复合氮化物硬质涂层的HIPIB辐照研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨损是机械零件失效的三种主要原因之一,各种机械零件的磨损所造成的能源和材料的消耗是十分惊人的,世界工业化发达国家的能源约40%是以不同形式消耗在磨损上的,因此,人们一直致力于研究提高材料的抗摩擦磨损性能,表面涂层技术就是极为有效的方法之一。本研究就是在制备硬质涂层的基础上利用强流脉冲离子束(HIPIB)对膜层进行辐照处理,研究辐照前后性能变化规律及其原因。
     硬质涂层的制备是在Bulat-6型电弧离子镀设备上进行的。根据元素的物理和化学特性,选择Nb、Zr和Cr元素作为组元,采用分离靶技术,通过独立调节靶弧电流,在高速钢基体上制备了(Ti_(0.35),Nb_(0.65))N、(Ti_(0.45),Nb_(0.55))N、(Ti_(0.47),Zr_(0.53))N、(Wi_(0.70),Zr_(0.30))N、(Ti_(0.62),Cr_(0.38))N和(Ti_(0.67),Cr_(0.33))N的均质涂层及(Ti_x,Nb_(1-x))N、(Ti_x,Zr_(1-x))N梯度涂层。
     辐照实验是在大连理工大学三束材料表面改性国家重点实验室的TEMP-6型装置上进行的。该装置采用聚合物阳极单极脉冲模式外磁绝缘离子二极管,离子束成分为30%C~(n+)和70%H~+,加速电压为300-350kV,脉冲宽度为70ns,采用束流密度为60A/cm~2和100 A/cm~2对(Ti,Nb)N、(Ti,Zr)N均质涂层及(Ti_x,Nb(1-x))N、(Ti_x,Zr_(l-x))N梯度涂层进行了辐照处理。
     SEM观察表明,采用束流密度为60A/cm~2的HIPIB辐照后,(Ti,Zr)N均质膜层和(Ti_x,Zr~(1-x))N梯度膜层的表面开裂,而(Ti,Nb)N均质膜层表面熔化,并产生了熔滴和熔坑。熔滴的产生是由于烧蚀物质回流沉降于膜层表面而形成,而熔坑的产生是HIPIB辐照时,离子束的轰击使膜层表面颗粒飞溅产生凹坑,而极快的冷却速度使熔融物质无法完全充满凹坑而形成的。而在束流密度为100 A/cm~2时,均质膜层和梯度膜层表面全部开裂。
     利用MM-200摩擦磨损试验机测试了HIPIB辐照前后膜层的抗摩擦磨损性能。结果表明,HIPIB辐照前,(Ti,Nb)N均质膜层的抗摩擦磨损性能明显高于(Ti,Zr)N均质膜层。300N载荷下,(Ti_(0.35),Nb_(0.65))N和(Ti_(0.45),Nb_(0.55))N的磨损体积分别为2.389和2.163(×10~(-3)mm~3),而(Ti_(0.47),Zr_(0.53))N和(Ti_(0.70),Zr_(0.30))N膜层的磨损体积分别为4.215和5.452(×10~(-3)mm~3)。600N载荷下,(Ti_(0.35),Nb_(0.65))N和(Ti_(0.45),Nb_(0.55))的磨损体积分别为2.762和3.217(×10~(-3)mm~3),(Ti_(0.47),Zr_(0.53))N和(Ti_(0.70),Zr_(0.30))N膜层的磨损体积分别为6.855和8.468(×10~(-3)mm~3)。(Ti_xNb_(1-x))N梯度膜层的抗摩擦磨损性能要优于(Ti,Nb)N均质膜,300N载荷下的磨损体积仅为1.514(×10~(-3)mm~3),600N载荷下的磨损体积为2.139(×10~(-3)mm~3)。而(Ti_x,Zr_(1-x))N梯度涂层的抗摩擦磨损性能与均质膜相比无明显改善。HIPIB辐照后,(Ti,Nb)N均质膜的抗摩擦磨损性能明显提高,300N载荷下, (Ti_(0.35),Nb_(0.65))N和(Ti_(0.45),Nb_(0.55))N的磨损体积分别为1.771和1.348(×10~(-3)mm~3),600N载荷下,(Ti~(0.35),Nb_(0.65))N和(Ti_(0.45),Nb_(0.55))N的磨损体积分别为2.299和2.011(×10~(-3)mm~3)。而(Ti_x,Nb_(1-x))N梯度膜的抗摩擦磨损性能反而下降,300N载荷下的磨损体积为2.179(×10~(-3)mm~3),600N载荷下的磨损体积为2.527(×1 0~(-3)mm~3)。
     为了说明HIPIB辐照对涂层抗摩擦磨损性能的影响原因,测试了辐照前后膜层的相结构、硬度及膜基结合力。
     X射线衍射分析表明,HIPIB辐照前,(Ti,Nb)N均质膜层具有单一的(Ti,Nb)N相,优先沿(111)方向生长,保留了TiN的立方结构;(Ti,Zr)N均质膜层中出现了(Ti,Zr)N、(Zr,Ti)N、TiN和ZrN四种相,均保留了TiN的立方结构;而在(Ti,Cr)N均质膜层中以(Ti,Cr)N相为主,同时有少量的Cr_2N相产生。(Ti_x,Nb_(1-x))N梯度涂层中除(Ti,Nb)N相外,还出现了(Ti,Nb)2N相,而(Ti_x,Zr_(1-x))N梯度涂层中仍然是(Ti,Zr)N、(Zr,Ti)N、TiN和ZrN混合相。HIPIB辐照后,无论是(Ti,Nb)N、(Ti,Zr)N均质膜还是(Ti_x,Nb_(1-x))N、(Ti_x,Zr_(1-x))N梯度膜,其相结构与辐照前相同。
