samal S, Selvapalam N, Kim K, Cucurbituril homologues andderivatives: new opportunities in supramolecular chemistry [J]. Accounts ofchemical research,2003,36:621-630.
    [67] Dybtsev D N, Chun H, Kim K, Rigid and flexible: a Highly porousmetal-organic framework with unusual guest-dependent dynamic behavior [J].Angewandte Chemie International Edition,2004,43:5033-5036.
    [68] Liu Y L, Kravtsov V C, Walsh R D, Eddaoudi M, Directed assembly ofmetal-organic cubes from deliberately predesigned molecular building blocks[J]. Chemical Communications,2004:2806-2807.
    [69] Liu Y L, Kravtsov V C, Beauchamp D A, Eddaoudi M,4-ConnectedMetal-Organic Assemblies Mediated via Heterochelation and Bridging ofSingle Metal Ions: KagoméLattice and the M6L12Octahedron [J]. Journal ofthe American Chemical Society,2005,127:7266-7267.
    [70] Eubank J F, Wojtas L, Hight M R, Bousquet T, Kravtsov V C, Eddaoudi M, Thenext chapter in MOF pillaring strategies: trigonal heterofunctional ligands toaccess targeted high-connected three dimensional nets, isoreticular platforms[J]. Journal of the American Chemical Society,2011,133:17532–17535.
    [71] Zhang Z J, Zhang L P, Wojtas L, Nugent P, Eddaoudi M, Zaworotko M J,Templated synthesis, postsynthetic metal exchange, and properties of aporphyrin-encapsulating metal-organic material [J]. Journal of the AmericanChemical Society,2012,134:924–927.
    [72] Zhang J P, Chen X M. Crystal engineering of binary metal imidazolate andtriazolate frameworks [J]. Chemical Communications,2006:1689-1699.
    [73] Chen X M, Tong M L. Solvothermal in situ metal/ligand reactions: a newbridge between coordination chemistry and organic synthetic chemistry [J].Accounts of Chemical Research,2007,40:162-170.
    [74] Zhang J P, Chen X M, Optimized acetylene/carbon dioxide sorption in adynamic porous crystal [J]. Journal of the American Chemical Society,2009,131:5516-5521.
    [75] Hao H G, Zheng X D, Lu T B, Photoinduced catalytic reaction by a fluorescentactive cryptand containing anthracene fragment [J]. Angewandte ChemieInternational Edition,2010,49:8148-8151.
    [76] Zhong D C, Meng M, Zhu J, Yang G Y, Lu T B, A highly-connected acentricorganic-inorganic hybrid material with unique3D inorganic and3D organicconnectivity [J]. Chemical Communications,2010,46:4354-4356.
    [77] Zhong D C, Zhang W X, Cao F L, Jiang L, Lu T B, A three-dimensionalmicroporous metal-organic framework with large hydrogen sorption hysteresis[J], Chemical Communications,2011,47:1204-1206.
    [78] Gao E Q, Bai S Q, Wang Z M, Yan C H, Two-dimensional homochiralmanganese(II)-azido frameworks incorporating an achiral ligand: partialspontaneous resolution and weak ferromagnetism [J]. Journal of the AmericanChemical Society,2003,125:4984-4985.
    [79] Wang C F, Gao E Q, He Z, Yan C H. A novel mixed-valence complexcontaining CoII2CoIII2molecular squares with4,5-Imidazoledicarboxylatebridges [J]. Chemical Communications,2004:720-721.
    [80] Wang Z X, Shen X F, Wang J, You X Z, A sodalite-like framework based onoctacyanomolybdate and neodymium with guest methanol molecules andneodymium octahydrate ions [J]. Angewandte Chemie International Edition,2006,45:3287-3291.
    [81] Wen H R, Wang C F, Li Y Z, You X Z, Chiral molecule-based ferrimagnetswith helical structures [J]. Inorganic Chemistry,2006,45:7032-7034.
    [82] Gu Z G, Zhou X H, Jin Y B, You X Z, Crystal structures and magnetic andferroelectric properties of chiral layered metal-organic frameworks withdicyanamide as the bridging ligand [J]. Inorganic Chemistry,2007,46:5462-5464.
    [83] Zhou Y F, Jiang F L, Yuan D Q, Wu B L, Wang R H, Lin Z Z, Hong M C,Copper complex cation templated gadolinium(III)-isophthalate frameworks [J].Angewandte Chemie International Edition,2004,43:5665-5668.
