用户名: 密码: 验证码:
Al-X(Si,Zr,Ca)-P合金中磷化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用高倍视频显微镜(HSVM)、电子探针显微分析仪(EPMA)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、透射电子显微镜(TEM)及场发射扫描电子显微镜(FESEM)等测试手段对Al-Si-P、Al-Zr-P、Al-Si-Ca-P合金中磷化物进行了研究。分析了Al-Si-P熔体中AlP团簇结构,并提出了AlP孪晶凹角生长机制;发明了一种高效稳定型Al-Zr-P中间合金,揭示了ZrP与AlP之间的演变行为;明确了Al-Si-Ca-P合金中Ca对AlP的抑制作用机制;研究了Al-Si-P、Al-Zr-P中间合金对过共晶Al-Si合金的细化行为。
     本文的主要研究工作如下:
     (1) Al-Si-P熔体中的AlP团簇结构及其生长机制研究
     采用第一性原理分子动力学模拟对Al80Si15P5熔体中AlP团簇结构进行了研究,进一步解释了AlP在Al-Si熔体中的演变行为。研究发现,P原子周围存在强烈的化学短程序,在1100℃时熔体中存在以P原子为核心的Al6P结构单元,将熔体温度升至2600℃时该结构转变为(6Al+Si)P。
     试验研究发现,Al-Si-P系合金由三种物相组成,即α-Al,Si及AlP。热力学分析表明,AlP晶体{111}晶面的生长方式为小平面生长,而{100}、{110}晶面则属于非小平面生长。对Al-Si-P合金的断口进行分析,观察到AlP具有孪晶棱边和凹槽。在此基础上提出了AlP孪晶凹角生长机制,从而解释了AlP在Al-Si熔体中的生长过程,即AlP从元素浓度较高的孪晶凹槽处开始生长,随着晶体继续生长,一些高指数晶面消失,最终AlP晶体被密排{111}面包围。
     (2) Al-Zr-P合金中ZrP演变及其生长机制研究
     通过第一性原理分子动力学模拟发现,在Al90Zr5P5合金体系中,Zr-P原子之间的相互作用力要远远大于其它各原子间的作用力,即Zr原子倾向于在第一近邻处与更多的P原子相键合。在800℃温度下,Al90Zr5P5合金熔体中存在(6Al+Zr)P结构单元。而在1600℃温度下,Al90Zr5P5合金熔体中存在(7Al+Zr)P结构单元。试验研究发现,在一定的熔炼条件下向Al-P合金熔体中引入Zr,可使其中的AlP转变为ZrP,从而可制备出不含AlP的Al-Zr-P合金,由α-Al、ZrAl3和ZrP相组成。进一步研究表明,向Al-Zr-P合金中添加Si时,ZrP又演变为AlP。
     在该合金体系中,ZrP为复式面心立方结构,经过萃取处理后发现该物相呈现立方体结构。另外,在ZrP晶体生长过程中,各晶面之间生长速率的差异将会导致形成不同的形貌。同时,由于熔体扩散的影响,Zr、P原子更易于在已析出ZrP颗粒的边角处富集,从而促进了该晶体(111)方向的突出生长,而{100}晶面面心部分则易于形成Al富集。基于此,ZrP相呈现出立方体形貌,同时其{100}晶面呈漏斗状,而这种结构也为ZrAl3相的形核、生长提供了现成的台阶。
     (3) Al-Si-Ca-P合金中Ca对AlP相的抑制作用研究
     元素Ca作为Al-Si合金中常见杂质元素,严重影响了磷对初晶Si的细化效果。通过分析发现,在Al-4Ca-2P合金体系中,元素Ca以Al4Ca和Ca3P2相的形式存在。其中,Ca3P2相呈现条絮状且表面比较粗糙,存在多个晶面凸起。而在Al-xSi-2Ca-1P合金体系中,即Si含量依次为6.0%、12.0%、18.0%时,元素Ca主要以Al2Si2Ca和Ca3P2相的形式存在。通过Al-12Si-0.4Ca-0.2P合金断面组织分析发现,这两种富钙相均呈现粗大板片状。
     对含Ca量约为400ppm的Al-12Si合金中添加200ppmP进行处理,合金中并未呈现磷变质效果。其原因在于,Ca与P之间生成了稳定的Ca3P2化合物,从而使得熔体中没有可作为初晶Si异质核心的AlP相。多余的元素Ca促使合金表现出Na变质效果的同时,还可与Al、Si反应生成粗大板片状Al2Si2Ca相。
     (4) Al-Si-P和Al-Zr-P中间合金在过共晶Al-Si合金中的应用
     基于对Al-Si-P合金中AlP团簇结构及其溶解与析出行为的分析,在细化过程中AlP在Al-Si熔体中的行为如下:大尺寸颗粒→溶解→Al6P结构单元形成的团簇→AlP微晶。对于不同的含磷中间合金而言,其细化机制均为AlP异质形核初晶Si,同时AlP在熔体中均需经历上述过程,方可呈现出良好的细化效果。
     试验发现,Al-17Si-2.5P中间合金的微观组织对其细化行为有一定的影响。比如,经快速凝固处理的Al-17Si-2.5P中间合金内AlP相尺寸细小、分布均匀,这促进了细化过程中AlP的溶解,从而进一步地增加了P吸收率,最终提高了细化效率。
     采用正交试验优化了Al-17Si-2.5P中间合金对A390合金的细化工艺,即磷添加量375ppm,熔体处理温度800℃,保温时间30min。在优化方案下,初晶Si的平均尺寸可以由116.3μm细化至14.0gm,其形貌呈现近球状,分布也变得更加均匀。同时,布氏硬度、室温抗拉强度分别提高了14.1%、27.8%。
     Al-6Zr-2P中间合金对A390合金具有良好的细化效果。其细化机理为,在异类原子对Si-Zr之间较强作用力及化学动力学因素双重作用下ZrP转变为AlP相,从而发挥其对初晶Si相的细化作用。该中间合金中ZrP在Al-Si熔体中的演变过程可用下式表示:ZrP颗粒→溶解→局域结构重组→Al6P结构单元形成的团簇→AlP微晶。
The phosphides in Al-Si-P, Al-Zr-P and Al-Si-Ca-P alloys were systematically studied using high scope video microscope (HSVM), electron probe micro-analyzer (EPMA), X-ray diffraction (XRD), differential scanning calorimeter (DSC), transmission electron microscope (TEM) and field-emission scanning electron microscope (FESEM), etc. The AlP cluster structures in Al-Si-P melt were analyzed. Furthermore, it was discovered that AlP grows with the twin plane reentrant edge (TPRE). A novel Al-Zr-P master alloy with ZrP particles was successfully synthesized and the phase transformation between ZrP and AlP was discussed. Meanwhile, the inhibitory effect of Ca on the phosphorus modification treatment was studied in Al-Si-Ca-P alloy. In addition, the extensive applications of Al-Si-P and Al-Zr-P alloy in the refinement of hypereutectic Al-Si alloys were also researched.