     利用DMH-2LS超微载荷显微硬度计测量了HIPIB辐照前三种均质涂层及两种梯度膜的硬度及辐照后(Ti,Nb)N均质膜层及两种梯度膜的硬度。测试结果表明,辐照前均质膜层中,(Ti,Zr)N膜的硬度最高,(Ti_(0.47),Zr_(0.53))N膜层的努氏硬度可达HK3678,(Ti_(0.70),Zr_(0.30))N膜层的努氏硬度也达到HK3509,而(Ti_(0.35),Nb_(0.65))N均质膜的努氏硬度仅为HK2651。这主要是由于(Ti,Zr)N均质膜层中存在(Ti,Zr)N、(Zr,Ti)N、TiN和ZrN分离相所致。而(Ti_x,Nb_(1-x))N梯度涂层的硬度最高,其努氏硬度达HK3807,但(Ti_x,Zr_(1-x))N梯度涂层的硬度为HK3470,与均质膜相比无明显改善。HIPIB辐照后,(Ti,Nb)N均质膜层的硬度有明显提高,(Ti_(0.35),Nb_(0.65))N膜层的努氏硬度由HK2651提高到HK3054,(Ti_(0.45),Nb_(0.55))N膜层的努氏硬度由HK3200提高到HK3422,这是由于HIPIB的轰击在膜层内产生位错增殖所致。但(Ti_x,Nb_(1-x))N梯度涂层的硬度却显著降低,其努氏硬度由HK3807减少到HK3338。
     利用CSR-01型划痕实验机测试了辐照前(Ti,Nb)N、(Ti,Zr)N均质膜及(Ti_x,Nb_(1-x))N、(Ti_x,Zr_(1-x))N梯度涂层及辐照后(Ti,Nb)N均质膜及(Ti_x,Nb_(1-x))N梯度膜的膜基结合力。结果表明,辐照前,虽然(Ti,Nb)N均质膜的硬度较低,但其膜基结合力要好于(Ti,Zr)N均质膜。(Ti_(0.35),Nb_(0.65))N和(Ti_(0.45),Nb_(0.55))N膜层的膜基结合力分别为65N和59N,而(Ti_(0.47),Zr_(0.53))N和(Ti_(0.70),Zr_(0.30))N膜层的膜基结合力仅为36N和28N。(Ti_x,Nb_(1-x))N梯度涂层的膜基结合力达到了70N,但(Ti_x,Zr_(1-x))N梯度膜的膜基结合力与均质膜相比没有明显改善,仅为37N。HIPIB辐照后,(Ti_(0.35),Nb_(0.65))N和(Ti_(0.45),Nb_(0.55))N膜层的膜基结合力分别提高到70N和65N,而(Ti_x,Nb_(1-x))N梯度涂层的膜基结合力提高到78N。
     在简化的条件下,对HIPIB辐照过程的温度场进行了模拟,结果表明,HIPIB开始作用阶段,温度迅速上升,升温速率达10~(11)K/s,很快达到膜层材料的熔点,随后温度开始下降,降温速率达10~(10)K/s。在整个辐照过程中,膜层表面始终有最大的温度分布,材料表层首先熔化,随后熔化深度向内层扩展,熔化深度为0.4μm左右。
It is well recognized that wear constitutes one of the three major reasons responsible for the failure of mechanical components. The consumption of energy and raw materials resulted directly from the wear of mechanical components is very enormous and that would occupy nearly 40 percent of the total energy cost for the industrialization developed countries in the world. In this circumstance, great efforts have been paying to the improvement of material wear resistance, where methods based on surface coating technique exhibit essential potential for the enhancement of wear resistance. In the present work, hard coating techniques was firstly studied, then the effect of high intensity pulsed ion beam (HIPIB) irradiations was further investigated to explore their influence on the properties of wear resistance.