    [84] Feng R, Jiang F L, Chen L, Hong M C, A luminescent homochiral3D Cd(II)framework with a threefold interpenetrating uniform net86[J]. ChemicalCommunications,2009:5296-5298.
    [85] Feng R, Jiang F L, Wu M Y, Hong M C, Structures and photoluminescentproperties of the lanthanide coordination complexes with hydroxyquinolinecarboxylate ligands [J], Crystal Growth and Design,2010,10:2306-2313.
    [86] Sun Y Q, Zhang J, Chen Y M, Yang G Y, Porous lanthanide-organic openframeworks with helical tubes constructed from interweaving triple-helical anddouble-helical chains [J], Angewandte Chemie International Edition,2005,44:5814-5817.
    [87] He H, Cao G J, Zheng S T, Yang G Y, Lanthanide germanate cluster organicframeworks constructed from {Ln8Ge12} or {Ln11Ge12} cage cluster buildingblocks [J]. Journal of the American Chemical Society,2009,131:15588-15589.
    [88] Zheng S T, Zhang J, Li X X, Yang G Y, Cubic polyoxometalate-organicmolecular cage [J]. Journal of the American Chemical Society,2010,132:15102-15103.
    [89] Xiong R G, You X, Abrahams B F, Enantioseparation of racemic organicmolecules by a zeolite analogue [J]. Angewandte Chemie International Edition,2001,40:4422-4425.
    [90] Xiong R G, Xue X, Zhao H, Novel, acentric metal-organic coordinationpolymers from hydrothermal reactions involving in situ ligand synthesis [J].Angewandte Chemie International Edition,2002,41:3800-3803.
    [91] Zhao H, Qu Z R, Ye H Y, Xiong R G, In situ hydrothermal synthesis of tetrazolecoordination polymers with interesting physical properties [J]. ChemicalSociety Reviews,2008,37:84-100.
    [92] Fang Q R, Zhu G S, Xue M, Qiu S L, A metal-organic framework with thezeolite MTN topology containing large cages of volume2.5nm3[J].Angewandte Chemie International Edition,2005,44:3845-3848.
    [93] Guo H L, Zhu G S, Hewitt I J, Qiu S L,“Twin copper source” growth ofmetal-organic framework membrane: Cu3(BTC)2with high permeability andselectivity for recycling H2[J]. Journal of the American Chemical Society,2009,131:1646-1647.
    [94] Li Z Y, Zhu G S, Lu G Q, Qiu S L, Yao X D, Ammonia borane confined by ametal-organic framework for chemical hydrogen storage: enhancing kineticsand eliminating ammonia [J]. Journal of the American Chemical Society,2010,132:1490-1491.
    [95] Tong X L, Wang D Z, Hu T L, Bu X H, Zinc and cadmium coordinationframeworks with bis(tetrazole) ligands bearing flexible spacers: synthesis,crystal structures, and properties [J]. Crystal Growth and Design,2009,9:2280-2286.
    [96] Song W C, Li J R, Song P C, Bu X H, Tuning the framework topologies of Co“-doped Zn”-tetrazole-benzoate coordination polymers by ligandmodifications: structures and spectral studies [J]. Inorganic Chemistry,2009,48:3792-3799.
    [97] Chang Z, Zhang A S, Hu T L, Bu X H, ZnIIcoordination poylmers based on2,3,6,7-anthracenetetracarboxylic acid: synthesis, structures, and luminescenceproperties [J]. Crystal Growth and Design,2009,9:4840-4846.
    [98] Zhao B, Chen X Y, Cheng P, Coordination polymers containing1D channels asselective luminescent probes [J]. Journal of the American Chemical Society,2004,126:15394-15395.
    [99] Zhao X Q, Zhao B, Shi W, Cheng P, Structures and luminescent properties of aSeries of Ln-Ag heterometallic coordination polymers [J]. CrystEngComm,2009,11:1261-1269.
    [100] Wang Y, Zhao X Q, Shi W, Cheng P, Self-assembly of a series of metal-organicframeworks based on4-pyridyl-1,2,4-triazole and copper(II) ion [J]. CrystalGrowth and Design,2009,9:2137-2145.
    [101] Stock N, Biswas S, Synthesis of metal-organic frameworks (MOFs): routes tovarious MOF topologies, morphologies, and composites [J]. Chemical Reviews,2012,112:933-969.