     The major research efforts of the present study are as follows:
     (1) The cluster structure and growth mechanism of AlP in Al-Si-P melt
     The structure of liquid Al80Si15P5 alloy was investigated by ab initio molecular dynamics simulation. It was found that the overwhelming chemical short-range order around P atoms is the characteristic structure of liquid Al18Si15P5 alloy. The P-centered Al6P structural units exist at 1100℃, however, the structure units are slightly distorted into (6Al+Si)P at 2600℃.
     The typical microstructure of Al-Si-P master alloy is composed of a-Al, Si phases and AlP particles. Based on the thermodynamic data derived, an AlP crystal is typically faceted on the close-packed {111} faces and non-faceted on {100} and {110} faces. In the fracture plane of Al-Si-P alloy, AlP hexagonal platelets with twin reentrant and ridges are observed. Meanwhile, the twin-related growth model is applied to explain the growth process of AlP crystals. Nucleation events are allowed to take place at the reentrant corners. As the AlP crystals continue to grow, some high-index planes would disappear, AlP crystals would be surrounded by close-packed {111} planes.
     (2) The phase transformation and growth mechanism of phosphide in Al-Zr-P alloy
     The structure of liquid Al90Zr5P5 alloy was investigated by ab initio molecular dynamics simulation. It was found that the affinity between Zr and P atoms is much stronger than that between other atoms. That is to say the Zr atoms will be found most frequently at the first shell rather than other coordination shell of P atoms. The (6Al+Zr)P structural units exist at 800℃. However, the structural units are distorted into (7Al+Zr)P at 1600℃. With the addition of Zr into Al-P alloy under certain conditions, the transformation from AlP to ZrP can occur and a novel Al-Zr-P alloy without AlP is successfully synthesized, which is composed of a-Al, ZrAl3 and ZrP. With further studies, it is found that Si in the melt can promote the transformation from ZrP to AlP.
     Under the present conditions in fabrication process, the extracted ZrP particles with a NaCl structure present the cubic three-dimensional morphologies clearly. In the crystal growth process, the difference of the growth rate between each plane will lead to crystals precipitated with different morphologies. Furthermore, due to the atoms diffusion in the melt, Zr and P atoms are enriched more easily on the corners or edges of ZrP particles, and the growth rate along <111> crystal orientation is promoted. Meanwhile, Al atoms are enriched at the center of {100} crystal planes, which leads to the {100} planes as hopper structure, and consequently this structure could supply necessary growth steps for ZrAl3 phase.
     (3) The inhibition effect of Ca on AlP modification in Al-Si-Ca-P alloy
     As a common impurity, Ca has serious influence on the phosphorus modification of Al-Si alloys. It is found that Ca takes the form of Al4Ca and Ca3P2 phases. Furthermore, Ca3P2 compounds exhibit flocculent morphology with rough surface. In addition, in Al-xSi-2Ca-1P alloys in which the concentrations of Si are 6.0%,12.0% and 18% respectively, all of calcium compounds take the form of Al2Si2Ca and Ca3P2 phases. It is found that these two compounds exhibit thick plate-like shape in the fracture plane of Al-12Si-0.4Ca-0.2P alloy.
     The phosphorus modification effect on Al-12Si alloy can not be obtained with the addition of 400 ppm Ca and 200 ppm P. Due to the formation of Ca3P2 compounds, there is no AlP in the melt which can act as the heterogeneous nucleation sites for primary Si. Meanwhile, the residual Ca can make the microstructure of Al-12Si alloy as that modified by Na. Furthermore, it can react with Al and Si atoms to form the coarse plate-like Al2Si2Ca phase.
     (4) Application of Al-Si-P and Al-Zr-P master alloys on the refinement of primary Si in hypereutectic Al-Si alloys
     Based on the cluster structure, dissolution and precipitation characteristic of AlP in the melt, the behavior of AlP in Al-Si melt can be deduced as follows:larger crystal→dissolution→clustering of A6P unit→AlP microcrystal. According to different phosphorus modifier, the refinement mechanism is the same, which is the heterogeneous nucleation mechanism of AlP for the primary Si. Meanwhile, the transformation of AlP listed above is necessary for the modifier to display excellent refinement performance.
     Firstly, it was found that the microstructure of Al-17Si-2.5P master alloys has a certain influence on the refinement performance. For example, the fine nodular-like AlP particles with uniform distribution can be obtained with rapid solidification processing. After addition of the master alloy into Al-Si melt, these AlP particles are easier to dissolve into the melt due to the higher energy and dislocation defect, which improves the P recovery and nucleation rate and thus leads to an improved refining performance.
     Secondly, an orthogonal test was designed to investigate the integrated effects of refining factors and subsequently to optimize the processing parameters. It is found that under the optimized conditions, i.e., phosphorus addition of 375 ppm, melting temperature of 800℃, and holding time of 30 min, the average sizes of primary Si can be most remarkably decreased from 116.3μm to 14.0μm with sphere-like morphology. Meanwhile, the Brinell hardness and tensile strength can be significantly increased by 14.1% and 27.8%, respectively.
     Al-6Zr-2P master alloy has excellent refinement effect on the primary Si in hypereutectic A390 alloys. The refinement mechanism is that the stronger affinity between Zr and Si atoms and the chemical kinetic factors promote the transformation from ZrP to AlP and subsequently AlP particles act as the heterogeneous nucleation sites of primary Si. The transformation behavior of ZrP in the Al-Si melt can be expressed as follows:ZrP crystal→dissolution→local structural reorganization→clustering of A6P unit→AlP microcrystal.