     The preparation of hard coatings was conducted on an arc ion plating equipment of type Bulat-6. On considering the different physical and chemical properties of elements including Nb, Zr and Cr, then adjusting arc currents on the separated pure metal targets, homogeneous coatings of different constituents, such as (Ti_(0.35),Nb_(0.65))N, (Ti_(0.45),Nb_(0.55))N, (Ti_(0.47),Zr_(0.53))N, (Ti_(0.70),Zr_(0.30))N, (Ti_(0.62),Cr_(0.38))N and (Ti_(0.67),Cr_(0.33))N, and also gradient coatings including (Ti_x,Nb_(1-x))N and (Ti_x,Zr_(1-x))N were successfully fabricated on high-speed steel substrates.
     The coating irradiation work was carried out on a HIPIB equipment of type TEMP-6 in State key laboratory for material modification by energetic beams of Dalian University of Technology. Under the device configurations of polymer anode, monopolar pulse mode and outer magnetically insulated ion diode design, the main ion species of ion beam are about 30 % C~(n+) and 70 % H~+, the positive pulse used to accelerate ions is of 300-350 kV with a pulse width of 70 ns. In our experiments, the homogeneous coatings, (Ti,Nb)N, (Ti,Zr)N, and gradient coatings, (Ti_x,Nb_(1-x))N, (Ti_x,Zr_(1-x))N were irradiated with HIPIB beam current of 60A/cm~2and 100 A/cm~2 separately.
     According to the scanning electron microscope (SEM) analysis results, when using HIPIB beam current of 60A/cm~2, micro-cracks were found on the irradiated surface for the samples of (Ti,Zr)N homogeneous coating and (Ti_x,Zr_(1-x))N gradient coating. While for the (Ti,Nb)N homogeneous coating sample, the surface layer was melted partially accompanied by the morphologies of melt droplet and craters. The formation of melt droplet could be explained by the return of ablated materials back onto the irradiated surface. For the craters, it is suggested that the HIPIB irradiation could splash out particles located in the surface layer of coatings and leave structures in form of concave pit, and the fast cooling of surface melted layer gives no time for the recovery of these pits. For the samples irradiated with HIPIB of beam current 100 A/cm~2, micro-cracks were formed on all irradiated surfaces.
     The wear resistance measurement of coating samples before and after HIPIB irradiation were conducted on a friction and wear testing machine of type MM-200. It was found that before the HIPIB irradiation, the wear resistance of (Ti,Nb)N homogeneous coating is much better than that of (Ti,Zr)N coatings. When using load of 300N, the wear volumes of (Ti_(0.35) ,Nb_(0.65))N and (Ti_(0.45) ,Nb_(0.55))N coatings are 2.389 and 2.162×10~(-3)mm~3, while for (Ti_(0.47),Zr_(0.53))N and (Ti_(0.70),Zr_(0.30))N coatings, they are 4.215 and 5.452×10~(-3)mm~3. Increasing the load to 600N, the wear volumes of (Ti_(0.35),Nb_(0.65))N and (Ti_(0.45),Nb_(0.55))N coatings are 2.762 and 3.217×10~(-3)mm~3, for (Ti_(0.47), Zr_(0.53))N and (Ti_(0.70), Zr_(0.30))N coatings, they are 6.855 and 8.468×10~(-3)mm~3. Additionally, the wear resistance of gradient coatings (Ti_x,Nb_(1-x))N is better than (Ti,Nb)N homogeneous coatings with wear volume of 1.514×10~(-3)mm~3 under 300N, and 2.139×10~(-3)mm~3 under 600N. While the wear resistance of (Ti_x,Zr_(1-x))N gradient coatings are almost same as that of homogeneous coatings. After the HIPIB irradiation, the wear resistance of (Ti,Nb)N homogeneous coating exhibits significant improvement, and the wear volumes of load 300N decrease to 1.771 and 1.348×10~(-3)mm~3 for the coating (Ti_(0.35),Nb_(0.65))N and (Ti_(0.45),Nb_(0.55))N, for the case of load 600N, they are 2.299 and 2.011×10~(-3)mm~3 respectively. On the contrary, the wear resistance of (Ti_x,Nb_(1-x))N gradient coatings decrease after the HIPIB irradiation. The wear volume increases to 2.179×10~(-3)mm~3 for the load of 300N and 2.527×10~(-3)mm~3for 600N.
     To explore the reasons for the influence of HIPIB irradiation on the wear resistance of hard coatings, the changes of microstructure, microhardness and coating-substrate adhesion occurring in the HIPIB irradiated samples were analyzed systematically.