    [102] Huang L, Wanga H, Chen J, Wang Z, Sun J, Zhao D Y, Yan Y S, Synthesis,morphology control, and properties of porous metal-organic coordinationpolymers [J]. Microporous and Mesoporous Materials,2003,58:105.
    [103] Cravillon J, Munzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M, Rapidroom-temperature synthesis and characterization of nanocrystals of aprototypical zeolitic imidazolate framework [J]. Chemistry of Materials,2009,21:1410.
    [104] Forster P M, Stock N, Cheetham A K, A high-throughput investigation of therole of pH, temperature, concentration, and time on the synthesis of hybridinorganic–organic materials [J]. Angewandte Chemie International Edition,2005,44:7608-7611.
    [105] Bauer S, Stock N, Implementation of a temperature-gradient reactor system forhigh-throughput investigation of phosphonate-based inorganic-organic hybridcompounds [J]. Angewandte Chemie International Edition,2007,46:6857-6860.
    [106] Müller U, Puetter H, Hesse M, Wessel H, WO2005/049892.
    [107] Richter I, Schubert M, Müller U, WO2007/131955
    [108] Klinowski J, Paz F A A, Rocha J, Microwave-assisted synthesis ofmetal-organic frameworks [J]. Dalton Transactions,2011,40:321.
    [109] Jhung S H, Lee J H, Chang J S, Microwave synthesis of a nanoporous hybridmaterial, chromium trimesate, bull [J]. Bulletin of the Korean Chemical Society,2005,26:880.
    [110] Pichon A, Lazuen-Garay A, James S L, Solvent-free synthesis of a microporousmetal-organic framework [J], CrystEngComm,2006,8:211.
    [111] Fri i s T, New opportunities for materials synthesis using mechanochemistry[J]. Journal of Materials Chemistry,2010,20:7599-7605.
    [112] Qiu L G, Li Z Q, Wu Y, Wang W, Xu T, Jiang S, Facile synthesis ofnanocrystals of a microporous metal-organic framework by an ultrasonicmethod and selective sensing of organoamines [J]. Chemical Communications,2008,3642.
    [113] Schlesinger M, Schulze S, Hietschold M, Mehring M, Evaluation of syntheticmethods for microporous metal-organic frameworks exemplified by thecompetitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)][J].Microporous and Mesoporous Materials,2010,132:121.
    [114] Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM, High-throughput synthesis of zeolitic imidazolate frameworks andapplication to CO2capture [J]. Science,2008,319:939.
    [115] Bauer S, Serre C, Devic T, Horcajada P, Marrot J, Férey G, Stock N,High-throughput assisted rationalization of the formation of metal-organicframeworks in the iron(III) aminoterephthalate solvothermal system [J].Inorganic Chemistry,2008,47:7568.
    [116] Zacher D, Shekhah O, Woll C, Fischer R A, Thin films of metal-organicframeworks [J]. Chemical Society Reviews,2009,38:1418.
    [117] Munuera C, Shekhah O, Wang H, Woll C, Ocal C, The controlled growth oforiented metal-organic frameworks on functionalized surfaces as followed byscanning force microscopy [J]. Physical Chemistry Chemical Physics,2008,10:7257.
    [118] Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J, Zeolitic imidazolateframework membrane with molecular sieving properties by microwave-assistedsolvothermal synthesis [J]. Journal of the American Chemical Society,2009,131:16000.
    [119] Bux H, Feldhoff A, Cravillon J, Wiebcke M, Li Y S, Oriented zeoliticimidazolate framework-8membrane with sharp H2/C3H8molecular sieveseparation [J]. Chemistry of Materials,2011,23:2262.
    [120] Hermes S, Schrhoter M K, Schmid R, Khodeir L, Muhler M, Tissler A, FischerR W, Fisher R A, Metal@MOF: loading of highly porous coordinationpolymers host lattices by metal organic chemical vapor deposition [J].Angewandte Chemie International Edition,2005,44:6237.
    [121] Lohe M R, Gedrich K, Freudenberg T, Kockrick E, Dellmann T, Kaskel S,Heating and separation using nanomagnet-functionalized metal-organicframeworks [J]. Chemical Communications,2011,47:3075.
    [122] Yang S J, hoi J Y, Chae H K, Cho J H, Nahm K S, Park C R, Topotactic Liinsertion/extraction in hexagonal vanadium monophosphide [J]. Chemistry ofMaterials,2009,21:1893.
