藏北羌塘新生代高Mg~#钾质火山岩的成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以青藏高原北部羌塘地区新生代高Mg#钾质火山岩为研究对象,针对该类岩石高Mg#同时高硅和高钾的岩石成因理论问题,进行了岩石学、常量元素、微量元素、稀土元素和同位素地球化学及高温高压熔融实验的系统研究,同时结合区域新生代火山岩的对比分析,确定了高Mg#钾质火山岩的岩浆源区性质、岩浆作用过程,提出富集岩石圈地幔受到来自俯冲洋壳流体的交代熔融,形成高Mg#高钾钙碱性玄武质岩浆,岩浆底侵过程中与地壳长英质岩浆发生广泛的混合,形成以中性岩石为主的高Mg#钾质火山岩的新认识。该项研究成果为青藏高原隆升机制和岩石圈深部构造演化研究提供了岩石学的信息和依据。
The formation and evolution of volcanic rocks occurred in Qiangtang, NorthernQinghai-Tibet Plateau had gone through a very long geological time since the collisionbetween India continent and Eurasia one 60~50Ma ago. This volcanic rocks were thoughtas important window or geological probe for researching the material composition of thelithosphere, the structure and interaction of the crust-mantle in the plateau and themechanism of the plateau uplift. They have been followed with great interest bygeologists for a long time.
    The Mesozoic high Mg# potassic volcanic rocks in the Qiangtang, NorthernQinghai-Tibet Plateau were researched in the paper. The author has made systemicinvestigation on petrology, major element, trace element, REE and isotope geochemistryof high Mg# potassic volcanic rocks through comprehending plenty data and productionsof some scholars, and have carried comprehensive analysis and discussion on the genesisof high Mg# potassic volcanic rocks through investigation of the melting experimentationof high temperature and high pressure and dating of zircon. It can provide petrologyrestriction for the structural evolution of the lithosphere in the Northern Qinghai-TibetPlateau.
    The Cenozoic high Mg# potassic volcanic rocks are divided into high Mg# and Kcalc-alkaline series and high Mg# shoshonitic series in chymical composition. The highMg# and K calc-alkaline series were found chiefly at Cuoni, Duogecuoren, zuerken, wulahill, Dongyue lake, Yanzi lake and Zhentouya of the northern Qiangtang and Nadingcuoo,Zougouyouchacuoand Shuang lake of the southern Qiangtang and so on. The main rockconsist of latite, trachyte, dacite, trachytedacite and a little rhyloite. The high Mg#shoshonitic series were found chiefly in the northern Qiangtang, presently, at the west ofYudai hill, Taiping lake-Botao lake, the south of Haobo lake and Bandao lake-Ruejinla,and a little at Shuanghu of the southern Qiangtang, otherwise in the east of Fenghuo hill.The main rock compositions consit of tephrite, shoshonitic-latite and trachyte. These
    volcanic rocks showed lava bed, and covered unconformitable the Paleogene Penna lakegroup or Jurassic Yanshiping group, which were formed by rapid cooling of lava. Thelandscape was remnant volcanic landform.The data of Ar-Ar isotopic dating of the Cenozoic volcanic rocks in Qiangtangindicated that the Cenozoic volcanic action in Qiangtang began with sodic alkaline basaltseries(60~44Ma ago), high Mg# and-K calc-alkaline potassic volcanic rocks have beenthe main part 42Ma ago, the peak value age was 42~37Ma. The main activie time of highMg# shoshonitic series was 36~32Ma, and then were superseded by the peralkalinepotassic-ultrapotassic series, and the Miocene Epoch shoshonitic neuter acidic volcanicaction was found in the south part of Zhentouya.The sodic alkaline basalt series hade weak fractional distillation in heavy REEs , theCenozoic high Mg# and K calc-alkaline series were characterized by richment of LREE,and depletion in heavy REE. The fractionation between LREE and HREE weresignificant, indicating the derivation from very deep source with garnet in the residue.The δEu values of the high Mg# and-K calc-alkaline series and the high Mg# shoshoniticseries did not change with the increase of SiO2 content. It had on or weak negative Euanomaly, indicating that the source region did not happen equilibrium with plagioclaseduring the course of evolvement of magma. The wider range of variations in compositionof the two series indicated that they were formed from the partial melting of the materialin thicked crust, or from mantle magma migmatization with crustal rocks or crustal melt .The higher composition of K2O and the higher Mg# value of the Mesozoic high Mg#potassic volcanic rocks hade important restriction of source magma. The experimentalresearch on water loss melting of calc-alkaline gabbro dioritic rock, which approachedthe general composition of low crustal rocks indicated that : (1) the melting degree wereincreased with the temperature in the same pressure, the melt composition was changedfrom basic to intermediate with the increase of melt, but the K2O composition of meltwasn't change. (2) Because the PH2O controlled the property of melt mainly, the changerule of the melt composition in the low pressure and high pressure wasn't obvious at thesame temperature, Because of the experiment system at half close and half open, the PH2Ofrom the hornblende dehydration was invariable during the course of melting. (3) themineral composition have important influence to the melt composition, besides thetemperature and PH2O, the melt nearby hornblende was enriched in Mg、Fe、Ca and Ti,the melt nearby plagioclase was enriched in Al and Na. (4) the melting degree was