     From the X-ray diffractometry analysis results, it was found that before the HIPIB irradiation, the (Ti,Nb)N homogeneous coating consists of a single (Ti,Nb)N phase with preferred orientation of (111) crystal plane, where the (Ti, Nb)N phase reserves the same face-centered cubic structure as TiN. And the (Ti,Zr)N homogeneous coating consists of four phases, i.e. (Ti,Zr)N, (Zr,Ti)N, TiN and ZrN, they have all the same structure as TiN. The structure of (Ti, Cr)N coatings consists of major phase (Ti,Cr)N and a small account of Cr_2N phase. For the gradient coatings, the (Ti_x,Nb_(1-x))N coating is composed of mainly (Ti,Nb)N phase and some (Ti,Nb)2N, well the (Ti_x,Zr_(1-x))N consists of still the same four phases as (Ti, Zr)N homogeneous coating. After the HIPIB irradiation, there is no change in phase composition for all kinds of hard coatings, no matter they are homogeneous or not.
     The microhardness of coatings before and after HIPIB irradiation was measured with a super-slight Knoop microhardness testing machine of type DMH-2LS. It was found that before the HIPIB irradiation, (Ti,Zr)N coating has the highest microhardness among the different kinds of homogenous coatings. The microhardness of (Ti_(0.47),Zr_(0.53))N coating is HK3678, and HK3509 for (Ti_(0.70),Zr_(0.30))N coating, and it is only HK2651 for (Ti_(0.35),Nb_(0.65))N coating. This result could be explained by the multi phase composition of (Ti,Zr)N homogeneous coatings. For the gradients coatings, (Ti_x,Nb_(1-x))N exhibits the maximum microhardness of HK3807, and (Ti_x,Zr_(1-x))N coating is HK3450, almost the same value as homogeneous coating. After the HIPIB irradiations, the microhardness of (Ti,Nb)N homogeneous coating was improved enormously, increasing from HK2651 to HK3054. The microhardness of (Ti_(0.45),Nb_(0.55)N coating increased also from HK3200 to HK3422. These phenomena were related to the multiplication of dislocations in the modified coatings induced by HIPIB irradiations. Whereas the microhardness of (Ti_x,Nb_(1-x))N gradient coatings decreased obviously from HK3807 to HK3338.
     The adhesion strength of coating samples before and after HIPIB irradiation were measured on a scratch testing system of type CSR-01. It was found that before the HIPIB irradiation, the adhesion strength of (Ti,Nb)N homogeneous coating is better than that of (Ti,Zr)N with the strength values of 65N and 59N for (Ti_(0.35),Nb_(0.65))N and (Ti_(0.45),Nb_(0.55))N coatings respectively, and they are only 36N and 28N for (Ti_(0.47),Zr_(0.53))N and (Ti_(0.70),Zr_(0.30))N coatings. The adhesion strength of (Ti_x,Nb_(1-x))N gradient coatings attains 70N, but there is no great difference for (Ti_x,Zr_(1-x))N coatings as compared with homogeneous coatings, only 37N. After the HIPIB irradiations, the adhesion strengths of (Ti_(0.35),Nb_(0.65))N and (Ti_(0.45),Nb_(0.55))N coatings increase to 70N and 65N, the adhesion strength of (Ti_x,Nb_(1-x))N coating reaches 78N.
     To determine the thermal and mechanical actions induced by the HIPIB irradiation onto different hard coatings, the numerical simulation method was applied with suitable assumptions. According to our calculation results, the coatings will be heated quickly and reach their melting temperature in a very short time, then cooled down slowly after the HIPIB pulsed energy input. The melting occurs firstly at the surface part of coatings then propagates along the depth direction, and the thickness of melting layer is normally 0.4μm.