    [123] Wang X S, Ma S Q, Yuan D Q, Yoon J, Hwang Y, Chang J S, Wang X P,J?rgensen M, Chen Y S, Zhou H C, A large-surface-areaboracite-network-topology porous MOF constructed from conjugated ligandexhibiting high hydrogen uptake capacity [J]. Inorganic Chemistry,2009,48:7519-7521.
    [124] Sun D, Ma S, Yuan D, Li J R, Simmons J M, Zhou H C, An unusual case ofsymmetry-preserving isomerism [J]. Chemical Communications,2010,46:1329-1331.
    [125] Zhao D, Yuan D, Yakovenko A, Zhou H C, A NbO-type metal-organicframework derived from a polyyne-coupled di-isophthalate linker formed insitu [J]. Chemical Communications,2010,46:4196-4198.
    [126] Lu W, Yuan D, Makal T A, Li J R, Zhou H C, A highly porous and robust(3,3,4)-connected metal-organic framework assembled with a90°-bridging-angle-embedded octa-carboxylate ligand [J]. Angewandte ChemieInternational Edition,2012,51:1580-1584.
    [127] Park K S, Ni Z, C téA P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K,O'Keeffe M, Yaghi O M, Exceptional chemical and thermal stability of zeoliticimidazolate frameworks [J]. Proceedings of the National Academy of SciencesUSA,2006,103:10186-10191.
    [128] Hayashi H, C té A P, Furukawa H, O'Keeffe M, Yaghi O M, Zeolite aimidazolate frameworks [J]. Nature Materials,2007,6:501-506.
    [129] Phan A, Doonan C, Uribe-Romo F J, Knobler C B, O'keeffe M, Yaghi O M,Synthesis, structure, and carbon dioxide capture properties of zeoliticimidazolate frameworks [J]. Accounts of Chemical Research,2009,43:58-67.
    [130] Morris W, Doonan C, Furukawa H, Banerjee R, Yaghi O M, Crystals asmolecules: postsynthesis covalent functionalization of zeolitic imidazolateframeworks [J]. Journal of the American Chemical Society,2008,130:12626-12627.
    [131] Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi O M, Controlof pore size and functionality in isoreticular zeolitic imidazolate frameworksand their carbon dioxide selective capture properties [J]. Journal of theAmerican Chemical Society,2009,131:3875-3877.
    [132] Morris W, Leung B, Furukawa H, Yaghi O K, He N, Hayashi H,Houndonougbo Y, Asta M, Laird B B, Yaghi O M, A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticularzeolitic imidazolate frameworks [J]. Journal of the American Chemical Society,2010,132:11006-11008.
    [133] Liu B, Smit B, Molecular simulation studies of separation of CO2/N2, CO2/CH4,and CH4/N2by ZIFs [J]. The Journal of Physical Chemistry C,2010,114:8515-8522.
    [134] Esken D, Turner S, Lebedev O I, Tendeloo G V, Fischer R A, Au@ZIFs:stabilization and encapsulation of cavity-size matching gold clusters insidefunctionalized zeolite imidazolate frameworks, ZIFs [J]. Chemistry ofMaterials,2010,22:6393-6401.
    [135] Pan Y C, Liu Y Y, Zeng G F, Zhao L, Lai Z P, Rapid synthesis of zeoliticimidazolate framework-8(ZIF-8) nanocrystals in an aqueous system [J].Chemical Communications,2011,47:2071-2073.
    [136] Li Y S, Liang F Y, Bux H, Feldhoff A, Yang W S, Caro J, Molecular sievemembrane: supported metal-organic framework with high hydrogen selectivity[J]. Angewandte Chemie,2010,122:558-561.
    [137] L?ssig D, Lincke J, Moellmer J, Reichenbach C, Moeller A, Gl ser R, Kalies G,Cychosz K A, Thommes M, Staudt R, Krautscheid H, A microporous coppermetal–organic framework with high H2and CO2adsorption capacity at ambientpressure [J]. Angewandte Chemie International Edition,2011,50:10344-10348.
    [138] Tian G, Zhu G S, Yang X Y, Fang Q R, Xue M, Sun J Y, Wei Y, Qiu S L, Achiral layered Co(II) coordination polymer with helical chains from achiralmaterials [J]. Chemical Communications,2005,1396-1398.
    [139] Chung H, Barron P M, Novotny R W, Son H T, Hu C H, Choe W, Structuralvariation in porphyrin pillared homologous series: influence of distinctcoordination centers for pillars on framework topology [J]. Crystal Growth andDesign,2009,9:3327-3332.
