紫精与芘衍生物电荷转移晶体的制备与光电导性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电荷转移作用通常发生在电子给体分子与电子受体分子之间,是超分子化学领域中一类十分重要的分子间相互作用。自二十世纪中叶这一相互作用被开始系统的、理论化的描述以来,特别是最近二十多年的时间里,由于超分子化学领域的研究方兴未艾,几乎有数以万计的科研工作围绕这一主题展开。可以说,电荷转移作用涉及到超分子科学的方方面面,从溶液中的自组装行为到固态条件下的晶体工程学,几乎处处都可以看到电荷转移作用的影子。电荷转移作用近来受到青睐的另一方面原因是,随着有机功能材料的飞速发展,大量基于电荷转移作用的光电材料被开发、研制了出来,使得有机材料摆脱了绝缘、惰性等传统印象的束缚,在微纳米光电材料领域大放异彩。
     在我们的工作中,我们试图避免复杂的分子结构以及繁琐的合成路线对研究电荷转移过程的影响,试图采用结构相对简单,且易于得到的分子作为模型化的、参与电荷转移作用的分子。在此,我们以紫精分子作为电子受体,以芘四磺酸四钠盐(PyTs)分子作为电子给体,其中PyTs分子已经实现了商品化,而紫精分子的合成也比较简单且易于操作。
     我们首先研究了丁基紫精(BuV)与PyTs这样一对具有电荷转移作用的分子,在水溶液中的识别、组装行为。研究发现,随着BuV分子的加入,荧光分子PyTs的荧光发生了明显的淬灭的现象,这一现象表明这一超分子体系在水溶液中存在着显著的光诱导的电荷转移作用,而这一淬灭作用可以用“作用球”机理进行解释,其中静电作用造成了两种分子在溶液中相互靠近,而光诱导的电荷转移作用则是发生荧光淬灭的关键因素。通过ESIMS/MS二级串联质谱,我们研究了水中两种分子相互作用所形成组装体的细致结构,表明水中BuV与PyTs分子存在着面对面堆积的二聚体结构,同时这一结构中的ππ作用经由二维NOESY予以确认。在二级串联质谱中,我们还观察到了随着改变施加于质谱中的轰击电压而呈现出的电荷转移作用下二聚体的聚集与解聚的动态过程。通过多级串联质谱研究电荷转移作用下超分子聚集体的聚集-解聚过程,为研究溶液中的超分子相互作用又提供了一个有力的手段。BuV分子与PyTs分子之间这种初级有序结构的形成能够进一步的诱导两种分子形成更加完善的电荷转移晶体,而非简单的经过静电作用结合成为一种无序的电中性聚集体,从而有望为在固体条件下研究此类电荷转移有机材料的性能提供了一种可能。
     其次,我们利用BuV与PyTs两个有机小分子作为模型化合物,制备了BuVPyTs两者复合之后的单晶。利用单晶X射线衍射解析可知,晶体中含有一当量的PyTs分子与两当量的BuV分子,而其中只有一当量的BuV分子参与了与PyTs的堆积作用,且这种堆积呈现为一种电子受体与电子给体之间的交替堆积作用。通过XPS与拉曼光谱的表征,表明了分子间由于发生电荷转移作用使得BuV与PyTs分子在晶体中的分子结构均发生了一定的改变,并由分子结构上的变化这一特点推断出电荷转移作用在晶体中存在的这一事实,而紫外吸收漫反射光谱的研究也证明了电荷转移作用的存在,即该晶体是一种典型的电荷转移晶体。这一制备具有特定交替堆积结构的电荷转移晶体的过程,其核心是超越单纯的组装这一超分子研究中最为直接的研究方法,将目光深入到发生电荷转移过程的固态聚集体中去。
     再次,我们通过微纳米加工的手段,制备了BuVPyTs一维电荷转移晶体的棒状晶体器件。通过TEM与SAED的表征中,可以证实晶体中的堆积方向与一维晶体的轴向方向相一致。通过器件的光电导测试表明我们所制备的具有交替堆积结构的电荷转移晶体具有很好的光电导特性,光电流随着正负电极之间的施加电压的增加而增加,IV曲线呈现出一种向上翘曲的趋势,当外界施加电压达到30V时,光电流的强度可达到约2.25nA。该具有光电导特性的电荷转移晶体的光响应性经过多次改变光照/黑暗条件的方法测得,发现样品具有十分敏感的光响应性,在有无光照条件下的电流强度比约为100,且多次改变光照/黑暗条件并没有使得样品的光响应性能有所衰减。我们将这一现象归结于交替堆积的电荷转移晶体中分子级别的异质结结构的存在以及沿分子堆积方向上特殊的“自由基阳离子-自由基阳离子”相互作用所造成的结果。机光电导电荷转移晶体的发现和光电导性能的测试为这种新型的有机电荷转移材料在光电领域的应用提供了基础,同时,交替堆积的结构使这种分子级别上的、在晶体中点阵化分布的异质结结构对于相关有机功能化材料的理论研究提供了一类很好的模型化晶体样品。
     最后,我们设计并合成了一系列不同取代基或分子拓扑结构的紫精分子衍生物,并通过这些分子分别与PyTs分子的相互作用制备了相应的电荷转移晶体。紫外吸收光谱证实了不同取代基的紫精分子在分子轨道能极差方面的差别,同时也表明利用取代基的种类调控紫精分子的电荷转移行为的可能性。对于晶体中紫精分子共价键键长以及分子内或分子间分子平面的扭转角度的总结表明,取代基的体积位阻效应与电子效应对电荷转移晶体的结构有着很明显的影响。电子顺磁共振揭示了在电荷转移晶体中,具有一种受限的电子行为。这使得我们所制备的电荷转移晶体在电子的生成与稳定化方面显示出一定的应用前景。对BuVPyTs分子的变温磁化率的表征表明,在场冷和零场冷的条件下,晶体的变温磁化率曲线存在着明显的分叉现象,这一现象与电荷转移晶体中电子特殊的自旋行为相关。在对分子拓扑结构对电荷转移晶体的影响的考察中,我们合成了一种两个紫精基团以共价键的形式存在的紫精二聚体分子:HexdBuV。其对PyTs的荧光淬灭效果更见明显,且得到的晶体不在有明显的分子间面对面堆积的特征,而是呈现出一种层-层堆积的结构。这是由于共价键的强度远高于其他分子间的超分子作用,使单个紫精分子所影响的区域半径加大,从而使得分子由分散到聚集,再到有序排列这一过程的发生更加容易。关于紫精分子中取代基的体积位阻效应、电子效应与分子拓扑结构对电荷转移晶体的影响研究表明了紫精类分子与芘衍生物之间的电荷转移作用并进一步形成有序固态聚集体的结果并不是一个孤立的现象,而是一种广泛存在的现象,从而为这类电荷转移晶体更为广泛的研究和应用打下一个良好的基础。
Charge transfer interaction, which usually occurs between the electron-rich molecules and electron-withdrawing molecules, is a very important intramolecular interaction for supramolecular chemistry. After the first systematic describing in1950s, tens of thousands studies were focused on this interaction, especially in recent decades for the ultrafast development of supramolecular chemistry. From the self-assembly behavior in solution to the crystal engineering in solid state, charge transfer interaction involves everywhere in supramolecular science. It should be mentioned that a large number of organic fuctional materials were developed and preperated based on the charge transfer interactions, so more and more attention now is paid to the charge transfer interactions for designing and investigating micro/nano photoelectric functional materials.