引文
[1] 张剑锋.摩擦磨损与抗磨技术.北京:机械工业出版社,1993
    [2] 宋贵宏等.硬质与超硬涂层.北京:化学工业出版社,2007
    [3] C. Subramanina and K. L. Strafford. Review of multi-component and multi-layer coatings for tribological applications. Wear, 1993,165:85-95
    [4] 唐伟忠.薄膜材料制备原理、技术及应用(第2版).北京:冶金工业出版社,2003
    [5] M. Larsson, M. Bromark, P. Hedenpvist et al. Wear of PVD Ti/TiN multilayer coatings.Surface and Coatings Technology, 1997,90:43-49
    [6] Y. Ding, Z. Farhat, D. O Northwood et al. Mechanical properties and tribological behavior of nano-layered Al/Al_2O_3 and Ti/TiN composites. Surface and Coatings Technology, 1994, 68:459-467
    [7] A. A. Minevich. Wear of cemented carbide cutting inserts with multiplayer Ti-based PVD coatings, Surface and Coatings Technology, 1992, 53(2):161-170
    [8] K. T. Rie, A.Gebauer, J. W(?)hle et al. Synthesis of TiN/TiCN/TiC layer systems on steel and cerment substrate by PACVD. Surface and Coatings Technology, 1995,74/75(1):375-381
    [9] J. Palmers, M. Van Stappen. Deposition of (Ti,Al)N coatings by means of electron beam ion plating with evaporation of Ti and Al from two separate crucibles.Surface and Coatings Technology, 1994,76:363-366
    [10] D. Heim, R. Hochreiter. TiAlN and TiAlCN deposition in an industrial PAVCD-plant,Surface and Coatings Technology, 1998,98:1553-1556
    [11] A. A. Adjaottor, E. I. Meletis, S. Logothetidis et al. Effect of substrate bias on sputter-deposited TiC_x, TiN_y, TiC_xN_y thin films. Surface and Coatings Technology,1995, 76/77:142-148
    [12] H. Karner, J. Laimer, H. Stori et al. Preparation of TiB_2 and TiB_xN_y coatings by PACVD. Surface and Coatings Technology, 1989, 39/40(1):293-297
    [13] H. Freller, H. Haessler. Ti_xAl_(1-x)N films deposited by ion plating with an arc evaporator. Thin Solid Films, 1987, 153:67-74
    [14] K. J. Ma, A. Bloyce, T. Bell. Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings. Surface and Coatings Technology, 1995, 76/77:297-302
    [15] G. S. Was, T. Foecke. Deformation and fracture in micro-laminates. Thin Solid Films, 1996, 286:1-8
    [16] H. Holleck, M. Lahres, P. Woll. Multiplayer coatings-influence of fabrication parameters on consituation and properties. Surface and Coatings Technology,1990, 41(2):179-190
    [17] A. A. Layyous, D. M. Freinkel, R. Iarael. Al_0_3-coated cemented carbide:Optimization of structure, number of layers and type of interlayer. Surface and Coatings Technology, 1992,56:89-95
    [18] H. Holleck, V. Schier. Multiplayer PVD coatings for wear protection. Surf ace and Coatings Technology, 1993, 76/77(1):328-336
    [19] U. Helmersson, S.Toderova, L.Marbert et al. Growth of single-crystal TiN/VN strained-layer supperlattices with extremely high mechanical hardness.Journal of Applied Physics, 1987,62(2):481-484
    [20] A.Madan, P. Yashar, M. Shinn et al. X-ray diffration study of epitaxial TiN/NbN supperlattices. Thin Solid Films, 1997,302(1-2):147-154
    [21] A. A. Voevodin, J. S. Zabinski. Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in TiC thin films. Thin Solid Films, 1997, 298:107-111
    [22] 高玉周.耐磨梯度表面层的制备及其滑动摩擦学特性的研究.博士学位论文,大连海事大学,2000
    [23] 新野正之.斜机能材料.粉体(?).粉末冶金,1990,37(2):61-64
    [24] 侯晏红,乔学亮,吴一平.Ti-(Ti,Al)N梯度功能薄膜的研究.94'秋季中国材料研讨会论文集-新型功能材料分册,北京:化学工业出版社,1995
    [25] A. A. Voevodin, S. D. Walck, S. Donley et al. Architecture of multilayer nano-composite coatings with super-hard diamondlike carbon layers for wear protection at high contact. Thin Solid Films, 1997, 298:107-115
    [26] 杜丕一,潘颐.材料科学基础.北京:中国建筑工业出版社,2002
    [27] 陈光华,邓金祥.新型电子薄膜材料.北京:化学工业出版社,2002
    [28] 吴自勤,王兵.薄膜生长.北京:科学出版社,2001
    [29] 宋贵宏,郑静地,刘越等.TiAl过渡层对电弧离子镀沉积TiAIN膜层的影响.人工晶体学报,2004,33(3):422-427