    [140] Nelson A P, Parrish D A, Cambrea L R, Baldwin L C, Trivedi N J, Mulfort K L,Farha O K, Hupp J T, Crystal to crystal guest exchange in a mixed ligandmetal-organic framework [J]. Crystal Growth and Design,2009,9:4588-4591.
    [141] Li J R, Zhou H C, Metal-organic hendecahedra assembled fromdimetal-paddlewheel nodes and mixtures of ditopic linkers with120and90°bend-angles [J]. Angewandte Chemie International Edition,2009,48:8465-8468.
    [142] Liu X G, Wang L Y, Zhu X, Li B L, Zhang Y, Structural versatility of eightzinc(II) coordination polymers constructed with a long flexible ligand1,4-bis(1,2,4-triazol-1-yl)-butane [J]. Crystal Growth and Design,2009,9:3997-4005.
    [143] Zhang L P, Ma J F, Yang J, Liu Y Y, Wei G H,1D,2D, and3D metal-organicframeworks based on bis(imidazole) ligands and polycarboxylates: syntheses,structures, and photoluminescent properties [J]. Crystal Growth and Design,2009,9:4660-4673.
    [144] Koh K, Wong-Foy A G, Matzger A J, A crystalline mesoporous coordinationcopolymer with high microporosity [J]. Angewandte Chemie InternationalEdition,2008,47:677-680.
    [145] Klein N, Senkovska I, Gedrich K, Stoeck U, Henschel A, Mueller U, Kaskel S,A Mesoporous Metal-Organic Framework [J]. Angewandte ChemieInternational Edition,2009,48,9954-9957.
    [146] Murray L J, Dinc M, Long J R, Hydrogen storage in metal-organicframeworks [J]. Chemical Society Reviews,2009,38:1294-1314.
    [147] Suh M P, Park H J, Prasad T K, Lim D W, Hydrogen storage in metal-organicframeworks [J]. Chemical Reviews,2012,112:782-835.
    [148] Wu H, Gong Q H, Olson D H, Li J, Commensurate adsorption of hydrocarbonsand alcohols in microporous metal organic frameworks [J]. Chemical Reviews,2012,112:836-868.
    [149] Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R,Bae T H, Long J R, Carbon dioxide capture in metal-organic frameworks [J].Chemical Reviews,2012,112:724-781.
    [150] Ma S Q, Sun D F, Simmons J M, Zhou H C, Metal-organic framework from ananthracene derivative containing nanoscopic cages exhibiting high methaneuptake [J]. Journal of the American Chemical Society,2008,130:1012-1016.
    [151] Zhou W, Wu H, Hartman M R, Hydrogen and methane adsorption inmetal-organic frameworks: a high-pressure volumetric study [J]. The Journal ofPhysical Chemistry C,2007,111:16131-16137.
    [152] Bourrelly S, Llewellyn P L, Serre C, Different adsorption behaviors of methaneand carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53andMIL-47[J]. Journal of the American Chemical Society,2005,127:13519-13521.
    [153] Shimomura S, Higuchi M, Matsuda R, Yoneda K, Hijikata Y, Kubota Y, Mita Y,Kim J, Takata M, Kitagawa S, Selective sorption of oxygen and nitric oxide byan electron-donating flexible porous coordination polymer [J]. NatureChemistry,2010,2:633.
    [154] Lee C Y, Bae Y S, Jeong N C, Farha O K, Sarjeant A A, Stern C L, Nickias P,Snurr R Q, Hupp J T, Nguyen S T, Kinetic separation of propene and propanein metal-organic frameworks: controlling diffusion rates in plate-shapedcrystals via tuning of pore apertures and crystallite aspect ratios [J]. Journal ofthe American Chemical Society,2011,133:5228.
    [155] Izumi J, Handbook of zeolite science and technology [M]. New York: CRCPress,2003.
    [156] Finsy V, Verelst H, Alaerts L, Vos D D, Jacobs P A, Baron G V, Denayer J F M,Pore-filling-dependent selectivity effects in the vapor-phase separation ofxylene isomers on the metal-organic framework MIL-47[J]. Journal of theAmerican Chemical Society,2008,130:7110.
    [157] Xu G H, Zhang X G, Guo P, Pan C L, Zhang H J, Wang C, MnII-based MIL-53analogues: synthesis using neutral bridging μ2-ligands and application inliquid-phase adsorption and separation of C6-C8aromatics [J]. Journal of theAmerican Chemical Society,2010,132:3656.