    increased with the stress velocity at the same temperature.The result of experiments indicated that the water loss melting of calc-alkalinegabbro dioritic rock which approached the general composition of low crustal rocks couldproduced the basic-intermediate potassic melt, but the compositions of K2O and the Mg#value were lower than these of the Mesozoic high Mg# potassic volcanic rocks, Thecontent of K2O and the Mg# value of the melt were restricted by the sample ofexperiment . Not only the water loss melting but also dehydration melting experiments,the sample with basaltic composition could not produced the melt that were providedwith the composition of the high Mg# potassic volcanic rocks in the Qiangtang.During melting experiment, the melt glass happened to segregate phenomena whenthe temperature was more than 1000℃,the pressure was 2.4GPa and the melting degreewas more than 80%. The segregation resulted in the form of enriched iron oxide withspheroid and irregular bands, and leaded to Mg# value of silicate melt to increaseevidently. Then the segregation of enriched iron oxide from basic silicate melt couldproduced high Mg# andesitic melt, but the silicate melt have higher content of Al2O3. Thesegregation of enriched iron oxide occurred in the experiment provided importantexperiment proof for the forming mechanism and condition of enriched iron slurry in thenature.Trace element composition of the high Mg# potassic volcanic rocks was similar tothat of the intra-plate alkali basalt. The later from the mantle , which was extremelyenriched in large iron elements, also it shares the geochemical properties withactive-continent margin and island-arc basalts, which are extremely enriched in Nb, Ta,Ti high-field strength elements. Incompitable element ratios were characterized by lowerLa/Rb、Zr/Rb、Nb/Ba and higher K/La、Rb/Nb、Th/Nb、K/ Nb、Pb/La,which were similarto the character of incompitable element ratios of island-arc volcanic rocks in Aleutianislands and the quaternary ultrapotassium volcanic rocks in Taipei. The tectonicdiscrimination diagrams of high-field strength elements indicated that the departure of Yrelative to Ti, Zr, Nb occurred during the course of produce of pro-magma, and then thegeochemical characteristic of magma was deficient Y relative to Ti, Zr, Nb, the characterwas different from that of the island arc and active-continent margin basalts, the Sr、Nd、Pb isotope showed that the source magma hade the character of EM2 mantle . The abovecharacters and the higher abundance of Cr、Ni、Co indicated that the pro-magma werefrom the partial melting of the garnet monpyroxenes peridotite enriched lithosphere
    mantle, which had ever been metasomatized by fluid from subducted slab.The results of SHRIMP and LA-ICPMS zircon dating gave that the ages of zirconwere often proterozoic in the high Mg# and-K calc-alkaline series in Duogecuoren andZougouyouchacuo and Leucite pollenite in Yulin hill. Both the ages of zircon and thecharacter of Sr、Nd、Pb isotope indicated that happened to mix and contaminate withcrustal material during underplating the mantle source magma.Synthesis before-mentioned analysis, the paper offered the following genesis modelof the high Mg# potassic volcanic rocks:(1) The Tethyan oceanic crust subducted toward the Eurasian continent, and led tothe upwelling asthenosphere of Qiangtang , then it formed the sodic alkaline basalticmagmatic activity 60Ma ago, in Qiangtang which were from asthenosphere melting .(2) After the collision between India continent and Eurasia one, the hysteresis ofoceanic crust thrusting led to the enriched lithosphere mantle, which was metasomatizedby fluid from subducted slab, and then it formed the high Mg# and-K calc-alkalinebasaltic magma, during magma underplating, happened the mixing between crustal andmantle magma , and magmatic fractional crystallization, at last ,formed the combinationof the intermediate high Mg# potassic volcanic rocks.(3) The subducted slab breakoff 30Ma ago, led to the upwelling of asthenosphere inthe core of Plateau, in the condition of asthenosphere fluid, so the ancient enrichedlithosphere mantle happened partial melting and formed the volcano activity of theperalkaline potassic-ultrapotassic series.