引文
[1]刘静安,谢水生.铝合金材料的应用与技术开发,北京:冶金工业出版社,2004
    [2]M.M. Haque. M.A. Maleque. Effect of process variables on structure and properties of aluminium-silicon piston alloy, Journal of Materials Processing Technology,1998,77: 122-128
    [3]B.Q. Xiong,Y.A. Zhang, Q. Wei, L.K. Shi, C.A. Xie, C.J. Shang, X.L. He. The study of primary Si phase in spray forming hypereutectic Al-Si alloy. Journal of Materials Processing Technology,2003,137:183-186
    [4]鲁鑫,曾一文,欧阳志英.魏霓,毛协民.Bi对A390过共晶高硅铝合金摩擦磨损特性的影响,摩擦学学报,2007,27(3):284-288
    [5]M. Elmadagli, A.T. Alpas. Progression of wear in the mild wear regime of an Al-18.5%Si (A390) alloy, Wear,2006,261:367-381
    [6]J. Li,M. Elmadagli, V.Y. Gertsman, J. Lo, A.T. Alpas. FIB and TEM characterization of subsurfaces of an Al-Si alloy (A390) subjected to sliding wear. Materials Science and Engineering A,2006,421:317-327
    [7]R. Sterner, C. Rainer, US Patent 1940922,26 Dec.1933
    [8]A. Addamiano. On the preparation of the phosphides of aluminum, gallium and indium. Journal of the American Chemical Society,1960,82:1537-1540
    [9]C.R. Ho, B. Cantor. Heterogeneous nucleation of solidification of Si in Al-Si and Al-Si-P alloys. Acta Metallurgica et Materialia,1995,43:3231-3246
    [10]B. Cantor. Impurity effects on heterogeneous nucleation, Materials Science and Engineering A,1997,226-228:151-156
    [11]M.J. Cardwell. Vapour phase epitaxy of high purity Ⅲ-Ⅴ compounds, Journal of Crystal Growth,1984,70:97-102
    [12]卢猛.复合变质对过共晶铝硅合金组织及性能的影响.吉林大学硕士学位论文,2004
    [13]H.H. Zhang, H.L. Duan, G.J. Shao, L.P. Xu. Microstructure and mechanical properties of hypereutectic Al-Si alloy modified with Cu-P, Rare Metals,2008,27:59-63
    [14]F.C. Robles Hernandez, J.H. Sokolowski. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys, Journal of Alloys and Compounds,2006,426:205-212
    [15]M. Faraji, I. Todd, H. Jones. Effect of solidification cooling rate and phosphorus inoculation on number per unit volume of primary silicon particles in hypereutectic aluminium-silicon alloys, Journal of Materials Science,2005,40:6363-6365
    [16]W.J. Kyffin, W.M. Rainforth, H. Jones. Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy, Journal of Materials Science,2001,36:2667-2672
    [17]刘相法,乔进国,刘玉先,李士同,边秀房.Al-P中间合金对共晶和过共晶Al-Si合金的变质机制,金属学报,2004,40(5):471-476
    [18]武玉英.几种含硅合金中富硅相形核与生长机制的研究,山东大学博士学位论文,2008
    [19]J.G. Qiao, X.F. Liu, X.J. Liu, X.F. Bian. Relationship between microstructures and contents of Ca/P in near eutectic Al-Si piston alloys, Materials Letters,2005,59:1790-1794
    [20]李言祥.材料加工原理,北京:清华大学出版社,2005
    [21]安阁英.铸件形成理论,北京:机械工业出版社,1990
    [22]R. Trivedi, J. Lipton, W. Kurz. Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts, Acta Metallurgica,1987,35:965-970
    [23]J. Lipton, W. Kurz, R. Trivedi. Rapid dendrite growth in undercooled alloys, Acta Metallurgica,1987,35:957-964
    [24]W.J. Boettinger, S.R. Coriell, A.L. Greer, A. Karma, W. Kurz, M. Rappaz, R. Trivedi. Solidification microstructures:recent developments, future directions, Acta Materialia,2000, 48:43-70
    [25]张士林,任颂赞.简明铝合金手册,上海:科学技术文献出版社,2001
    [26]刘智恩.材料科学基础,西安:西北工业大学出版社,2007
    [27]衡雪梅,刘俊,黄振翅.中间合金细化剂在铝合金中的应用及细化机理,理化检验-物理分册,2004,40(6):300-303
    [28]郭景杰,傅恒志.合金熔体及其处理,北京:机械工业出版社,2006
    [29]周尧和,胡壮麒,介万奇.凝固技术,北京:机械工业出版社,1998
    [30]潘义川.镁合金中α-Mg、Mg2Si相的异质形核机制与相关中间合金研究,山东大学博士学位论文,2006
    [31]武玉英.几种含硅合金中富硅相形核与生长机制的研究,山东大学博十学位论文,2008
    [32]齐乐华.工程材料及成形工艺基础,西安:西北工业大学出版社.2004
    [33]M. Volmer, A. Weber. Nucleus formation in supersatured systems, Zeitschrift fur Physikalische Chemie,1926,119:277-301
    [34]R. Becker, W. Doring. The kinetic treatment of nuclear formation in supersaturated vapors, Annals of Physics,1935,24:719-752
    [35]R. Becker. Nodule formation in the segregation of metallic solid solutions, Annals of Physics, 1938,32:128-168
    [36]D. Turnbull. J.C. Fisher. Rate of nucleation in condensed systems, Journal of Chemical Physics,1949,17:71-73
    [37]C.V. Thompson, F. Spaepen. Homogeneous crystal nucleation in binary metallic melts, Acta Metallurgica,1983,31:2021-2027
    [38]X.Z. Zhang. A general model for the calculation of crystal nucleation kinetics in binary melts, Acta Materialia,1998,46:1135-1141
    [39]M.Rappaz, Ch.A. Gandin. Probabilistic modeling of microstructure formation in solidification processes, Acta Metallurgica et Materialia,1993,41:345-360
    [40]赵晶,谢辅洲,孙振国.材料科学基础教程,哈尔滨:哈尔滨工业大学出版社
    [41]D. Turnbull, B. Vonnegut. Nucleation catalysis, Industrial & Engineering Chemistry,1952, 44:1292-1298