    [158] Cychosz K A, Wong-Foy A G, Matzger A J, Enabling cleaner fuels:desulfurization by adsorption to microporous coordination polymers [J].Journal of the American Chemical Society,2009,131:14538.
    [159] Li J R, Sculley J, Zhou H C, Metal-organic frameworks for separations [J].Chemical Reviews,2012,112:869-932.
    [160] Hasegawa S, Horike S, Matsuda R, Kitagawa S, Three-dimensional porouscoordination polymer functionalized with amide groups based on tridentateligand: selective sorption and catalysis [J]. Journal of the American ChemicalSociety,2007,129:2607-2614.
    [161] Gandara F, Gornez-Lor B, Gutierrez-Puebla E, An indium layered MOF asrecyclable lewis acid catalyst [J]. Chemistry of Materials,2008,20:72-76.
    [162] Alkordi M H, Liu Y L, Larsen R W, Eddaoudi M, Zeolite-like metal-organicframeworks as platforms for applications: on metalloporphyrin-based catalysts[J]. Journal of the American Chemical Society,2008,130:12639-12641.
    [163] Ingleson M J, Barrio J P, Bacsa J, Dickinson C, Park H, Rosseinsky M J,Generation of a solid br nsted acid site in a chiral framework [J]. ChemicalCommunications,2008,1287-1289.
    [164] Schlichte K, Kratzke T, Kaskel S, Improved synthesis, thermal stability andcatalytic properties of the metal-organic framework compound Cu3(BTC)2[J].Microporous and Mesoporous Materials,2004,73:81-88.
    [165] Abad A, Corma A, Garcia H, MOFs as catalysts: activity, reusability andshape-selectivity of a Pd-containing MOF [J]. Journal of Catalysis,2007,250:294-298.
    [166] Kitagawa S, Noro S I, Nakamura T, Pore surface engineering of microporouscoordination polymers [J]. Chemical Communications,2006,701-707.
    [167] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T,Metal-organic framework materials as catalysts [J]. Chemical Society Reviews,2009,38:1450-1459.
    [168] Yoon M, Srirambalaji R, Kim K, Homochiral metal-organic frameworks forasymmetric heterogeneous catalysis [J]. Chemical Reviews,2012,112:1196-1231.
    [169] Lu Z Z, Zhang R, Li Y Z, Guo Z J, Zheng H G, Solvatochromic behavior of ananotubular metal-organic framework for sensing small molecules [J]. Journalof the American Chemical Society,2011,133:4172.
    [170] Lan A, Li K, Wu H, Olson D H, Emge T J, Ki W, Hong M, Li J, A luminescentmicroporous metal-organic framework for the fast and reversible detection ofhigh explosives [J]. Angewandte Chemie International Edition,2009,48:2334..
    [171] Pramanik S, Zheng C, Zhang X, Emge T J, Li J, New microporousmetal-organic framework demonstrating unique selectivity for detection of highexplosives and aromatic compounds [J]. Journal of the American ChemicalSociety,2011,133:4153.
    [172] Lu G, Hupp J T, Metal-organic frameworks as sensors: a ZIF-8basedfabry-Pérot device as a selective sensor for chemical vapors and gases [J].Journal of the American Chemical Society,2010,132:7832.
    [173] Lu G, Farha O K, Kreno L E, Schoenecker P M, Walton K S, Duyne R P V,Hupp J T, Fabrication of metal-organic framework-containing silica-colloidalcrystals for vapor sensing [J]. Advanced Materials,2011,23:4449.
    [174] Achmann S, Hagen G, Kita J, Malkowsky I M, Kiener C, Moos R, Solid stategas sensor research in germany-a status report [J]. Sensors,2009,9:1574.
    [175] Kreno L E, Leong K, Farha O K, Allendorf M, Duyne R P V, Hupp J T,Metal-organic framework materials as chemical sensors [J]. Chemical Reviews,2012,112:1105-1125.
    [176] Jayaramulu K, Kanoo P, George S J, Maji T K, Tunable emission from a porousmetal-organic framework by employing an excited-state intramolecular protontransfer responsive ligand [J]. Chemical Communications,2010,46:7906.
    [177] Moore E G, Samuel A P S, Raymond K N, From antenna to assay: lessonslearned in lanthanide luminescence [J]. Accounts of Chemical Research,2009,42:542.