引文
1. 鲍学昭.锆石中两种成分变化趋势及其成因标型意义[J] .矿物学报,1995(15):404 -410
    2. 陈小明,陈克荣,王玉明.大山次火山岩中岩浆熔离结构的元素分布特征及成岩模式[J].南京大学学报,1995,31(3):463-468
    3. 陈跃军.吉林省东南部中生代火山事件地层研究,吉林大学博士学位论文,2003:27-75
    4. 迟效国,李才,金巍,等.藏北新生代火山岩作用的时空演化与高原隆升[J].地质论评,1999,45(增刊):978-986
    5. 迟效国,李才,金巍.藏北羌塘地区新生代火山作用与岩石圈构造演化[J].中国科学D辑,2005,35(1):1-12
    6. 迟效国,戚长谋,齐永恒.中国东部花岗岩荷载微粒闪长质包体成因[J].长春地质学院学报,1995(2):131-143
    7. 邓晋福,赵海玲,莫宣学,等.中国大陆根-柱构造—大陆动力学的钥匙[M] .北京:地质出版社,1996
    8. 邓万明,Pearce J .A,拉萨—格尔木(1985)和拉萨—加德满都(1986)的蛇绿岩[M].青藏高原地质演化,北京:科学出版社,1990
    9. 邓万明,黄萱,钟大赉.滇西新生代富碱斑岩的岩石特征与成因[J].地质科学,1998,(33):412-425
    10. 邓万明,孙宏娟,张玉泉.青海囊谦盆地新生代火山岩的K-Ar年龄[J] .科学通报,1999,44(23):2554-2557
    11. 邓万明,孙宏始.青藏北部板内火山岩的同位素地球化学与源区特征[J] .地学前缘,1998,5(4):307-317
    12. 邓万明,尹集祥,呙中平.羌唐茶布—双湖地区基性超基性岩和火山岩研究[J] .中国科学(D辑),1996,26(4):296-301
    13. 邓万明.青藏北部新生代钾质火山岩微量元素和Sr、Nb同位素地球化学研究[J] .岩石学报,1993,9(4):379-387
    14. 邓万明.青藏高原北部新生代板内火山岩[M] .北京:地质出版社,l998,1-l68
    15. 邓万明.西藏阿里北部的新生代火山岩一兼论陆内俯冲作用[J] .岩石学报,1989,5(3):1-11
    16. 邓万明.中昆仑造山带钾玄岩质火山岩的地质、地球化学和时代[J] .地质科学,1991,26(3):201-213
    17. 丁林,张进江,周勇,等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征[J].岩石学报,1999,15(1):408-421
    18. 董发勤,胡家望,彭同江.矿物中的自组织有序结构研究[J].西南工学院学报,1997,12(4): 42-46
    19. 侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用[J].中国科学,2003(7):609-618
    20. 江元生,周幼云,王明光,等.西藏冈底斯山中段第四纪火山岩特征及地质意义[J].地质通报,2003,22(1):16-20
    21. 姜杨,周汉文,杨启军,等.0.1GPa块状榴辉岩脱水部分熔融:局部熔融体系和温度的影响[J].地球科学(中国地质大学学报),2006,31(1):121-128
    22. 卡迈克尔 ISE,特纳F J,费尔福更.火成岩石学[M].丛柏林译,沈德富校,北京地质出版社,1982:290-411
    23. 赖绍聪,等.北羌塘新第三纪高钾钙碱性火山岩系的成因及其大陆动力学意义[J].中国科学(D辑),2001,31(增刊):34-42
    24. 赖绍聪,邓晋福,赵海玲.青藏高原北缘火山作用与构造演化[M].西安:陕西科学技术出版社,1996,1-120
    25. 赖绍聪,刘池阳.青藏高原北羌塘榴辉岩质下地壳及富集型地幔源区--来自新生代火山岩的岩石地球化学证据[J].岩石学报,2001,17(3):459-468
    26. 赖绍聪,伊海生,刘池阳.青藏高原北羌塘新生代高钾钙碱岩系火山岩角闪石类型及痕量元素地球化学[J].岩石学报,2002,18(1):17-24
    27. 赖绍聪.青藏高原新生代埃达克质岩的厘定及其意义[J].地学前缘,2003,10(4):407-415
    28. 赖绍聪.青藏高原新生代火山岩矿物化学及其岩石学意义--以玉门、可可西里及芒康岩区为例[J].矿物学报,1999,19(2):236-244
    29. 赖绍聪.青藏高原新生代三阶段造山隆升模式:火成岩岩石学约束[J].矿物学报,2000 ,(20)2:182-189
    30. 李保华,伊海生,黄继钧,等.藏北望牲山火山岩地球化学研究及其构造意义[J] .四川地质学报,2005,25(2):75-80
    31. 李才,李永铁,林源贤,等.西藏双湖地区蓝片岩原岩Sm-Nd同位素定年[J].中国地质,2002, 29(4):355-359
    32. 李才,王天武,杨德明,等.西藏羌塘中部都古尔花岗质片麻岩同位素年代学研究[J].长春科技大学学报,2000, 30(2):105-109
    33. 李才,朱志勇,迟效国.藏北改则地区鱼鳞山组火山岩同位素年代学[J].地质通报,2002(11):732-734
    34. 李光明.藏北羌塘地区新生代火山岩岩石特征及其成因探讨[J].地质地球化学,2000,28(2):38-44
    35. 李献华,周汉文,韦刚健,等.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩 石圈地幔组成的制约[J].地球化学,2002,31(1):26-34
    36. 廖思平,陈振华,罗小川,等.西藏当惹雍错地区白榴石响岩的发现及地质意义[J].地质通报,2002,21(11):735-738
    37. 林金辉.藏北高原新生代高钾钙碱性系列火山岩与壳-幔相互作用,2003,博士学位论文
    38. 林强,吴福元,马瑞.花岗岩块状样品的熔融实验研究[J] .地球化学,1993,13(4):256-362
    39. 刘福来,沈其韩,耿元生,等.变质反应与脱水熔融成因关系的实验研究—以晋蒙边界孔兹岩系中富铝片麻岩为例[J] .中国科学(D辑),1997,27(6):481-487
    40. 刘嘉麒.中国火山[M].北京:科学出版社,1999,53-135
    41. 刘建忠,卢良兆,谢鸿森. 贺兰山北段孔兹岩系脱水熔融实验研究—临界熔体比例的确定及意义[J].地质科学,1998,33(4):447-454
    42. 刘晓春,曲玮,谢鸿森,等.大别山朱家冲斜长角闪岩一角闪榴辉岩-柯石英榴辉岩相转变实验研究[J].地质学报,1999,73(3):250-252
    43. 马宗晋,张家声,汪一鹏.青藏高原三维变形运动学的时段划分和新构造分区[J].地质学报,1998,72(3),211-227
    44. 莫宣学,罗照华,肖庆辉,等.花岗岩类岩石中岩浆混合作用的识别与研究方法,见:花岗岩研究思维与方法,肖庆辉,邓晋福,马大栓,等.著.北京:地质出版社,2002:53-70
    45. 莫宣学.岩浆熔体结构[J].地质科技情报,1985,5(2):6-10
    46. 邱家骧,林景仟.岩石化学[M].北京地质出版社,1991
    47. 饶冰,博士后研究报告,南京大学地科系,1994