    [42]A. Cibula. The mechanism of grain refinement of sand casting in aluminum alloys, Journal Institute of Metals,1949/1950,76:321-360
    [43]胡赓祥,蔡殉.戎咏华.材料科学基础,上海:上海交通大学出版社,2000
    [44]陈增,张密林.吕艳卓.韩伟,唐定骥.锆在镁及镁合金中的作用,铸造技术,2007,28(6):820-822,846
    [45]《铸造有色金属及其熔炼》联合编写组.铸造有色合金及其熔炼,北京:国防工业出版社,1980
    [46]张俊红,任智森,赵群.张英.变质工艺影响过共晶Al-Si合金初晶硅细化的研究,轻合金,2006.(10):62-65
    [47]赵爱民,毛卫民,甄子胜,姜春梅,钟雪友.冷却速度对过共晶铝硅合金凝固组织和耐磨性能的影响,中国有色金属学报,2001,11(5):827-832
    [48]张蓉,黄太文,刘林.过共晶Al-Si合金熔体中初生硅生长特性,中国有色金属学报, 2004,14(2):262-266
    [49]Q.C. Jiang, C.L. Xu, M. Lu, H.Y. Wang. Effect of new Al-P-Ti-TiC-Y modifier on primary silicon in hypereutectic Al-Si alloys, Materials Letters,2005,59:624-628
    [50]D.Y. Maeng, J.H. Lee, C.W. Won, S.S. Cho, B.S. Chun. The effects of processing parameters on the microstructure and mechanical properties of modified B390 alloy in direct squeeze casting, Journal of Materials Processing Technology,2000,105:196-203
    [51]L.N. Yu, X.F. Liu, H.M. Ding, X.F. Bian. A new nucleation mechanism of primary Si by peritectic-like coupling of AlP and TiB2 in near eutectic Al-Si alloy, Journal of Alloys and Compounds,2007,432:156-162
    [52]S.C. Yoon, S.J. Hong, S.I. Hong, H.S. Kim. Mechanical properties of equal channel angular pressed powder extrudates of a rapidly solidified hypereutectic Al-20 wt% Si alloy, Materials Science and Engineering A,2007,449-451:966-970
    [53]N. Apaydin, R.W. Smith. Microstructural characterization of rapid solidified Al-Si alloys, Materials Science and Engineering,1988,98:149-152
    [54]O. Uzun, T. Karaaslan, M. Gogebakan, M. Keskin. Handness and microstructural characteristics of rapidly solidified Al-8-16 wt.% Si alloys, Journal of Alloys and Compounds,2004,376:149-157
    [55]K. Matsuura, M. Kudoh, H. Kinoshita, H. Takahashi. Precipitation of Si particles in a super-rapidly solidified Al-Si hypereutectic alloy, Materials Chemistry and Physics,2003,81: 393-395
    [56]H.K. Feng, S.R. Yu, Y.L. Li, L.Y. Gong. Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy, Journal of Materials Processing Technology,2008,208:330-335
    [57]D.H. Lu, Y.H. Jiang, G.S. Guan, R.F. Zhou, Z.H. Li, R. Zhou. Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring, Journal of Materials Processing Technology,2007,189:13-18
    [58]N. Abu-Dheir, M. Khraisheh, K. Saito, A. Male. Silicon morphology modification in the eutectic Al-Si alloy using mechanical mold vibration, Materials Science and Engineering A, 2005,393:109-117
    [59]杨伏良,甘卫平,陈招科.高硅铝合金几种常见制备方法及其细化机理,材料导报,2005,19(5):42-45
    [60]王淑俊,刘相法,武玉英.富磷中间合金对过共晶Al-24%Si合金的高效变质处理,铸造,2006,55(12):1244-1246
    [61]王泽华.毛协民.张金龙,欧阳志英Sr-PM复合变质过共晶铝硅合金,特种铸造及有色合金,2005,25(4):241-243
    [62]赵永治.高泽生.过共晶Al-Si合金连续铸造中初晶硅细化的新方法,轻合金加工技术,1995,23(10):5-8
    [63]S. Wolfgang. A new method for the refinement of primary Si of hypereutectic Al-Si alloys in direct chill and ingot casting. Light Metals,1993:815-820
    [64]王德满,郑子樵,石春生,孙兆霞.熔铸法生产的磷变质剂对过共晶铝-硅合金组织和性能的影响.轻合金加工技术,1995,23(9):9-12
    [65]王德满,赵海英,孙兆霞,鲍丽云.一种新型过共晶Al-Si合金变质剂,轻金属.1997,(7):50-53
    [66]W.J. Kyffin, W.M. Rainforth, H. Jones. Effect of treatment variables on size refinement by phosphide inoculants of primary silicon in hypereutectic Al-Si alloys, Materials Science and Technology,2001,17:901-905
    [67]W.J. Kyffin, W.M. Rainforth, H. Jones. The formation of aluminum phosphide in aluminum melt treated with an Al-Fe-P inoculant addition, Zeitschrift fur Metallkunde,2001,92: 396-398
    [68]S.Z. Beer. The solution of aluminum phosphide in aluminum, Journal of the Electrochemical Society,116:263-265
    [69]H. Lescuyer, M. Allibert, G. Laslaz. Solubility and precipitation of AlP in Al-Si melts studied with a temperature controlled filtration technique, Journal of Alloys and Compounds,1998, 279:237-244
    [70]T. Yoshikawa, K. Morita. Removal of phosphorus by the solidification refining with Si-Al melts, Science and Technology of Advanced Materials,2003,4:531-537
    [71]A.J. McAlister. The Al-P (Aluminum-Phosphorus) System,Bulletin of Alloy Phase Diagrams,1985,6:222-224
    [72]Y.P. Wu, S.J. Wang, H. Li, X.F. Liu. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy, Journal of Alloys and Compounds,2009,477:139-144
    [73]Y.P. Wu, X.F. Liu. The novel eutectic microstructures of Si-Mn-P ternary alloy. Journal of Alloys and Compounds,2010,489:389-393
    [74]蔡惠民,陈金水,孙永芳,张学光.混合稀土在Al-Si合金中的应用,特种铸造及有色合金,2001,13(6):9-10
    [75]张忠华,张景祥,边秀房,刘相法,张宝荣,杨守仁,刘国栋.新型高效PM磷变质剂,特种铸造及有色合金,2000,12(2):13-15