    [178] An J, Shade C M, Chengelis-Czegan D A, Petoud S, Rosi N L, Zinc-adeninatemetal-organic framework for aqueous encapsulation and sensitization ofnear-infrared and visible emitting lanthanide cations [J]. Journal of theAmerican Chemical Society,2011,133:1220.
    [179] Allendorf M D, Bauer C A, Bhakta R K, Houk R J T, Luminescentmetal-organic frameworks [J]. Chemical Society Reviews,2009,38:1330-1352.
    [180] Cui Y J, Yue Y F, Qian G D, Chen B L, Luminescent functional metal-organicframeworks [J]. Chemical Reviews,2012,112:1126-1162.
    [181] Rao C N R, Cheetham A K, Thirumurugan A, Hybrid inorganic-organicmaterials: a new family in condensed matter physics [J]. Journal of Physics:Condensed Matter,2008,20:083202.
    [182] Kurmoo M, Magnetic metal-organic frameworks [J]. Chemical SocietyReviews,2009,38:1353-1379.
    [183] Bogani L, Vindigni A, Sessoli R, Gatteschi D, Single chain magnets: where tofrom here [J]. Journal of Materials Chemistry,2008,18:4750.
    [184] Murrie M, Price D J, Molecular magnetism [J]. Inorganic Chemistry,2007,103:20.
    [185] Beltran L M C, Long J R, Directed assembly of metal-cyanide cluster magnets[J]. Accounts of Chemical Research,2005,38:325.
    [186] Shekhah O, Wang H, Zacher D, Fischer R A, W ll C, Growth mechanism ofmetal-organic frameworks: insights into the nucleation by employing astep-by-step route [J]. Angewandte Chemie International Edition,2009,48:5038.
    [187] Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H,Surface nano-architecture of a metal-organic framework [J]. Nature Materials,2010,9:565.
    [188] Yoo Y, Jeong H K, Heteroepitaxial growth of isoreticular metal-organicframeworks and their hybrid films [J]. Crystal Growth and Design,2010,10:1283.
    [189] Bétard A, Fischer R A, Metal-organic framework thin films: from fundamentalsto applications [J]. Chemical Reviews,2012,112:1055-1083.
    [190] Liu Y L, Kravtsov V C, Larsena R, Eddaoudi M, Molecular building blocksapproach to the assembly of zeolite-like metal-organic frameworks (ZMOFs)with extra-large cavities [J]. Chemical Communications,2006,1488-1490.
    [191] Liu Y L, Kravtsov V C, Eddaoudi M, Template-directed assembly ofzeolite-like metal-organic frameworks (ZMOFs): a usf-ZMOF with anunprecedented zeolite topology [J]. Angewandte Chemie International Edition,2008,47:8446-8449.
    [192] Alkordi M H, Brant J A, Wojtas L, Kravtsov V C, Cairns A J, Eddaoudi M,Zeolite-like metal-organic frameworks (ZMOFs) based on the directedassembly of finite metal-Organic cubes (MOCs)[J]. Journal of the AmericanChemical Society,2009,131:17753-17755.
    [193] Sava D F, Kravtsov V C, Eckert J, Eubank J F, Nouar F, Eddaoudi M,Exceptional stability and high hydrogen uptake in hydrogen-bondedmetal-organic cubes possessing ACO and AST zeolite-like topologies [J].Journal of the American Chemical Society,2009,131:10394-10396.
    [194] Wang S, Zhao T T, Li G H, Wojtas L, Huo Q S, Eddaoudi M, Liu Y L, Frommetal-organic squares to porous zeolite-like supramolecular assemblies [J].Journal of the American Chemical Society,2010,132:18038-18041.
    [195] Wang W Y, Niu X L, Gao Y C, Zhu Y Y, Li G, Lu H J, Tang M S, One chiraland two achiral3-D coordination polymers constructed by2-phenyl imidazoledicarboxylate [J]. Crystal Growth and Design,2010,10:4050-4059.
    [196] Jing X M, Zhang L R, Ma T L, Li G H, Yu Y, Huo Q S, Eddaoudi M, Liu Y L,Assembly of two metal-organic frameworks with intrinsic chiral topology fromachiral materials [J]. Crystal Growth and Design,2010,10:492-494.
    [197] Jing X M, Meng H, Li G H, Yu Y, Huo Q S, Eddaoudi M, Liu Y L,Construction of three metal-organic frameworks based on multifunctionalT-shaped tripodal ligands, H3PyImDC [J]. Crystal Growth and Design,2010,10:3489-3495.