    [30] H. Ljungcrants, S.Benhenda, G. Hakansson et al. Ion-assisted low temprature epitaxial growth of TiN on Cu by reactive magnetron sputter deposition. Thin Solid Films, 1996,287:87-92
    [31] F. Maury, J. M. Agullo. Chemical vapor co-deposition of C and SiC at moderate temperature for the synthesis of compositionally modulated Si_xC_(1-x) ceramic layers. Surface and Coatings Technology, 1995, 76/77:119-125
    [32] 条原嘉一,临田一路,渡边龙三.倾斜机能材料的合成.日本复合材料学会志,1991, 17(2):45-52
    [33] R.Bantle, A.Matthews. Investigation into the impact wear behavior of ceramic coatings. Surface and Coatings Technology, 1995, 74/75:857-868
    [34] F. Jamarani, M. Korotkin, R. V.Lang. Compositionally graded thermal barrier coating for high temperature areo-gas turbine components. Surface and Coatings Technology, 1992,54/55:58-63
    [35] A. A. Voevodin, R. Bantle, A. Matthews. Dynamic impact wear of TiC_xN_y and Ti-DLC composite coatings. Wear, 1995,185:81-87
    [36] P.Wu, C.Z.Zhou, X.N.Tang. Laser alloying of a gradient metal-ceramic layer to enhance wear properties. Surface and Coatings Technology, 1995,73:111-114
    [37] H.Holleck, H. Schultz. Preparation and properties of WC-TiC-TiN gradient coating. Surface and Coatings Technology, 1988, 36:257-264
    [38] E. Vancoille, J. P. Celis, J. R. Roos. Tribological and structural characterization of a physical vapor deposited TiC-Ti (C, N)-TiN multi-layer.Tribology International, 1993, 26:115-119
    [39] J. P. Van Devender, D. L. Cook. Inertial confinement fusion with light ion beams.Science, 1986, 232:831-836
    [40] D.J.Johnson, G. W. Kuswa, A. V. Farnsworth et al. Production of 0.5-TW proton pulses with a spherical focusing magnetically insulated diode. Physical Review Letters, 1979, 42:610-613
    [41] 王淦昌,袁之尚.惯性约束核聚变(第1版).安徽教育出版社,1996
    [42] A. D. Pogrebnjak, G. E.Remnev, I. B. Kurakin et al. Structural, physical and chemical changes induced in metals and alloys exposed to high power ion beams.Nuclears Instruments and Methods in Phusics Research B, 1989, 36:286-305
    [43] J. Piekoszewski, Z.Werner, W. Szymczyk. Application of high intensity pulsed ion and plasma beams in modification of materials. Vacuum, 2001, 63:475-481
    [44] 朱小鹏,胡永峰,苗收谋等.强流脉冲离子注入在材料表面工程中的应用.第四届全国表面工程学术交流大会论文集,中国机械工程学会表面工程分会,湖北宜昌,2001,186-191
    [45] D. J. Rej, R. B. Bartsch, H. A. Davis et al. Microsecond pulse width. Review Science Instrum, 1993, 64:2753-2759
    [46] G. E. Remnev, I. F. Isakov, M. S. Opekounov et al. High intensity pulsed ion beam sources and their industral application. Surface and Coatings Technology, 1999,114:206-212
    [47] 赵渭江,颜莎,韩宝玺等.强流脉冲离子束与新层类工艺.原子核物理评论,1998, 15 (2): 97-102
    [48] S. M. Miao, X. P. Zhu, M. K. Lei. Numerial analysis of ablated behavious on Titanium irradiated by high-intensity pulsed ion beam. Nuclear Instruments and Methods in Physics Research B, 2005, 229:381-391
    [49] 苗收谋,雷明凯.强流脉冲离子束辐照金属Ti相变传热的数值分析.金属学报,2004,40:1221-1226
    [50] 苗收谋.强流脉冲离子束辐照材料表面烧蚀作用研究.大连理工大学博士论文,2006
    [51] K. Yatsui, C. Grigoriu, K. Masugata et al. Preparation of thin films and nanosize powders by intense pulsed ion beam evaporation. Japanese Journal of Applied Physics, 1997, 36:4928-4934
    [52] A. J. Perry, J. N. Matossian. An overview of some advanced surface technology in Russia. Metallurgical and Materials Transaction A, 1998, 29:593-610
    [53] K. Yatsui, X. D. Kang, T. Sonegawa et al. Application of intense pulsed ion beam to material science. Physics of Plasmas, 1994, 1:1730-1737
    [54] T. Sonegawa, K. Yatsui. Stoichiometric and dieletric properties of BaTiO_3 thin films prepared by backside pulsed ion-beam evaporation. Journal of Materials Science Letters, 1998, 17:1685-1687
    [55] 杨建华.强束流脉冲金属离子表面改性技术及其应用.表面技术,2003,32(1):59-61
    [56] 阎鹏勋,杨四泽.脉冲高能量密度等离子体薄膜制备与材料表面改性.物理,2002,31(8):510-516