     To avoid the complicated molecular strucrture and the sophisticated synthesis, we try to use molecules with simple structures and easy availability to construct the charge transfer complexes. In our study, we choose viologen molecules which can be synthetized concisely as acceptors and commercial1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PyTs) as donor.
     Firstly, the recognition and self-assembly behavior of charge transfer pair containing butyl viologen (BuV) and PyTs was investigated. The obvious fluorescent quenching behavior could be found in the aqueous solution, which showed a typical photoinduced charge transfer interaction between BuV and PyTs, and the quenching behavior was fit for the mechanism of "action of sphere", which means the donors and acceptors were closely to each other by electrostatic interaction, then photoinduced charge transfer happened to result in fluorescent quenching. The tandem mass spectrometry (MS/MS) was used to investigate the detailed structures of the charge transfer aggregates, the MS result showed a kind of face-to-face dimerization stacker with donor and acceptor, this could be also conformed by2D NOESY spectrum. In the second stage of MS/MS, the ionic product peak of dimer stacker was chosen to the later analysis, the dynamic stacking-destacking process was showed via varied bombardment voltages. The use of the tandem mass spectrometry in this energy depending stacking-destacking process showed a noval powerful tool to investigate the charge transfer supramolecular structures in methodology. Compared with the random aggregates constructed by electrostatic interaction, the dimerized aggregates of BuV and PyTs by charge transfer interaction directed the forming of the further highly ordered, which could provide a possibility to study the propertities of organic functional crystallized materials in solid states.
     Secondly, a single crystal of BuV-PyTs was prepared by a solvent evaporation method. The single crystal X-ray diffraction analysis showed one PyTs molecule and two BuV molecules per unit and only one was stacked with PyTs, importantly, the stacking of BuV and PyTs was a mixed stacking mode. XPS and Raman spectra showed a detailed change of molecular structures in the crystal lattice, this change of molecular structures was a key factor to indicate the existence of change transfer interaction in solid state, the UV diffuse reflectance also supported this inference. Comparing the study of the assembly behavior in solution, the progress of preparing the crystal focuses on the charge transfer interaction in solid state directly, which conduces to comprehend this intramolecular interaction deeply.