    [76]许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制,吉林大学博士学位论文,2007
    [77]杨帆.复合变质剂对Al-13.5Si-3.0Cu-1.5Ni合金组织及性能影响的研究,河北工业大学硕士学位论文,2009
    [78]H. Kattoh, A. Hashimoto, S. Kitaoka, M. Sayashi, M. Shioda. Critical temperature for grain refining of primary Si in hypereutectic Al-Si alloy with phosphorus addition, Journal of Japan Institute of Light Metals,2002,52:18-23
    [79]孙淑红.复合变质处理制备(大)过共晶铝硅合金,昆明理工大学硕士学位论文,2004
    [80]贾志宏,傅明喜.金属材料液态成型工艺,北京:化学工业出版社,2008
    [81]罗启全.铝合金熔炼与铸造,广东:广东科技出版社,2002
    [82]杨树人,王宗昌,王兢.半导体材料,北京:科学出版社,2004
    [83]余家新.Ⅲ-Ⅴ族化合物半导体输送性质的蒙特卡罗模拟,北京交通大学硕士学位论文,2007
    [84]J.K. Sharma, D.C. Khan. Electronic dielectric constant of Ⅲ-Ⅴ semiconductors, Solid State Communications,1979,30:111-113
    [85]H. Meradji, S. Drablia, S. Ghemid, H. Belkhir, B. Bouhafs, A. Tadjer. First-principles elastic constants and electronic structure of BP, BAs and BSb, Physical Status Solidi B,2004,241: 1-5
    [86]A. Zaoui, S. Kacimi, A. Yakoubi, B. Abbar, B. Bouhafs. Optical properties of BP, BAs, and BSb compounds under hydrostatic pressure, Physica B,2005,367:195-204
    [87]I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys, Journal of Applied Physics,2001,89:5815-5875
    [88]G. De Maria, K.A. Gingerich, L. Malaspina, V. Piacente. Dissociation energy of the gaseous AlP molecule, Journal of Chemical Physics,1966,44:2531-2532
    [89]Y.F. Tsay, A.J. Corey, S.S. Mitra. Band structure and optical spectrum of AlP, Physical Review B,1975,12:1354-1357
    [90]J. Wanagel, V. Arnold, A.L. Ruoff. Pressure transition of AlP to a conductive phase, Journal of Applied Physics,1976,47:2821-2823
    [91]R.G. Greene, H. Luo, A.L. Ruoff. High pressure study of AlP:Transformation to a metallic NiAs phase, Journal of Applied Physics,1994,76:7296-7299
    [92]M.J. Herrera-Cabrera, P. Rodriguez-Hernandez, A. Munoz. Theoretical study of the elastic properties of Ⅲ-P compounds, Physical Status Solidi B,2001,223:411-415
    [93]S.T. Oyama, T. Gott, H.Y. Zhao, Y.K. Lee. Transition metal phosphide hydroprocessing catalysts:A review, Catalysis Today,2009,143:94-107
    [94]S. Rundqvist, E. Larsson. The crystal structure of Ni12P5, Acta Chemica Scandinavica,1959, 13:551-560
    [95]K. Lu, J.T. Wang, W.D. Wei. Thermal expansion and specific heat capacity of nanocrystalline Ni-P alloy, Scripta Metallurgica et Materialia,1991,25:619-623
    [96]D.L. Wang, Q.P. Kong, J.P. Shui. Creep of nanocrystalline Ni-P alloy, Scripta Metallurgica et Materialia,1994,31:47-51
    [97]R.S. Razavi, M. Salehi, M. Monirvaghefi, G.R. Gordani. Laser surface treatment of electroless Ni-P coatings on A1356 alloy, Journal of Materials Processing Technology,2008, 195:154-159
    [98]Q. Zhao, Y. Liu. Comparisons of corrosion rates of Ni-P based composite coatings in HC1 and NaCl solutions, Corrosion Science,2005,47:2807-2815
    [99]G. Straffelini, D. Colombo, A. Molinari. Surface durability of electroless Ni-P composite deposits, Wear,1999,236:179-188
    [100]S.T. Oysma. Novel catalysts for advanced hydroprocessing:transition metal phosphides. Journal of Catalysis,2003,216:343-352
    [101]J. Gopalakrishnan, S. Pandey, K.K. Rangan. Convenient route for the synthesis of transition-metal pnictides by direct reduction of phosphate, arsenate. and antimonite precursors. Chemistry of Materials,1997,9:2113-2116
    [102]W. Li, B. Dhandapani, S.T. Oyama. Molybdenum phosphide:A novel catalyst for hydrodenitrogenation, Chemistry Letters,1998,27:207-208
    [103]程瑞华.过渡金属磷化物的制备、表征和肼分解性能的研究,中国科学院研究生院博 士学位论文,2006
    [104]Y.Y. Shu, S.T. Oyama. Synthesis, characterization, and hydrotreating activity of carbon-supported transition metal phosphides, Carbon,2005,43:1517-1532
    [105]P. Liu, J.A. Rodriguez. Catalytic properties of molybdenum carbide, nitride and phosphide: a theoretical study, Catalysis Letters,2003,91:247-252
    [106]H. Wang, Y.Y. Shu, M.Y. Zheng, T. Zhang. Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over SiO2 supported nickel phosphide catalysts, Catalysis Letters, 2008,124:219-225
    [107]程瑞华,张涛,李林,孙军,舒玉瑛,王晓东.一种高分散担载型过渡金属磷化物催化剂的制备方法,国家发明专利,专利号:200610134020.3
    [108]李灿,蒋宗轩,王璐.一种非担载型磷化镍催化剂的制备方法,国家发明专利,专利号:200710121981.5
    [109]李灿,孙福侠,郭军,魏昭彬,梁长海.过渡金属磷化物的制备方法,国家发明专利,专利号:200410006721.X
    [110]K.A. Gingerich. Stability and vaporization behaviour of group Ⅳ-Ⅵ transition metal monophosphides, Nature,1963,30:877-877
    [111]R.F. Jarvis, R.M. Jacubinas, R.B. Kaner. Self-Propagating metathesis routes to metastable group 4 phosphides, Inorganic Chemistry,2000,39:3243-3246