    [57] G. P. Johnston, P. Tiwari, D. J. Rej et al. Praparation of diamondlike carbon films by high-intensity pulsed-ion-beam deposition. Journal of Applied Physics, 1994,76:5949-5954
    [58] 梅显秀.强流脉冲离子束类金刚石薄膜沉积及高速钢辐照处理研究.大连理工大学博士论文,2002
    [59] 王承遇,刘永兴,马腾才.在玻璃上用强流脉冲离子束镀膜的工艺.硅酸盐学报,2001,29(3):249-253
    [60] K. Yatsui, C. Grigoriu, H. Kubo et al. Synthesis of nanosize powders of alumina by ablation plasma produced by intense pulsed light-ion beam. Applied Physics Letter, 1995, 67:1214-1216
    [61] K. Yatsui, C. Grigoriu, K. Masugata et al. Praparation of thin films and nanosize powders by intense pulsed ion beam evaporation. Japanese Journal of Applied Physics, 1997, 36:4928-4934
    [62] Y. Nakagawa, C. Grigoriu, K. Masugata et al. Synthesis of TiO_2 and TiN nanosize powders by intense light ion-beam evaporation. Journal of Materials Science,1998,33:529-533
    [63] A. D. Pogrebnjak, Sh.M. Ruzimov. Increased microhardness and position annihilation in Al exposed to a high-power ion beam. Physics Letters A, 1987,120:259-261
    [64] D. J. Rej, H. A. Davis, M. Nastasi et al. Surface modification of AISI-4620 steel with intense pulsed ion beams. Nuclear Instruments and Methods in Physics Research B, 1997, 127/128:987-991
    [65] 张通和,梁宏,马芙蓉.强流金属离子束材料表面改性研究.原子核物理评论,1997,14(3):167-172
    [66] 雷明凯,刘臣,董志宏等.强流脉冲离子束辐照涡轮叶片表面的清洗加工.中国机械工程,2007,18(3):604-606
    [67] 王旭,刘臣,王兰芳等.强流脉冲离子束辐照对不锈钢耐腐蚀性能的影响.强激光与粒子束,2007,19(5):845-848
    [68] 胡永峰,朱雪梅,朱小鹏.强流脉冲离子束辐照合金Ti_6Al_4V的耐蚀性.大连铁道学院学报,2002,23(3):84-87
    [69] T. Feurer, S. Wahl, H. Langhoff. Modification of polyimide surface using intense proton pulses. Journal of Applied Physics, 1993, 74:3523-3530
    [70] J. Kucinski, J. langner, J. Piekoszewski et al. Glazing of ceramic surface with high intensity pulsed ion beams. Surface and Coatings Technology,1996,84:329-333
    [71] R. T. Hodgson, J. E. E. Baglin, R. Pal et al. Ion beam annealing of semiconductors.Applied Physics Letters, 1980, 37:187-189
    [72] J. M. Neri, D. A. Hammer, G. Ginet et al. Intense lithium, boron, and carbon beams from a magnetically insulated diode. Applied Physics Letters, 1980, 37:101-103
    [73] Yu.P.Usov, A.N.Didenko, G. E.Remnev et al. Proc. 3~(rd) All-Russian Conf. On Application of Electron and Ion Technology for Industry. 1981, Tbilisi
    [74] R. M. Bayazitov, L. K. Zalirzyanova, I.B. Khaibullin et al. Formation of heavily doped semiconductors layers by pulsed ion beam treatment. Nuclear Instruments and Methods in Physics Research B, 1994,122:35-38
    [75] D. J. Rej, H. A. Davis, J.C.Olson et al. Journal Vaccum Science and Technology,1997, A15(3):1089-1097
    [76] H. A. Davis, B. P. Wood, C. P. Munson et al. Ion beam and plasma technology development for surface modification at Los Alamos National Laboratory.Materials Chemistry and Physics, 1998, 54:213-218
    [77] 周南,牛胜利,丁升等.强脉冲离子束辐照热-力学效应研究.强激光与粒子束,2000,12(2):249-253
    [78] 梅显秀,徐军,马腾才.利用强流脉冲离子束技术在室温下沉积类金刚石薄膜研究.物理学报,2002,51(8):1875-1880
    [79] A. D. Pogrebnjak, G. E. Remnev, I.B. Kurakin et al. Structural, physical and chemical changes induced in metals and alloys exposed to high power ion beams.Nuclear Instruments and Methods in Physics Research B, 1989, 36:286-305
    [80] 石磊,何小平,张嘉生等.一台小型强流脉冲离子加速器.强激光与粒子柬,2000,12(3):382-384
    [81] S. M. Miao, M. K. Lei. Numerial analysis of ablated behaviors on titanium irradiated by high-intensity pulsed ion beam. Nuclear Instruments and Methods in Physics Research B, 2005,229:381-391
    [82] 董志宏.强流脉冲离子束特性优化及辐照力学效应的研究.大连理工大学博士论文,2007
    [83] 何小平,石磊,张嘉生等.用偏压法拉第筒测量强流脉冲离子束.强激光与粒子束,2000,12:753-755
    [84] X. P. Zhu, M. K. Lei, Z.H.Dong et al. Characterization of a high-intensity unipolar-mode pulsed ion source with improved magnetically insulated diode,Review of Scientific Instruments, 2003, 74:47-52