    [198] Jing X M, Zhao T T, Zheng B, Peng Y, Yan Y, Huo Q S, Liu Y L, Constructionof a cadmium supermolecular compound from2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid [J]. Inorganic ChemistryCommunications,2011,14:22-25.
    [199] Software packages SMART, and SAINT, Siemens Analytical X-ray InstrumentsInc., Madison, WI,1996.
    [200] SHELXTL, Version5.1, Siemens Industrial Automation, Inc.,1997.
    [201] Sun Y Q, Zhang J, Yang G Y, A series of luminescentlanthanide-cadmium-organic frameworks with helical channels and tube [J].Chemical Communications,2006,4700-4702.
    [202] Lu W G, Jiang L, Feng X L, Lu T B, Three-dimensional lanthanide anionicmetal-organic frameworks with tunable luminescent properties induced bycation exchange [J]. Inorganic Chemistry,2009,48:6997-6999.
    [203] Lu W G, Jiang L, Lu T B, Lanthanide contraction and temperature-dependentstructures of lanthanide coordination polymers withimidazole-4,5-dicarboxylate and oxalate [J]. Crystal Growth and Design,2010,10:4310-4318.
    [204] Alcalde E, Dinares I, Perez-Garcia L, Roca T. An advantageous synthesis of2-substituted benzimidazoles using polyphosphoric acid.2-(pyridyl)-1H-benzimidazoles,1-alkyl-(1H-benzimidazol-2-yl)pyridiniumsalts, their homologues and vinylogues synthesis,1992,395-398.
    [205]杨小龙,一种2-烷基咪唑-4,5-二羧酸的制备方法:中国,200510024355.5
    [206] Feng X, Wang L Y, Zhao J S, Wang J G, Weng N S, Liu B, Shi X G, Series ofanion-directed lanthanide-rigid-flexible frameworks: syntheses, structures,luminescence and magnetic properties [J]. CrystEngComm,2010,12:774-783.
    [207] Cai B, Yang P, Dai J W, Wu J Z, Tuning the porosity of lanthanide MOFs with2,5-pyrazinedicarboxylate and the first in situ hydrothermal carboxyl transfer[J]. CrystEngComm,2011,13:985-991
    [208] Spek A L, Single-crystal structure validation with the program PLATON [J].Journal of Applied Crystallography,2003,36:7-13.
    [209] Maji T K, Mostaf G, Chang H C, Kitagawa S, Porous lanthanide-organicframework with zeolite-like topology [J]. Chemical Communications,2005,2436-2438
    [210] Wang S, Zhang L R, Li G H, Huo Q S, Liu Y L, Assembly of two3-Dmetal-organic frameworks from Cd(II) and4,5-imidazoledicarboxylic acid or2-ethyl-4,5-imidazoledicarboxylic acid [J]. CrystEngComm,2008,10:1662-1666.
    [211] Zhang F W, Li Z F, Ge T Z, Yao H C, Li G, Lu H J, Zhu Y Y, Four novelframeworks built by imidazole-based dicarboxylate ligands:hydro(Solvo)thermal synthesis, crystal structures, and properties [J]. InorganicChemistry,2010,49:3776-3788.
    [212] Yue Y F, Liang J, Gao E Q, Fang C J, Yan Z G, Yan C H, Supramolecularengineering of a2D kagomé lattice: synthesis, structures, and magneticproperties [J]. Inorganic Chemistry,2008,47:6115-6117.
    [213] Zhang W X, Xue W, Zheng Y Z, Chen X M, Two spin-competing manganese(II)coordination polymers exhibiting unusual multi-step magnetization jumps [J].Chemical Communications,2009,3804-3806.
    [214] Li J R, Yu Q, Tao Y, Bu X H, Ribasb J, Batten S R, Magnetic canting or not?two isomorphous3D CoII and NiIIcoordination polymers with the rarenon-interpenetrated (10,3)-d topological network, showing spin-cantedantiferromagnetism only in the CoIIsystem [J]. Chemical Communications,2007,2290-2292.
    [215]王爽,咪唑羧酸及其衍生物为配体的配位聚合物的合成,表征及性质研究[D],吉林:吉林大学化学学院,2011.
    [216] Zhang W X, Xue W, Chen X M, Flexible mixed-spin kagomécoordinationpolymers with reversible magnetism triggered by dehydration and rehydration[J]. Inorganic Chemistry,2011,50:309-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700