     Thirdly, the crystal device of BuV-PyTs ID charge transfer single crystal fiber was prepared by micro/nano-fabrication technologies successfully. TEM and SAED showed the stacking direction was corresponding to the growth direction of crystal fiber. The photoconductive measurement of the crystal device with the mixed stacking mode showed a photocurrent, which exhibited a strongly sublinear dependence on the voltage and it reached ca.2.25nA at a bias of30V. The photocurrent could be switched promptly several times by irradiated light-on and-off at a bias of30V, without any appreciable attenuation at an on/off ratio about100. So the fast photoresponsibility and the high stability under the light turning on and off implied the charge transfer crystal with the molecular heterojunctions in the lattice and the unique "radical cation-radical cation"interaction in the direction of the mixed stacking profitable for application in organic optoelectronic devices. The mixed stacking mode in the charge transfer crystal with latticelike distribution of molecular heterojunctions is a idealized model for further theoretical studies as well.
     At last, a series of derivatives of viologen with different R groups or topological molecular structure were designed and synthesized successfully, basing on which the several kinds charge transfer crystals were prepared successively. UV spectra showed the different of the energy gap for viologen molecules which was influenced by the R groups, and the difference of the molecular structure could controlled the charge transfer behavior of viologens. In crystals, intermolecular bond lengths and intramolecular rotating angles conformed the crystal structures influenced by the steric hindrance and electronic effect obviously. ESR spectra showed confined electron behaviors in charge transfer crystals, which was potentially applied on generation and stabilization of radicals within the charge transfer crystals. FC and ZFC M-T curves showed a branch between the two curves of BuV-PyTs, it was also related on the spin behavior of the electron in crystal. A novel topological structure of covalent-linked viologen dimer was synthetized as HexdBuV. The quenching behavior of this acceptor molecule was more obvious, and the structure of the charge transfer crystal did not have the stacking structure but a layer-by-layer structure. That was the result of the covalent-linked structure which favored the progress of ordered constructing more prompt and efficient. The influence of steric, electronic effect and the topological structure on the crystal structure indicate that the charge transfer interaction between viologens and the derivatives of pyrene is a very important phenomenon existing extensively, and it lays a good foundation for the further study for this kind of charge transfer system.
引文
[1]Lehn J-M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl.,1988,27:89-112
    [2]Pedersen C J. Cyclic Polyethers and Their Complexes with Metal Salts. J. Am. Chem. Soc.,1967,89:7017-7036
    [3]Cram D J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture). Angew. Chem. Int. Ed. Engl.,1988,27:1009-1020
    [4]Lehn J-M. Cryptates:Inclusion Complexes of Macropolycyclic Receptor Molecules. Pure Appl. Chem.,1978,50:871-892
    [5]Lehn J-M, Rigault A, Siegel J, et al. Spontaneous Assembly of Double-stranded Helicates from Oligobipyridine Ligands and Copper(I) Cations:Structure of an Inorganic Double Helix. Proc. Natl. Acad. Sci. USA,1987,84:2565-2569
    [6]Arrhenius T S, Blanchard-Desce M, Lehn J-M, et al. Molecular Devices:Caroviologens as an Approach to Molecular Wires-synthesis and Incorporation into Vesicle Membranes. Proc. Natl. Acad. Sci. USA,1986,83:5355-5359
    [7]Jazwinski J, Blacker A J, Lehn J-M, et al. Cyclo-bisintercalands:Synthesis and Structure of an Intercalative Inclusion Complex, and Anion Binding Properties. Tetrahedron Lett.,1987,28:6060