    48. 饶冰,博士研究生论文,南京大学地科系,1991
    49. 桑祖南,周永胜,何昌荣,等.辉长岩部分熔融实验及地质学意义[J].地质科学,2002,37(4):385-392
    50. 苏良赫.从自由能计算判别硅酸盐熔融休之不混溶[J].地球化学,1989(1):70-76.
    51. 谭富文,潘桂棠,徐强.羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升[J].岩石矿物学杂志,2000,19(2):121-130
    52. 汪相.淡竹片麻状花岗岩中重结晶锆石的形态及其意义[J].科学通报,1992,(20):1876-1879
    53. 王成善.西藏羌塘盆地地质演化与油气远景评价[M].北京:地质出版社,2001
    54. 王联魁,卢家烂,张绍立.南岭花岗岩液态分离实验研究[J].中国科学(B辑),1987,(1):44-54
    55. 王联魁,朱为方,张绍立.液态分离一南岭花岗岩分异方式[J] .地质论评,1983,(9):365-373
    56. 王岳军,韩吟文,林舸,等.辉长岩的高压部分熔融实验研究[J] .岩石学报,1998,14(1):71-82
    57. 魏君奇,王建雄,牛志军.羌塘赤布张错地区新生代火山岩研究[J] .沉积与特提斯地质,2004 (2):16-21
    58. 吴才来,杨经绥,李海兵. 青藏高原北缘火山岩中辉石岩包体研究[J].地球学报,2001,22(1):61-66
    59. 吴福元.花岗岩熔融的局部体系及熔融序列[M].吉林:吉林科学技术出版社,1993
    60. 吴珍汉,吴中海,江万,等.中国大陆及邻区新生代构造地貌演化过程与机理[M] .北京:地质出版社,2001,37-40
    61. 西藏区域地质调查大队.1:100万改则幅地质调查报告,1986,1-32
    62. 谢家莹,陶奎元,谢芳贵.试论凝灰熔岩相特征、相模式及其成因[J] .火山地质与矿产,1995,16(3):1-6
    63. 熊小林,J. Adam,T. H. Green,等.变质玄武岩部分熔体微量元素特征及埃达克熔体产生条件[J].中国科学D辑地球科学,2005,35(9):837-846
    64. 许继峰,王强. Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例[J].地学前缘(中国地质大学,北京),2003,10(4):401-406
    65. 续海金,马昌前.实验岩石学对埃达克岩成因的限定—兼论中国东部富钾高Sr/Y比值花岗岩类[J].地学前缘(中国地质大学.北京),2003,10(4):417-427
    66. 杨德明,李才,和钟华,等.西藏尼玛宋我日火山岩岩石化学特征与构造环境[J] .地质论评,1999,45(增刊):972-977
    67. 杨日红,董建乐,李 才,等.藏北新生代火山岩主要造岩矿物特征及温压条件[J].现代地质,2002,16(2):153-158
    68. 杨晓松,金振民,Huenges E,等.高喜马拉雅黑云斜长片麻岩脱水熔融实验:对青藏高原地壳深熔的启示[J].科学通报,2001,46(3):246-250
    69. 喻学惠,张春福.甘肃西秦岭新生代碱性火山岩的Sr,Nd同位素及微量元素地球化学特征[J].地学前缘,1998,5(4):319-328
    70. 岳石,马瑞.实验岩石变形与构造成岩成矿[M].吉林:吉林大学出版社,1990
    71. 张会化,贺怀宇,王江海,等.西藏芒康盆地内高钾火山岩的40Ar/39Ar年代学和地球化学研究[J].中国科学D 辑,2004,34(1):24-34
    72. 张旗,许继峰,王焰,等.埃达克岩的多样性[J] .地质通报,2004,23(9-10):959-965
    73. 张旗,赵太平,王 焰,等.中国东部燕山期岩浆活动的几个问题[J]. 岩石矿学杂志,2001,20(3):273-280
    74. 张以弗,郑健康.青海可可西里及邻区地质概论[M].北京:地震出版社,1994
    75. 张以弗,郑祥身,郑健康.青海可可西里地区地质演化[M].北京:科学出版社,1996
    76. 赵振华,王强,熊小林.俯冲带复杂的壳幔相互作用[J].矿物岩石地球化学通报,2004,23(4):277-284
    77. 赵志丹,莫宣学,张双全,等.西藏中部乌郁盆地碰撞后岩浆作用—特提斯洋壳俯冲再循环的证据[J].中国科学(D)辑,2001,31(增刊):20-26
    78. 郑海飞,陈斌,孙樯,等.高压下玄武岩浆的不混溶及其双峰式火山岩的成因意[J].岩石学报,2003,19(4):745-751
    79. 郑海飞,谢鸿森,徐有生,等.高温高压下含水矿物对岩石熔点影响的实验研究[J].地质学报,1995,69(4):326-336
    80. 郑海飞,谢鸿森,徐有生,等.钠质与钾质中酸性岩浆的成因:玄武质岩的高压熔融实验研究[J].矿物学报,1996,16(2):109-117
    81. 郑祥身,边千韬.青海可可西里地区新生代火山岩研究[J].岩石学报,1996,12(4):530-545
    82. 周文戈,谢鸿森,郭捷,等.黑云二长片麻岩—榴辉岩相变的纵波速度[J].自然科学进展,2000,10(8):716-721
    83. 周文戈,谢鸿森,刘永刚,等. 2.0 GPa 块状斜长角闪岩部分熔融—时间和温度的影响[J].中国科学 D辑 地球科学,2005,35(4):320-332
    84. 朱第成,潘桂棠,莫宣学,等.青藏高原及邻区新生代火山岩Sr-Nd-Pb同位素特征[J]. 沉积与特提斯地质,2003,23(3):1-11
    85. 朱卫国,谢鸿森,徐济安,等. 1 650 ℃,1~3 GPa 下玄武岩熔体结构的实验研究[J].1998,43(14):1551-1556
    86. Alberto E,Patin O Douce,Nigel Harris. Experimental Constraints on Himalayan Anatexis[J]. Journal of Petrology,1998,39(4):689-710
    87. Arculus R J.Aspects of magma genesis in arcs[J].Lithos,1994(33):189-208
    88. Arima M and Edgar Alan D. A high pressure experimental study on a magnesian-rich leucite-lamproite from the west Jimberley area,Australia:Petrogenetic implications[J]. Contrib. Mineral. Petrol.,1983(84):228-234
    89. Arnaud N O,Vidal P,Tapponnier P,et al. The high K2O volcanism of northwestern Tibet: geochemistry and tectonic implications [J]. Earth and Planetary Science Letters, 1992(111):351-367