    [112]K.S. Irani, K.A. Gingerich. Structural transformation of zirconium phosphide, Journal of Physics and Chemistry of Solids,1963,24:1153-1158
    [113]T. Lundstrom, P.O. Snell. Studies of Crystal Structures and Phase Relationships in the Ti-P System, Acta Chemica Scandinavica,1967,21:1343-1352
    [114]N. Schonberg. An X-Ray Investigation of Transition Metal Phosphides, Acta Chemica Scandinavica,1954,8:226-239
    [115]R.L. Ripley. The preparation and properties of some transition phosphides, Journal of the Less Common Metals,1962,4:496-503
    [116]L.Y. Chen, M.X. Huang, Y.L. Gu, L. Shi, Z.H. Yang, Y.T. Qian. Low-temperature synthesis of nanocrystalline ZrP via co-reduction of ZrCl4 and PCl3, Materials Letters,2004,58: 3337-3339
    [1]张忠华.快速凝固铝基中间合金的研究.山东大学博土论文,2003
    [2]于伯龄,姜胶东.实用热分析,北京:纺织工业出版社.1990
    [3]王斌,陈集,饶小桐.现代分析测试方法,北京:石油工业出版社,2008
    [4]劳动和社会保障部教材办公室.金属材料与热处理,北京:中国劳动社会保障出版社.2001
    [5]董如何,肖必华,方永水.正交试验设计的理论分析方法及应用,安徽建筑工业学院学报(自然科学版),2004,12(6):103-106
    [6]徐仲安,王天保,李常英.暴丽艳,马青梅,苗玉宁.正交试验设计法简介,科技情报开发与经济,2002,12(5):148-150
    [7]沈德和,李云壁.正交试验设计及其应用,第一讲:正交试验的基本概念,机械制造, 1984,(9):44-46
    [8]沈德和,李云壁.正交试验设计及其应用,第二讲:正交表的使用,机械制造,1984,(10):43-46
    [9]C.Z. Liu, L.Q. Ren, J. Tong, S.M. Green, R.D. Arnell. Effects of operating parameters on the lubricated wear behavior of a PA-6/UHMWPE blend:a statistical analysis, Wear,2002,253: 878-884
    [10]H.H. Yu, R.G. Xing, S. Liu, C.P. Li, Z.Y. Guo, P.C. Li. Studies on the hemolytic activity of tentacle extracts of jellyfish Rhopilema esculentum Kishinouye:Application of orthogonal test, International Journal of Biological Macromolecules,2007,40:276-280
    [11]J.Y. Peng, F.Q. Dong, Q.W. Xu, Y.W. Xu, Y. Qi, X. Han, L.N. Xu, G.R. Fan, K.X. Liu. Orthogonal test design for optimization of supercritical fluid extraction of daphnoretin, 7-methoxy-daphnoretin and 1,5-diphenyl-l-pentanone from Stellera chamaejasme L. and subsequent isolation by high-speed counter-current chromatography, Journal of Chromatography A,2006,1135:151-157
    [12]Y.P. Wu, S.J. Wang, H. Li, X.F. Liu. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy, Journal of Alloys and Compounds,2009,477:139-144
    [13]秦敬玉.液体Al-Fe合金的微观不均匀结构研究,山东大学博十论文,1998
    [14]杨磊.液态及非晶态FeB基二元和三元合金局域结构的第一性原理研究,山东大学硕士论文,2009
    [15]武玉英.几种含硅合金中富硅相形核与生长机制的研究,山东大学博士论文,2008
    [16]A.B. Bhatia, D.T. Thornton. Structural aspects of the electrical resistivity of binary alloys, Physical Review B,1970,2:3004-3012
    [17]C.N.J. Wagner. Direct methods for the determination of atomic-scale structure of amorphous solids (X-ray, electron, and neutron scattering), Journal of Non-Crystalline Solids,1978,31: 1-40
    [18]戴洪尚.超高硅铝合金中硅相的细化与界面性质研究,山东大学博士论文,2009
    [1]葛郢汉.活塞的材料分析,现代机械,2006,(5):52-53
    [2]M.M. Haque, M.A. Maleque. Effect of process variables on structure and properties of aluminium-silicon piston alloy, Journal of Materials Processing Technology,1998,77: 122-128
    [3]B.Q. Xiong, Y.A. Zhang, Q. Wei, L.K. Shi, C.A. Xie, C.J. Shang, X.L. He. The study of primary Si in spray forming hypereutectic Al-Si alloy, Journal of Materials Processing Technology,2003,137:183-186
    [4]鲁鑫,曾一文,欧阳志英,魏霓,毛协民.Bi对A390过共晶高硅铝合金摩擦磨损特性的影响,摩擦学学报,2007,27(3):284-288
    [5]P. Kapranos, D.H. Kirkwood, H.V. Atkinson, J.T. Rheinlander, J.J. Bentzen, P.T. Toft, C.P. Debel, G. Laslaz, L. Maenner, S. Blais, J.M. Rodriguez-Ibabe, L. Lasa, P. Giordano, G. Chiarmetta, A. Giese. Thixoforming of an automotive part in A390 hypereutectic Al-Si alloy, Journal of Material Processing Technology,2003,135:271-277
    [6]M. Elmadagli, A.T. Alpas. Progression of wear in the mild wear regime of an Al-18.5%Si (A390) alloy, Wear,2006,261:367-381
    [7]J. Li, M. Elmadagli, V.Y. Gertsman, J. Lo, A.T. Alpas. FIB and TEM characterization of subsurfaces of an Al-Si alloy (A390) subjected to sliding wear, Materials Science and Engineering A,2006,421:317-327
    [8]G. Kresse, J. Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science,1996,6: 15-50
    [9]G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B,1999,59:1758-1775
    [10]J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation, Physical Review B,1992,46:6671-6687
    [11]S. Nose. A unified formation of the constant temperature molecular dynamics methods, Journal of Chemical Physics,1984,81:511-519
    [12]秦敬玉,边秀房,王伟民,S.I. Sliusarenko. Al和Sn液态结构的温度变化特性,物理学报,1998,47(3):438-444
    [13]安阁英.铸什形成理论.北京:机械工业出版社,1990
    [14]胡汉启.金属凝固原理,北京:机械工业出版社,2000
    [15]K.A. Jackson. Liquid Metals and solidification ASM Cleveland, Ohio,1958,174.