    [8]Faul C F J, Antonietti M. Ionic Self-Assembly:Facile Synthesis of Supramolecular Materials. Adv. Mater.,2003,15:673-683
    [9]Klemperer W. Intermolecular Interactions. Science,1992,257:887-888
    [10]Decher G. Fuzzy Nanoassemblies:toward Layered Polymeric Multicomposites. Science,1997,227:1232-1237
    [11]Zhu X, Beginn U, Moller M, et al. Self-Organization of Polybases Neutralized with Mesogenic Wedge-Shaped Sulfonic Acid Molecules:An Approach toward Supramolecular Cylinders. J. Am. Chem. Soc.,2006,128:16928-16937
    [12]Liu S, Kurth D G, Volkmer D, et al. The Structure of Self-assembled Multilayers with Polyoxometalate Nanoclusters. J.Am. Chem. Soc.,2002,124:12279-12287
    [13]Kurth D G, Lehmann P, Volkmer D, et al. Surfactant-encapsulated Clusters (SECs):(DODA)2o(NH4)[H3Mo57V6(NO)6O183(H20)18], a Case Study. Chem. Eur. J.,2000,6:385-393
    [14]Morokuma K. Why Do Molecules Interact? The Origin of Electron Donor-acceptor Complexes, Hydrogen Bonding and Proton Affinity. Ace Chem. Res.,1977,10:294-300
    [15]Schneider H J, Philippi K, Poeklmann J. Structure-and Solvent-Dependence in the Complexation of Lipophilic Substrates in a Water-soluble Azacyclophane. Angew. Chem. Int. Ed. Engl.,1984,23:908-910
    [16]Muehldorf A V, Van Engen D, Warner J C, et al. Aromatic-aromatic Interactions in Molecular Recognition:a Family of Artificial Receptors for Thymine that Shows Both Face-to-face and Edge-to-face Orientations. J. Am. Chem. Soc.,1988,110:6561-6562
    [17]Hunter C A, Sanders J K M. The Nature of.pi.-pi. Interactions. J. Am. Chem. Soc.,1990,112:5525-5534
    [18]Claessens C C, Stoddart J F.π-π Interactions in Self-assembly. J. Phy. Org. Chem.,1997,10:254-272
    [19]Russell V A, Ward M D. Molecular Crystals with Dimensionally Controlled Hydrogen-bonded Nanostructures. Chem. Mater.,1996,8:1654-1666
    [20]Eyring H. The Activated Complex and the Absolute Rate of Chemical Reactions. Chem. Rev.,1935,17:65-77
    [21]Kyogoku Y, Lord R C, Rich A. The Effect of Substituents on the Hydrogen Bonding of Adenine and Uracil Derivatives. Pro. Nati. Acad. Sci. USA.,1967,57:250-257
    [22]Kelly T R, Bridge G J, Zhao C. Bisubstrate Reaction Templates. Examination of the Consequences of Identical Versus Different Binding Sites. J. Am. Chem. Soc.,1990,112:8024-8034
    [23]Folmer B J B, Sijibesma R P, Van Genderen M H P, et al. Stability and Lifetime of Quadruply Hydrogen Bonded2-Ureido-4[1H]-pyrimidinone Dimers. J. Am. Chem. Soc.,2000,122:7487-7493
    [24]Corbin P S, Zimmerman S C. Self-Association without Regard to Prototropy. A Heterocycle That Forms Extremely Stable Quadruply Hydrogen-bonded Dimers. J. Am. Chem. Soc.,1998,120:9710-9711
    [25]Mulliken R S. Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents. J. Am. Chem. Soc.,1950,72:600-608
    [26]Dewar M J S, Lepley A R. π-Complexes.Ⅱ. Charge Transfer Spectra of π-Complexes Formed by Tetracyanoethylene with Polycyclic Aromatic Hydrocarbons and with Heteroaromatic Boron Compounds. J. Am. Chem. Soc.,1962,84:395-398
    [27]樊美公,姚建年,佟振合等编著.分子光化学与光功能材料科学.北京:科学出版社,2009
    [28]朱道本,王佛松.有机固体.上海:上海科学技术出版社,1999
    [29]Acker D S, Harder R J, Melby L R, et al.7,7,8,8-Tetracyanoquinodimethane and Its Electrically Conducting Anion-radical Derivatives. J. Am. Chem. Soc.,1960,82:6408-6409
    [30]Wudl F, Smith G M, Hufnagel E J. Bis-1,3-dithiolium Chloride:Unusually Stable Organic Radical Cation. J. Chem. Soc. D.:Chem. Commun.,1970,1453-1454
    [31]Ferraris J, Cowan D O, Perlstein J H, et. al. Electron Transfer in a New Highly Conducting Donor-acceptor Complex. J. Am. Chem. Soc.,1973,95:948-949
    [32]Coleman L B, Yamagishi F G, Heeger A J, et al. Superconducting Fluctuations and the Peierls Instability in an Organic Solid. Solid State Comm.,1973,12:1125-1132
    [33]Enoki T, Miyazaki A. Magnetic TTF-Based Charge-Transfer Complexes, Chem. Rev.,2004,104:5449-5477