    90. Atherton M P and Petford N. Generation of sodium-rich magma from newly underplated basatic crust [J]. Nature,1993(362):144-146
    91. Atherton M P,Petford.Generation of sodium-rich newly uuderplated basaltic crust[J]. Geology,1993(4):596-600
    92. Barbarin B.Field evidence for successive mixing and mingling between the Piolard Diorite and the Saint-Julien-la-Vetre Monzogranite(Nord-Forez,Massif Central,France)Can[J].Earth Sci.,1988(25):49-59
    93. Beard J S,Lofgren G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1,3,6,9 kbar[J]. J Petrol,1991(32):365-401
    94. Bernard J. Wood,Raffaello Trigila. Experimental determination of aluminous clinopyroxene –melt partition coefficients for potassic liquids,with application to the evolution of the Roman province potassic magmas [J]. Chemical Geology,2001(172):213-223
    95. Boris A. Litvinovsky,Ian M .Steele,Stephen M. Wickham.Silicic Magma Formation in Overthickened Crust:Melting of Charnockite and Leucogranite at 15,20 and 25 kbar[J]. Journal of Petrology,2000,41(5):717-737
    96. Carmichael A,Norris N R. Norm(Naturally occurring radioactive material)regulation domain of states[J]. AMER Oil Gas Reporter,1996,39(13):95-99
    97. Chung S L,Liu D Y,Ji J Q,et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geological Society of America,2003,31(11):1021-1024
    98. Chung S L,Lo C H,Lee T Y,et al. Diachronous uplift of the Tibetan plateau starting 40 Myr age[J]. Nature,1998(394):769-773
    99. Chung S.L,Wang K L,Crawford A J,et al. High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas[J]. Lithos,2001(59):153-170.
    100. Debon F.Comparative Major element chemistry in various “microgranular enclave-plutonic host” pairs. In Didier J. and Barbarin B.(eds.),Enclaves and Granite Petrology.Elsevier,Amsterdam,1991,293-312
    101. Defant M J,Drummond M S. Derivation of some modern arc magmas by partial melting of young subducted lithosphere[J]. Nature,1990(347):662-665
    102. Dungan M A,Lindatrom M M,McMiland N J,et al. Open system magmatic evolution of the Taos Plateau volcanic field,northern New Mexico,The Petrology and geochemistry of the Servilleta basalt[J]. Jour. Geophys. Res.,1986(91):5999-6028
    103. Ellam R M. Lithospheric thickness as a control in basalt geochemistry[J].Geology,1992(20):153-156
    104. Ellis D J,Thompson A B. Subsolidus and partial melting reactions in the quartz-excess CaO+MgO+Al2O3+SiO2+H2O system underwater-excess and water-deficient conditions to 10kb:Some implications for the origin of petraluminous melts from mafic rocks[J]. J Petrol,1986(27):91-121
    105. Fujii T and Bougault H. Melting relation of a magnesian abyssal tholeiite and the origin of MORB [J]. Earth and Plantary Science Letters,1983(62):28-295
    106. Gao Y-F,Hou Z-Q,Wei R-H. Post-colliaional adakitic porphyries in Tibet;Geocherttical and Sr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantle interaction[J]. Sinica Geologica Acta,2003(77):No.2
    107. Ghiorso M S,Carmichael I S E.A regular solution model for metaluminous silicate liquids:applications to geothermometry,immiscibility,and the source regions of basic magmas [J] .Contrib.Mineral.Petrol,1980(71):323-342