    [16]K.A. Jackson. Constitutional supercooling surface roughening, Journal of crystal growth, 2004,264:519-529
    [17]许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制,吉林大学博十学位论文,2007
    [18]A.J. McAlister. The Al-P (Aluminum-Phosphorus) system, Bulletin of Alloy Phase Diagrams, 1985,6:222-224
    [19]M.B. Panish, M. Ilegems. Phase equilibria in ternary Ⅲ-Ⅴ systems, Progress in Solid State Chemistry,1972,7:39-83
    [20]E. Billig. Some speculations on the growth mechanism of dendrites, Acta Metallurgica,1957, 5:54-55
    [21]A.I. Bennett, R.L. Longini. Dendritic growth of germanium crystals, Physical Review,1959, 116:53-61
    [22]D.R. Hamilton, R.G. Seidensticker. Propagation mechanism of germanium dendrites. Journal of Applied Physics,1960,31:1165-1168
    [23]K. Fujiwara, K. Maeda, N. Usami, K. Nakajima. Growth mechanism of Si-faceted dendrites, Physical Review Letters,2008,101,055503
    [24]A. Addamiano. On the preparation of the phosphides of aluminum, gallium and indium, Journal of the American Chemical Society,1960,82:1537-1540
    [25]M.S. Song, B. Huang, M.X. Zhang, J.G. Li. Formation and growth mechanism of ZrC hexagonal platelets synthesized by self-propagating reaction, Journal of Crystal Growth, 2008,310:4290-4294
    [26]S, Terentiev. Molecular-dynamics simulation of the effect of temperature of the growth environment on diamond habit, Diamond and Related Materials,1999,8:1444-1450
    [27]D.T.J. Hurle. A mechanism of twin formation during Czochralski and encapsulated vertical Bridgman growth of III-V compound semiconductors, Journal of Crystal Growth,1995,147: 239-250
    [28]H.J. Koh, T. Fukuda, M.H. Choi, I.S. Park. Twins in GaAs Crystals Grown by the Vertical Gradient Freeze Technique, Crystal Research and Technology,1995,30:397-403
    [29]A. Steinemann, U. Zimmerli. Growth peculiarities of gallium arsenide single crystals, Solid State Electron,1963,6:597-604
    [30]A. Hellawell. The growth and structure of eutectics with silicon and germanium, Progress in Materials Science,1970,15:3-78
    [31]J.B. Mullin. Progress in the melt growth of Ⅲ-Ⅴ compounds, Journal of Crystal Growth, 2004,264:578-592
    [32]R.S. Wagner. On the growth of germanium dendrites, Acta Metallurgica,1960,8:57-60
    [33]C.R. Ho, B. Cantor. Heterogeneous nucleation of solidification of Si in Al-Si and Al-Si-P alloys, Acta Metallurgica et Materialia,1995,43:3231-3246
    [34]B. Cantor. Impurity effects on heterogeneous nucleation, Materials Science and Engineering A,1997,226-228:151-156
    [35]刘相法,乔进国,刘玉先,李士同,边秀房.Al-P中间合金对共晶和过共晶Al-Si合金的变质机制,金属学报,2004,40(5):471-476
    [36]W. Bardsley, J.S. Boulton, D.T.J. Hurle. Constitutional supercooling during crystal growth from stirred metals:Ⅲ. The morphology of the germanium cellular structure, Solid State Electronics,1962,5:395-403
    [1]G. Kresse, J. Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science,1996,6: 15-50
    [2]G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B,1999,59:1758-1775
    [3]J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation, Physical Review B,1992,46:6671-6687
    [4]G. Kresse, J. Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, Journal of Physics:Condensed Matter,1994,6:8245-8257
    [5]S. Nose. A unified formation of the constant temperature molecular dynamics methods, Journal of Chemical Physics,1984,81:511-519
    [6]秦敬玉,边秀房,王伟民,S.I. Sliusarenko. Al和Sn液态结构的温度变化特性,物理学报,1998,47(3):438-444
    [7]K.S. Irani, K.A. Gingerich. Structural transformation of zirconium phosphide, Journal of Physics and Chemistry of Solids,1963,24:1153-1158
    [8]徐文武,宋晓艳,李尔东,魏君,李凌梅.纳米尺度下Sm-Co合金体系中相组成与相稳定性的研究,物理学报,2009,58(5):3280-3286
    [9]K. Nogita, S.D. McDonald, K. Tsujimoto, K. Yasuda, A.K. Dahle. Aluminium phosphide as a eutectic grain nucleus in hypoeutectic Al-Si alloys, Journal of Electron Microscopy,2004,53: 361-369
    [10]Y.H. Cho, H.C. Lee, K.H. Oh, A.K. Dahle. Effect of strontium and phosphorus on eutectic Al-Si nucleation and formation of β-A15FeSi in hypoeutectic Al-Si foundry alloys, Metallurgical and Materials Transaction A,2008,39:2435-2448
    [11]M.S. Song, B. Huang,M.X. Zhang, J.G. Li. Formation and growth mechanism of ZrC hexagonal platelets synthesized by self-propagating reaction, Journal of Crystal Growth, 2008,310:4290-4294
    [12]S. Terentiev. Molecular-dynamics simulation of the effect of temperature of the growth environment on diamond habit, Diamond and Related Materials,1999,8:1444-1450
    [13]Z.L. Wang. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. The Journal of Physical Chemistry B.2000,104:1153-1175
    [14]S.M. Lee, S.N. Cho, J. Cheon. Anisotropic shape control of colloidal inorganic nanocrystals, Advanced Materials,2003,15:441-444
    [15]S.E. Offerman, N.H. Van Dijk. J. Sietsma, S.Grigull. E.M. Lauridsen, L. Margulies, H.F. Poulsen, M. Th. Rekveldt, S. Van Der Zwaag. Grain nucleation and growth during phase transformations, Science,298:1003-1005
    [16]K.B. Hyde, A.F. Norman. P.B. Prangneli. The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al-Sc alloys, Acta Materialia,2001,49:1327-1337
    [17]R. Dekkers, B. Blanpain, P. Wollants. Crystal growth in liquid steel during secondary metallurgy, Metallurgical and Materials Transaction B,2002,33:1-11
    [1]张凤巍.过共晶Al-Si合金对Al-Si合金的变质作用,湘潭大学硕十学位论文,2009
    [2]B. Cantor. Impurity effects on heterogeneous nucleation, Materials Science and Engineering A. 1997,226-228:151-156
    [3]乔进国Al-P-Si中间合金及其变质处理技术的研究,山东大学硕士学位论文,2005
    [4]《铸造有色金属及其熔炼》联合编写组.铸造有色合金及其熔炼,北京:国防工业出版社,1980
    [5]X.F. Liu, J.G. Qiao, Y.Y. Wu, X.J. Liu, X.F. Bian. EPMA analysis of calcium-rich compounds in near eutectic Al-Si alloys, Journal of Alloys and Compounds,2005,388:83-90
    [6]A.A. Zaldivar-Cadena, A. Flores-Valdes. Prediction and identification of calcium-rich phases in Al-Si alloys by electron backscatter diffraction EBSD/SEM, Materials Characterization, 2007,58:834-841
    [7]S. El-Hadad, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra. Effects of Bi and Ca addition on the characteristics of eutectic Si particles in Sr-modified 319 alloys, International Journal of Cast Metals Research,2003,15:551-564