    [34]Bechgaard K, Cowan D O, Bloch AN. Synthesis of the Organic Conductor Tetramethyltetraselenofulvalenium7,7,8,8-Tetracyano-p-quinodimethanide (TMTSF-TCNQ)[4,4',5,5'-tetramethy1-A2,2'-bis-1,3-diselenolium3,6-bis-(dicyanomethylene)cyclohexadienide]. J. Chem. Soc., Chem. Commun.,1974:937-938
    [35]Andrieux A, Jerome D, Bechgaard K, et al. The Metallic State of the Organic Conductor TMTSF-DMTCNQ at Low Temperature under Pressure. J. Phys. Lett.,1979,40:L-381-383
    [36]Bechgaard K, Jacobsen C S, Mortensen K, et al. The Properties of Five Highly Conducting Salts:(TMTSF)2X, X=PF6-,AsF6-,SbF6-,BF4-and NO3-, Derived from Tetramethyltetraselenafulvalene (TMTSF). Solid State Commun.,1980,33:1119-1125
    [37]Jerome D, Bechgaard K, Mazaud A, et al. Superconductivity in a Synthetic Organic Conductor (TMTSF)2PF6. J. Phys.(Paris) Lett.,1980,41:95-98
    [38]McConnell H M. Ferromagnetic Coupling in Charge-transfer Complexes. Proc. Robert A. Welch Found. Conf. Chem. Res.,1967,11:144
    [39]Saito G, Yoshida Y. Development of Conductive Organic Molecular Assemblies:Organic Metals, Superconductors, and Exotic Functional Materials. Bull. Chem. Soc. Jpn.,2007,80:1-137
    [40]Schwoerer M, Wolf H C. Organic Molecular Solids. Berlin:WILEY-VCH Verlag GmbH&Co. KGaA,2006
    [41]Torrance J B, Vazquez J E, Mayerle J J, et al., Discovery of a Neutral-to-ionic Phase Transition in Organic Materials. Phys. Rev. Lett.,1980,46:253-257
    [42]Jain A, Rao K V, George S J, et al. Dynamic Self-Assembly of Charge-Transfer Nanofibers of Tetrathiafulvalene Derivatives with F4TCNQ. Chem. Eur. J.,2011,17:12355-12361
    [43]Rao K V, Jayaramulu K, George S J, et al. Supramolecular Hydrogels and High-Aspect-Ratio Nanofibers through Charge-Transfer-Induced Alternate Coassembly. Angew. Chem. Int. Ed.,2010,49:4218-4222
    [44]Reczek J J, Villazor K R, Iverson B L, et al. Tunable Columnar Mesophases Utilizing C2Symmetric Aromatic Donor-Acceptor Complexes.J. Am. Chem. Soc.,2006,128:7995-8002
    [45]Tohnai N, Kurata M, Miyata M, et al. Effect of Steric Complementarity on Solid-State Optical Properties of Ternary CT Complexes:4,4'-Biphenyldisulfonic Acid, Aliphatic Amines, and Tetracyanoquinodimethane. J. Phys. Chem. C,2009,113:11725-11730
    [46]Hasegawa T, Mochida T, Kondo R, et al. Mixed-stack Organic Charge-transfer Complexes with Intercolumnar Networks. Phys. Rev. B,2000,62:10059-10066
    [47]Tsutsumi J, Yamada T, Hasegawa T, et al. Competition between Charge-Transfer Exciton Dissociation and Direct Photocarrier Generation in Molecular Donor-Acceptor Compounds. Phys. Rev. Lett.,2010,105:226601,1-4
    [48]Horiuchi S, Tokura Y. Organic Ferroelectrics. Nature Materials,2008,7:357-366
    [49]Horiuchi S, Okimoto Y, Tokura Y, et al. Quantum Phase Transition in Organic Charge-transfer Complexes. Science,2003,299:229-232
    [50]Tayi A S, Stoddart J F, Stupp S I, et al. Room-temperature Ferroelectricity in Supramolecular Networks of Charge-transfer Complexes. Nature,2012,488:485-489
    [51]Blazani V, Credi A, Stoddart J F, et al. Switching of Pseudorotaxanes and Catenanes Incorporating a Tetrathiafulvalene Unit by Redox and Chemical Inputs. J. Org. Chem.,2000,65:1924-1936
    [52]Fahrenbach A C, Elhabiri M, Stoddart J F, et al. Solution-phase Mechanistic Study and Solid-State Structure of a Tris(bipyridinium radical cation) Inclusion Complex. J. Am. Chem. Soc.,2012,134:3061-3072
    [53]Fahrenbach A C, Zhu Z, Stoddart J F, et al. Radically Enhanced Molecular Switches. J. Am. Chem. Soc.,2012,134:16275-16288
    [54]Avellini T, Stoddart J F, Venturi M, et al. Photoinduced Memory Effect in a Redox Controllable Bistable Mechanical Molecular Switch. Angew. Chem. Int. Ed.,2012,51:1611-1615
    [55]Guo D-S, Wang L-H, Liu Y. Highly Effective Binding of Methyl Viologen Dication and Its Radical Cation by p-Sulfonatocalix[4,5]arenes. J. Org. Chem.,2007,72:7775-7778.