    108. Gill J B. Orogenic Andesites and Plate Tectonics. New York,Springer-Verlag,1981
    109. Green D H and Ringwood A E. Mineral assemblages in a model mantle composition [J].Geophys.,1963(68):937-948
    110. Green T H and Pearson N J. Rareearth element partition between clinopyroxene melt at moderate high pressure [J]. Contrib. Mineral. Petrol.,1985(91):24-36
    111. Hacker B R,Gnos E,Ratschbacher L,et al .Hot and dry deep crustal xenoliths from Tibet [J].Science,2000(287):2463-2466
    112. Hacker B R. Amphibolite-facies to granulite-faciesreactions in experimentally deformed,unpowered amphibolite [J]. Am Mineral,1990(75):1349-1361
    113. Hayashi M,Shinno I. Morphology of synthetic zircon crystals doped with various elements [J].Mineral J.,1990(15):119-128
    114. Hermann J,Green D H. Experimental constraints on high pressure melting in subducted crustr[J]. Earth and Planetary Science Letters,2001(188):149-168
    115. Hoskin P O,Ireland T R . Rare earth element chemistry of zircon and its use as a provenance indicator[J].Geology,2000,28(7):627-630
    116. Jaques A L and Green D H. Anhydrous melting of peridotite at 0-15kb pressure and the genesis of tholeiitie basalts[J].Contrib.Mineral.Petrol,1980(73):287-310
    117. Kay S M,Kay R W. Aleutian magmas in space and time. In The Geology of Alaska, The Geology of North America,G-1,Plafker G, and Berg H C,(eds). Geological Society of America,1994:687-722
    118. Kepezhinskas P K,Defant M J,Drummond M. Na Metasomatism in the island-arc mantle by slab melt-peridotite interaction:Evidence from mantle xenoliths in the north Kamchatka arc [J]. Journal of Petrology,1995(36):1505-1527
    119. Kushiro I. Partial melting of mantle wedge and evolution of island arc crust [J]. Geophys. Res.,1990(95):15929 -15939
    120. Lai S C,Liu C Y and Yi H S. Geochemistry and petrogenesis of Cenozoic andesite-dacite associations from the Hoh Xil region,Tibetan plateau[J]. International Geology Review,2003(45):998-1019
    121. Lambert I B,Wyllie P J. Melting of gabbro(quartz eclogite)with excess water to 35 kbar,withgeological applications[J]. J Geol,1972(80):693-708
    122. Laporte D,Watson E B. Experimental and theoretical constraints on melt distribution in crustalsources:The effect of crystalline anisotropy on melt interconnectivity[J]. Chem Geol,1995(124):161-184
    123. Le Breton N,Thompson A B. Fluid-absent(dehydration)melting of biotite in metapelites in theearly stages of crustal anatexis[J].Contrib Mineral Petrol,1988(99):226-237
    124. Lupulescu A,Watson E B. Low melt fraction connectivity of granitic and tonalitic melts in a maficcrustal rock at 800℃ and 1 GPa[J]. Contrib Mineral Petrol,1999,(134):202-216
    125. Marie C. Johnson,Terry Plank. Dehydration and Melting Experiments Constrain the Fate ofSubducted Sediments[J].An Electronic of the Earth Sciences,1999,1(13):1525-2027
    126. Martin H. Adakitic magma:modern analogues of Archean granitoids [J]. Lithos,1999(46):411-429
    127. Meschede M. A method of discriminating between different types of mid-ocean ridge basalts andcontinental tholeiites with the Nb-Zr-Y diagram[J] .Chem Geol,1986(56):207-218
    128. Mess J C. Structure of silicate melts[J].Canada Mineral,1977(15):162-178