    [85] H. A. Jehn, B. Rother. Preparation and concentration distribution of coating systems: metallurgical and other consideration. Journal of Matrrials Processing and Technology, 1996, 56:385-397
    [86] I.Grimberg, V. N. Zhitomirsky, R. L. Boxman et al. Multicomponent Ti-Zr-N and Ti-Nb-N coatings deposited by vacuum arc. Surface and Coatings Technology, 1998,108/109:154-159
    [87] E. Vancoille, J. P. Celis, J. R. Ross. Mechnalcal properties of heat treated and worn PVD Tin, (Ti.Al)N, (Ti,Nb)N and Ti(C,N) coatings as measured by nanoindentation. Thin Solid Films, 1993, 224:168-176
    [88] 李成明,孙晓军,张增毅等.超硬薄膜研究的新进展.金属热处理,2004,29(4):2-5
    [89] D. K. Das. Scratch adhesion testing of plasma-sprayed yttrium-stabilized zircon coatings. Surface and Coatings Technology, 1991,46:331-345
    [90] F. Davanloo, T. J. Lee. Mechanical and adhesion properties amorphous diamond films, Thin Solid Films, 1992, 212:216-219
    [91] H. Guo, M. Alam. Strain in CVD diamond films: effects of deposition variables,Thin Solid Films, 1992, 212:173-179
    [92] 庄大明,刘家浚,朱宝亮.TiN薄膜的应力状态对摩擦学性能的影响.摩擦学学报,1996,16(4):312-321
    [93] H.Weiss. Adhesion of advanced overlay coatings: mechanism and quantitative assessment. Surface and Coatings Technology, 1995, 71:201-206
    [94] 李军伟,张平.N+离子注入W18Cr4V钢磨损性能的研究.中国表面工程,2001,1:27-30
    [95] 张爱民,陈建敏等.YL12铝合金铁离子注入层的摩擦学特性研究.摩擦学学报,2000,20(6):412-415
    [96] C. D. Warren, J. J. Wert. The Influence of Implanted Transition Metal Ions on the Adhesive Wear of Iron. Wear, 1989, 134:149-164
    [97] 张伟,薛群基,张绪寿.离子柬轰击对多层膜摩擦学性能的影响.金属学报,1997,33(11):1165-1170
    [98] 董志宏,徐忠成,苗收谋等.金属材料表面强流脉冲离子束辐照强化.金属热处理,2003,28(5):1-4
    [99] 李继承,林莉,赵扬.HIPIB辐照前后Cr_2O_3陶瓷涂层超声衰减特性研究.无损检测,2007,29(10):580-583
    [100] 朱小鹏.强流脉冲离子束特性及其烧蚀作用的实验研究.大连理工大学博士论文,2003
    [101] C. Hao, S. Yong, H.Peter. The influence of deposition conditions on structure and morphology of aluminum nitride films deposited by radio frequency reactive sputtering. Thin solid films, 2003, 434(1-2): 112-120
    [102] O. A. Johnsen, J. H. Dontje, R. L. D. Zenner. Reactive arc vapor ion deposition of TiN, ZrN and HfN. Thin solid films, 1987, 153:75-82
    [103] M. Leoni, P. Scardi, S.Rossi et al. (Ti,Cr)N and Ti/TiN PVD coatings on 304 stainless steel substuates:Texture and residual stress. Thin solid films, 1999,345:263-269
    [104] 高润生.气相沉积TiN的残余应力及静动结合强度的研究.西安交通大学博士论文,1992
    [105] N. P. Suh. An overview of the delamination theory of wear. Wear, 1997,44:1-16
    [106] H. K. Zum Gahr. Wear of Materials. 1979, ASME, 123
    [107] 唐壁玉,靳九成.CVD金刚石薄膜的应力研究,高压物理学报,1997,11(1):56-59
    [108] 孙希泰.材料表面强化技术.北京:化学工业出版社,2005
    [109] 张通和,吴瑜光.离子束表面工程技术及应用.北京:机械工业出版社,2005
    [110] 宫野,张建红,王晓东等.强流脉冲离子束辐照双层靶能量沉积的数值模拟,物理学报,2008,57(8):5095-5099
    [111] 乐小云,赵渭江,颜莎等.强脉冲离子束辐照金属材料表面热力学效应计算,强激光 与粒子束,2001,13(4):456-460
    [112] 周南,乔登江著.脉冲束辐照材料动力学.北京:国防工业出版社,2002
    [113] A.D.Pogrebnjak . A review of mixing progress in Ta/Fe and Mo/Fe systems treated by high current electron beams. Nucl Instr And Meth In Phys Res B, 1998, 145:373-390
    [114] A.B.Markov, V.P.Rotshtein. Calculation and experimental determination of dimentions of hardning and tempering zones in quenched U7A ateel irradiated with a pulsed electron beam. Nucl. Instrum. Methods in phys. Res. B,1997,132:79-86
    [115] D.R.克罗夫特著,张风禄等译.传热的有限差分方程计算.北京:冶金工业出版社,1982
    [116] 郑贤淑.铸造应力数值模拟.大连理工大学铸造工程中心:1997
    [117] 李春胜.钢铁材料手册.南昌:江西科学出版社,2004
    [118] 朱谷军.工程传热传质学.北京:航天工业出版社,1989
    [119] 梁英教,车荫昌.无机物热力学手册,沈阳:东北大学出版社,1993
    [120] S. Takayama. Review amorphous structures and their formation and stability [J].Journal of Materials Science, 1976, (11): 164-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700