    [56]Guo D-S, Su X, Liu Y. Benzyl Effects of Supramolecular Architectures Constructed by p-Sulfonatocalix[4]arene and Viologen Guests:from Simple2:1Complex to Polymeric Capsules. Cryst. Growth Des.,2008,8:3514-3517
    [57]Guo D-S, Chen S, Liu Y, et al. Electrochemical Stimulus-responsive Supramolecular Polymer Based on Sulfonatocalixarene and Viologen Dimers. Chem. Commun.,2010,46:2620-2622
    [58]Liu Y, Yu Y, Zhang X, et al. Water-soluble Supramolecular Polymerization Driven by Multiple Host-stabilized Charge-transfer Interactions. Angew. Chem. Int. Ed.,2010,49:6576-6579
    [59]Li D Q, Swanson B L, Robinson J M, et al. Porphyrin Based Self-assembled Monolayer Thin Films:Synthesis and Characterization. J. Am. Chem. Soc.,1993,115:6975-6980
    [60]Qian D J, Nakamura C, Ishida T, et al. Palladium-mediated Stepwise Assembly of Three-dimensional Organized Multiporphyrin Arrays Directly on Solid Substrates. Langmuir,2002,18:10237-10242
    [61]Beves J E, Constable E C, Kepert C J, et al. The First Example of a Coordination Polymer From the Expanded4,4'-bipyridine Ligand [Ru(pytpy)2]2+(pytpy=4'-(4-pyridyl)-2,2':6',2"-terpyridine). CrystEngCom.,2007,9:456-459
    [62]Figueira-Duarte T M, Mullen K. Pyrene-Based Materials for Organic Electronics. Chem. Rev.,2011,111:7260-7314
    [63]de Borba E B, Politi M J, Baptista M S, et al. Photophysical and Photochemical Properties of Pyranine/Methyl Viologen Complexes in Solution and in Supramolecular Aggregates:A Switchable Complex. Langmuir,2000,16:5900-5907
    [64]Neelakandan P P, Hariharan M, Ramaiah D. A Supramolecular ON-OFF-ON Fluorescence Assay for Selective Recognition of GTP. J. Am. Chem. Soc.,2006,128:11334-11335
    [65]Gamsey S, Miller A, Singaram B, et al. Boronic Acid-based Bipyridinium Salts as Tunable Receptors for Monosaccharides and y-Hydroxycarboxylates. J. Am. Chem. Soc.,2007,129:1278-1286
    [66]Sasaki R, Murata S. Aggregation of Amphiphilic Pyranines in Water:Facile Micelle Formation in the Presence of Methylviologen. Langmuir,2008,24:2387-2394
    [67]Wang C, Guo Y, Zhang X, et al. Supramolecular Amphiphiles Based on a Water-soluble Charge-transfer Complex:Fabrication of Ultralong Nanofibers with Tunable Straightness. Angew. Chem. Int. Ed.,2009,48:8962-8965
    [68]Wang C, Guo Y, Zhang X, et al. Superamphiphiles Based on Charge Transfer Complex: Controllable Hierarchical Self-Assembly of Nanoribbons. Langmuir,2010,26:14509-14511
    [69]Zhang J, Liu Y, Zhang X, et al. Bolaform Supramolecular Amphiphiles as a Novel Concept for the Buildup of Surface-imprinted Films. Langmuir,2011,27:10370-10375
    [70]Valeur B. Molecular Fluorescence:Principles and Applications. Weinheim:WILEY-VCH Verlag GmbH&Co. KGaA,2001
    [71]Lakowicz J R. Principles of Fluorescence Spectroscopy. Third Edition. New York:Springer Science+Business Media, LLC,2006
    [72]Wang J, Wang D, Heeger A J, et al. Photoluminescence of Water-soluble Conjugated Polymers:Origin of Enhanced Quenching by Charge Transfer. Macromolecules,2000,33:5153-5158
    [73]Wang J, Bazan G C, Heeger A J, et al. Photoluminescence Quenching of Conjugated Macromolecules by Bipyridinium Derivatives in Aqueous Media:Charge Dependence. Langmuir,2001,17:1262-1266
    [74]Przybylski M, Glocker M O. Electrospray Mass Spectrometry of Biomacromolecular Complexes with Noncovalent Interactions-New Analytical Perspectives for Supramolecular Chemistry and Molecular Recognition Processes. Angew. Chem. Int. Ed. Engl.,1996,35:806-826
    [75]Wang J L, Wesdemiotis C, Newkome G R, et al. Stoichiometric Self-Assembly of Shape-persistent2D Complexes:A Facile Route to a Symmetric Supramacromolecular Spoked Wheel. J.Am. Chem. Soc.,2011,133:11450-11453
    [76]Service R R. How Far Can We Push Chemical Self-assembly. Science,2005,309:95
    [77]Tiekink E R T, Vittal J, Zaworotko M. Organic Solid State Chemistry. United Kingdom:A John Wiley and Sons, Ltd.,2010
    [78]Ozin G A, Hou K, Lotsch B V, et al. Nanofabrication by Self-assembly. Materials Today,2009,12:12-23