    129. Miller C,Schuster R,Klozli U,et al . Post-collisional potassic and ultrapotassic activities in SWTibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics andpetrogenesis[J] .J Petrol,1999(40):1399-1424
    130. Mysen B O. The structure of silicate melts [J]. Ann. Rev. Earth Planet. Sci,1983 (11):75-97
    131. Pearce J A,Cann J R.Tectonic setting of basic volcanic rocks determiner using trace elementanalysis[J]. Earth Planet Sci Lett,1973(19):290-300
    132. Pearce J A,梅厚均. 拉萨至格尔木的火山岩[M].青藏高原地质演化,科学出版社,1990,186-189
    133. Pearce J A. Trace element characteristics of lavas from destructive plate boundaries, inAndesites[M]. In:Thorps R S ed. Chichester. Wiley,1982,525-548
    134. Percival J A. High-grade metamorphism in the Chapleau-Foleyet area[J].Ontario. Am Mineral,1983(68):667-686
    135. Pertermann M,Hirschmann M M. Partial melting experiments on a MORB-like pyroxenitebetween 2 and 3 GPa:constraints on the presence of pyroxenites in basalt source regions fromsolidus location and melting rate[J].J. Geophys. Res. ,2003(108):21-25
    136. Petford N,Atherton M. Na-rich partial melts from newly underplated basaltic crust: the CordilleraBlanca Batholith,Peru[J].Journal of Petrology,1996(37):491-521
    137. Poli S,Schmidt M W . H2O transport and release in subduction zones:Experimental constraints on basaltic and andesitic systems[J]. Journal of Geophysical Research,1995(11):22299-22314
    138. Puziewicz J,Johannes W. Experimental study of a biotite-bearing granitic system under water-saturated and water-under saturated conditions[J]. Contrib Mineral Petrol,1990(104):397-406
    139. Rapp R P,Shimizu N,Norman M D,et al.Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 Gpa[J]. Chemical Geology,1999(160):335-356
    140. Rapp R P,Watson E B,Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites[J]. Precambrian Res.,1991(51): 1-25
    141. Rapp R P,Watson E B. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling[J]. J. Petrol. 1995(36):891-931
    142. Rittmann A. Note to contribution by V. Gottini on the Serial character of the volcanic rocks of Pantelleria[J] . Bull,1973(33):979-981
    143. Roedder E. Low temperature liquid immiscibility in the system K20-FeO-Al2O3-SiO2 :Amer[J]. Mineral.,1977(36):282 -286
    144. Rutter M J,Wyllie P J. Melting of vapour-absent tonalite at 10kbar to simulate dehydration-melting in the deep crust[J]. Nature,1988(331):159-160
    145. Sawyer E W. Melt segregation in the continental crust:Distribution and movement of melt in anatectic rocks[J]. J Metam Geol,2001(19):291-309
    146. Schmidt M W,Vielzeuf D,Auzanneau E. Melting and dissolution of subducting crust at high pressures:the key role of white mica[J]. Earth and Planetary Science Letters ,2004(228):65-84
    147. Skjerlie K P and Douce A P. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 Gpa;Implication for melting in thickened continental crust and for subduction-zone processes[J]. J. Petrol,2002,43(2):291-314
    148. Smithies R H. The Archean tonalite-trondhjemite-granodiorite(TTG)series is not an analogue of Cenozoic adakitc[J]. Earth and Planetary Science Letters.,2000(182):115-125
    149. Stern C R and Kilian R. Role of the subducted slab,mantle wedge and continental crust in the generation ofadakites from the Andean Austral Volcanic Zone [J]. Contrib. Mineral. Petrol.,1996(123):263-281
    150. Sun S S,Mc Donough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes . In:Saundes A.D,Norry M. J. (eds.). Magmatism in the ocean Basin,Gological Society Special Publication,1989,(42):313-345
    151. Tatsumi Y. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction:Generation of high-Mg andesites in the Setouchi volcanic belt,southwestJapan[J].Geology,2001(29):323-326
    152. Tetsu Kogiso,Marc M, Hirschmann. Experimental study of clinopyroxenite partial melting andthe origin of ultra-calcic melt inclusions[J].Contrib Mineral Petrol,2001(142):347-360
    153. Tetsu Kogiso,Marc M,Hirschmann,et al.. High-pressure partial melting of garnet pyroxenite:possible mantal lithologies in the source of ocean island basalts[J]. Earth and Planetary ScienceLetters,2003(216)603-617
    154. Thy P L and Lmsland P. Melting relations and the evolution of the Jan Magma system [J]. Jour.Petrol.,1991(32):303-332
    155. Tsuch iyama A,Takahashi E. Melting kinetics of a plagioclase feldspar [J].Contrib. Mineral.Petrol.,1983,84(4):345-354
    156. Turner S P,Hawksworth J, Rogers N, et al. Timing of the Tibetan uplift constrained by analysisof volcanic rocks [J]. Nature,1993(364):50-54
    157. Turner S P,Platt J P,George R M,et al. Magmatism Associated with Orogenic Collapse of theBetic–Alboran Domain [J]. SE Spain. Journal of Petrology,1999,40(6):1011-1036
    158. Turner S, Arnaud N, Liu J, et al. Post collision shoshonitic volcanism on the Tibetan plateau:implications for convective thinning of the lithosphere and the source of ocean island basalts [J].Journal of Petrology, 1996(37):45-71
    159. Varra G. Systematic of internal zircon morphology in major Variscan granitoid types [J].Contrib.Mineral Petrol.,1994(117):331-344
    160. Vavra G. A guide to quantitative morphology of accessory zircon [J]. Chem. Geol., 1993(110):15-28
    161. Vavra G. On the kinematics of zircon growth and its petrogentic significance: acathodoluminescence study[J].Contrib. Mineral Petrol.,1990(106):90-99
    162. Wang J H,Yin A,HarrisonT M,et al. A tectonic model for Cenozoic igneous activities in theeastern Indo-Asian collision zone [J]. Earth Planet. Sci. Lett.,2001(188):123-133
    163. Wilson M,Downes H. Teriary-Quaternary extension-relatde alkali magmatism in western andcentral Europe [J] .J. Petrol.,1991(32):811-849
    164. Winther K T,Newton R C .Experimental melting of hydrous low-K tholeiite: evidence on theorigin of Archean cratons [J]. Bull Geol Soc Den,1991(39): 213-228
    165. Wolf M B,Wyllie P J. Dehydration-melting of solid amphibolite at 10 kbar: Texturaldevelopment,liquid interconnectivity and application to segregation of magmas [J]. MineralPetrol,1991(44):151-179
    166. Wolf M B,Wyllie P J.Dehydration-melting of amphibolite at 10 kbar:the efects of temperature and time [J]. Contrib Mineral Petrol,1994(115):369-383
    167. Wood D A,Joron J L,Treuil M. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings [J]. Earth Planet. Sci. Lett.,1979(45):326-336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700