    [79]Liu X, Neoh K G, Kang E T. Redox-Sensitive Microporous Membranes Prepared from Poly(vinylidene fluoride) Grafted with Viologen-containing Polymer Side Chains. Macromolecules,2003,36:8361-8367
    [80]Shi Z, Neoh K G, Kang E T. Surface-grafted Viologen for Precipitation of Silver Nanoparticles and Their Combined Bactericidal Activities. Langmuir,2004,20:6847-6852
    [81]Cao L C, Mou M, Wang Y. Hyperbranched and Viologen-functionalized Polyglycerols: Preparation, Photo-and electrochromic Performance. J. Mater. Chem.,2009,19:3412-3418
    [82]Poizat O, Sourisseau C, Corset J. Vibrational and Electronic Study of the Methyl Viologen Radical Cation MV+-in the Solid State. Journal of Molecular Structure,1986,143:203-206
    [83]Poizat O, Sourisseau C, Mathey Y. Vibrational Study of the Methyl Viologen Dication MV2+and Radical Cation MV+in Several Salts and as an Intercalate in Some Layered MPS3Compounds. J. Chem. Soc., Faraday Trans.,1,1984,80:3257-3274
    [84]Lee P C, Schmidt K, Gordon S, et al. Resonance Raman of Viologen Radicals. Chemical Physics Letters,1981,80:242-247
    [85]Yasuda A, Kondo H, Itabashi M, et al. Structure Changes of Viologen+β-cyclodextrin Inclusion Complex Corresponding to the Redox State of Viologen. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1986,210:265-275
    [86]Ellinger Y, Pauzat F, Lengsfield B H. Modelling the Signatures of Interstellar Polycyclic Aromatic Hydrocarbons with Quantum Chemistry. Journal of Molecular Structure (Theochem),1999,458:203-215
    [87]Campion A, Kambhampati P. Surface-enhanced Raman Scattering. Chem. Soc. Rev.,1998,27:241-250
    [88]Lombardi J R, Birke R L, Lu T, et al. Charge-transfer Theory of Surface Enhanced Raman Spectroscopy:Herzberg-Teller Contributions. J. Chem. Phys.,1986,84:4174
    [89]Zhou Q, Chao Y, Li Y, et al. Contribution of Charge-transfer Mechanisms to Surface-Enhanced Raman Scattering with Near-IR Excitation. ChemPhysChem,2007,8:921-925
    [90]Guerrini L, Garcia-Ramos J, Domingo C, et al. Nanosensors Based on Viologen Functionalized Silver Nanoparticles:Few Molecules Surface-enhanced Raman Spectroscopy Detection of Polycyclic Aromatic Hydrocarbons in Interparticle Hot Spots. Anal. Chem.,2009,81:1418-1425
    [91]Naumov P, Lee S C, Ishizawa N, et al. New Type of Dual Solid-state Thermochromism: Modulation of Intramolecular Charge Transfer by Intermolecular π-π Interactions, Kinetic Trapping of the Aci-nitro Group, and Reversible Molecular Locking. J. Phys. Chem. A,2009,113:11354-11366
    [92]Alvey P M, Reczek J J, Iverson B L, et al. A Systematic Study of Thermochromic Aromatic Donor-acceptor Materials. J. Org. Chem.,2010,75:7682-7690
    [93]Lee J H, Naumov P, Lee S C, et al. Solid-State Thermochromism and Phase Transitions of Charge Transfer1,3-Diamino-4,6-dinitrobenzene Dyes. J. Phys. Chem. A,2011,115:10087-10096
    [94]吴世康,汪鹏飞编著.有机电子学概论.北京:化学工业出版社,2010
    [95]黄维.密保秀.高志强著.有机电子学.北京:科学出版社.2011
    [96]Burghard M, Klauk H, Kem K. Carbon-based Field-effect Transistors for Nanoelectronics. Adv. Matar,2009,21:2586-2600
    [97]邱勇,段炼.有机发光显示技术及有机半导体.半导体学报,2003,24(B05):209-212
    [98]Zhou Y, Pei J, Wang J, et al. High-performance Organic Field-effect Transistors from Organic Single-crystal Microribbons Formed by a Solution Process. Adv. Mater.,2010,22:1484-1487
    [99]Che Y, Huang H, Zang L, et al. Interfacial Engineering of Organic Nanofibril Heterojunctions into Highly Photoconductive Materials. J. Am. Chem. Soc.,2011,133:1087-1091
    [100]Che Y, Zhao J, Zang L, et al. Ultrathin n-Type Organic Nanoribbons with High Photoconductivity and Application in Optoelectronic Vapor Sensing of Explosives. J. Am. Chem. Soc.,2010,132:5743-5750
    [101]Martin K E, Wang Z, Shelnutt J A. Donor-acceptor Biomorphs from the Ionic Self-assembly of Porphyrins. J.Am. Chem. Soc.,2010,132:8194-8201
    [102]Yamamoto Y, Fukushima T, Aida T, et al. Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers. Science,2006,314:1761-1764
    [103]Nicolet O, Vauthey E. Ultrafast Nonequilibrium Charge Recombination Dynamics of Excited Donor-acceptor Complexes. J. Phys. Chem. A,2002,106:5553-5562
    [104]Dillon R J, Bardeen C J. Time-Resolved Studies of Charge Recombination in the Pyrene/TCNQ Charge-transfer Crystal:Evidence for Tunneling. J. Phys. Chem. A,2012,116:5145-5150
    [105]Pope M, Swenberg C. Electronic Processes in Organic Crystals and Polymers. Oxford: Oxford University Press,1999
    [106]Karl N. Charge Carrier Transport in Organic Semiconductors. Synthetic Metals,2003,133-134:649-657
    [107]Girlando A, Painelli A. Regular-dimerized Stack and Neutral-ionic Interfaces in Mixed-stack Organic Charge-transfer Crystals. Phys. Rev. B,1986,34:2131-2139
    [108]Horiuchi S, Hasegawa T, Tokura Y. Molecular Donor-acceptor Compounds as Prospective Organic Electronics Materials. J. Phys. Soc. Jpn.,2006,75:051016
    [109]Gregg B A, Chen S-G, Cormier R A. Coulomb Forces and Doping in Organic Semiconductors. Chem. Mater.,2004,16:4586-4599
    [110]Desiraju G R. The Crystal as a Supramolecular Entity (Perspectives in Supramolecular Chemistry). Chichester:Wiley,1996
    [111]Braga D. Crystal engineering, Where from? Where to? Chem. Commun.,2003,2751-2754
    [112]Braga D, Grepioni F, Desiraju G R. Crystal Engineering and Organometallic Architecture. Chem. Rev.,1998,98:1375-1405
    [113]Schmidt G M J. Solid State Photochemistry. Girrsburg D ed., Verlag Chemie,1976
    [114]徐筱杰,唐有祺.晶体工程及其在化学中的应用.无机化学学报,2000,16:157-166
    [115]Albrecht M, Yulikov M, Schmidt A, et al. Pyridinium Salts and Ylides as Partial Structures of Photoresponsive Merrifield Resins. J. Mater. Chem.,2010,20:3025-3034
    [116]Wang D, Crowe W E, Strongin R M, et al. Exploring the pH Dependence of Viologen Reduction by α-carbon Radicals Derived from Hey and Cys. Chem. Commun.,2009,1876-1878
    [117]Yang H, Tan Y, Hao J, et al. Side-chain Polypseudorotaxanes by Threading Cucurbit[7]uril onto Poly-N-n-butyl-N'-(4-vinylbenzyl)-4,4'-bipyridinium Bromide Chloride:Synthesis, Characterization, and Properties. J. Polym. Sci. A:Polym. Chem.,2010,48:2135-2142
    [118]Jeon W S, Ziganshina A Y, Kim K. et al. A [2]Pseudorotaxane-based Molecular Machine: Reversible Formation of a Molecular Loop Driven by Electrochemical and Photochemical Stimuli. Angew. Chem. Int. Ed.,2003,42:4097-4100
    [119]Chi X, Besnard C, Siegrist T, et al. Structure and Transport Properties of the Charge-transfer Salt Coronene-TCNQ. Chem. Mater.,2004,16:5751-5755
    [120]Lei Y L, Jin Y, Lee S T, et al. White-light Emitting Microtubes of Mixed Organic Charge-transfer Complexes. Adv. Mater.,2012,24:5345-5351
    [121]Porter Ⅲ W W, Vaid T P. Isolation and Characterization of Phenyl Viologen as a Radical Cation and Neutral Molecule. J. Org. Chem.,2005,70:5028-5035
    [122]Martinez C R, Iverson B L. Rethinking the Term "Pi-stacking". Chem. Sci.,2012,3:2191-2201
    [123]Tokmachev A M, Boggio-Pasqua M, Bearpark M J, et al. Photostability via Sloped Conical Intersections:A Computational Study of the Pyrene Radical Cation. J. Phys. Chem. A,2008,112,10881-10886
    [124]Suzuki S, Takeda T, Okada K, et al. Pyrene-dihydrophenazine Bis(Radical Cation) in a Singlet Ground State. Org. Lett.,2009,11:2816-2818
    [125]Liu Q K, Ma J P, Dong Y B. Adsorption and Separation of Reactive Aromatic Isomers and Generation and Stabilization of Their Radicals within Cadmium(Ⅱ)-triazole Metal-organic Confined Space in a Single-crystal-to-single-crystal Fashion. J. Am. Chem. Soc.,2010,132:7005-7017
    [126]Lepine Y, Caille A. First Order Spin-Peierls Transition in a Quantum AFM Chain. J. Chem. Phys.,1977,67:5598-6601
    [127]Bray J W, Hart H R, Interrante Jr L V, et al. Observation of a Spin-Peierls Transition in a Heisenberg Antiferromagnetic Linear-chain System. Phys. Rev. Lett.,1975,35:744-747
    [128]Fujita W, Awaga K, Kondo R, et al. A One-dimensional Coordination Polymer, BBDTA-InC14:Possible Spin-Peierls Transition with High Critical Temperature of108K, J. Am. Chem. Soc.,2006,128:6016-6017

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700