    [8]林萍华.共晶Al-Si合金加Ca细化的试验研究,特种铸造及有色合金,1987,(2):28-33
    [9]B.E. Slattery, A. Edrisy, T. Perry. Investigation of wear induced surface and subsurface deformation in a linerless Al-Si engine, Wear,2010,269:298-309
    [10]K. Nogita, A. Knuutinen, S.D. McDonald, A.K. Dahle. Mechanisms of eutectic solidification in Al-Si alloys modified with Ba, Ca, Y and Yb, Journal of Light Metals,2001,1:219-228
    [11]刘相法,乔进国,张希华,刘相俊,边秀房.共晶型Al-Si合金中(Can-x,Nax) Pm化合物的形成与磷变质失效分析,金属学报,2004,40(3):245-250
    [1]H.H. Zhang, H.L. Duan, G.J. Shao, L.P. Xu. Modification mechanism of cerium on the AI-18Si alloy, Rare Metals,2008,27:59-63
    [2]F.C. Robles Hernandez, J.H. Sokolowski. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys, Journal of Alloys and Compounds,2006,426:205-212
    [3]F.C. Robles Hernandez, J.H. Sokolowski. Novel image analysis to determine the Si modification for hypoeutectic and hypereutectic Al-Si alloys, Journal of the Minerals Metals & Materials Society,2005,57:48-52
    [4]D.Y. Maeng, J.H. Lee, C.W. Won, S.S. Cho, B.S. Chun. The effects of processing parameters on the microstructure and mechanical properties of modified B390 ally in direct squeeze casting, Journal of Materials Processing Technology,2000,105:196-203
    [5]刘相法,乔进国,刘玉先,李士同,边秀房.Al-P中间合金对共晶和过共晶Al-Si合金的变质机制,金属学报,2004,40(5):471-476
    [6]J.G. Qiao, X.F. Liu, X.J. Liu, X.F. Bian. Relationship between microstructures and contents of Ca/P in near eutectic Al-Si piston alloys, Materials Letters,2005,59:1790-1794
    [7]X.F. Liu, Y.Y. Wu, X.F. Bian. The nucleation sites of primary Si in Al-Si alloys after addition of boron and phosphorus, Journal of Alloys and Compounds,2005,391:90-94
    [8]W.J. Kyffin, W.M. Rainforth, H. Jones. Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy, Journal of Materials Science,2001,36:2667-2672
    [9]M. Faraji, I. Todd, H. Jones. Effect of solidification cooling rate and phosphorus inoculation on number per unit volume of primary silicon particles in hypereutectic aluminium-silicon alloys, Journal of Materials Science,2005,40:6363-6365
    [10]F. Yilmaz, O.A. Atasoy, R. Elliott. Growth structures in aluminium-silicon alloys Ⅱ. The influence of strontium, Journal of Crystal Growth,1992,118:377-384
    [11]H.K. Yi, D. Zhang. Morphologies of Si phase and La-rich phase in as-cast hypereutectic Al-Si-xLa alloys, Materials Letters,2003,57:2523-2529
    [12]J.Y. Chang, G.H. Kim, I.G. Moon, C.S. Choi. Rare earth concentration in the primary Si crystal in rare earth added Al-21wt.%Si alloy, Scripta Materialia,1998,39:307-314
    [13]王泽华,毛协民,张金龙,欧阳志英Sr-PM复合变质过共晶铝硅合金,特种铸造及有色合金,2005,25(4):241-243
    [14]S.Z. Beer. The solution of aluminum phosphide in aluminum, Journal of The Electrochemical Society,1969,116:263-265
    [15]M.B. Panish, R.T. Lynch, S. Sumski. Phase and thermodynamic properties of the Ga-Al-P system:Solution epitaxy of Ga(x)Al(1-x)P, Transactions of the Metallurgical Society of AIME, 1969,245:559-563
    [16]H. Lescuyer, M. Allibert, G. Laslaz. Solubility and precipitation of AlP in Al-Si melts studied with a temperature controlled filtration technique, Journal of Alloys and Compounds,1998, 279:237-244
    [17]L.N. Yu, X.F. Liu, H.M. Ding, X.F. Bian. A new nucleation mechanism of primary Si by peritectic-like coupling of AlP and TiB2 in near eutectic Al-Si alloy, Journal of Alloys and Compounds,2007,432:156-162
    [18]A.L. Greer. Grain refinement of alloys by inoculation of melts, Philosophical Transactions of the Royal Society A,2003,361:479-495
    [19]B. Cantor. Heterogeneous nucleation and adsorption, Philosophical Transactions of the Royal Society A,2003,361:409-417
    [20]许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制,吉林大学博士学位论文,2007
    [21]2002 JCPDS-International Centre for Diffraction Data, PCPDFWIN v2.3
    [22]姚奕,毛协民,欧阳志英,鲁鑫,魏霓,杨虎,杨荣杰.高硅铝基耐磨材料中Bi对摩擦特性的影响,上海金属,2007,29(1):38-42
    [23]鲁鑫,曾一文,欧阳志英,魏霓,毛协民.Bi对A390过共晶高硅铝合金摩擦磨损特性的影响,摩擦学学报,2007,27(3):284-288
    [24]Y. Birol. Cooling slope casting and thixoforming of hypereutectic A390 alloy, Journal of Materials Processing Technology,2008,207:200-203
    [25]E. Kaschnitz, R. Ebner, Thermal diffusivity of the aluminum alloy Al-17Si-4Cu (A390) in the solid and liquid states, International Journal of Thermophysics,2007,28:711-722
    [26]R. Sterner, C. Rainer, US Patent 1940922,26 Dec.1933
    [27]C.R. Ho, B. Cantor. Heterogeneous nucleation of solidification of Si in Al-Si and Al-Si-P alloys, Acta Metallurgica et Materialia,1995,43:3231-3246
    [28]B. Cantor. Impurity effects on heterogeneous nucleation, Materials Science and Engineering A,1997,226-228:151-156
    [29]W. Klement, R.H. Willens, P. Duwez. Non-crystalline structure in solidified gold-silicon alloys, Nature,1960,187:869-870
    [30]P. Duwez, R.H. Willwns, W. Klement. Continuous series of metastable solid solutions in silver-copper alloys, Journal of Applied Physics,1960,31:1136-1137,1150
    [31]程天一,章守华.快速凝固技术与新型合金,北京:宇航出版社,1990
    [32]张荣生,刘海洪.快速凝固技术,北京:冶金工业出版社,1994
    [33]H. Jones. Formation of microstructure in rapidly solidified materials and its effect on properties, Materials Science and Engineering A,1991,137:77-85
    [34]A. Majumdar, B.C. Muddle, Microstructure in rapidly solidified Al-Ti alloys, Materials Science and Engineering A,1993,169:135-147
    [35]R. Trivedi. Microstructure characteristics of rapidly solidified alloys, Materials Science and Engineering A,1994,178:129-135
    [36]H.G. Alam, A.Z. Moghaddam, M.R. Omidkhah. The influence of process parameters on desulfurization of Mezino coal by HNO3/HCl leaching, Fuel Processing Technology,2009, 90:1-7
    [37]C.Z. Liu, L.Q. Ren, J. Tong, S.M. Green, R.D. Arnell. Effects of operating parameters on the lubricated wear behavior of a PA-6/UHMWPE blend:a statistical analysis, Wear,2002,253: 878-884
    [38]J.Y. Peng, F.Q. Dong, Q.W. Xu, Y.W. Xu, Y. Qi, X. Han, L.N. Xu, G.R. Fan, K.X. Liu. Orthogonal test design for optimization of supercritical fluid extraction of daphnoretin, 7-methoxy-daphnoretin and 1,5-diphenyl-l-pentanone from Stellera chamaejasme L. and subsequent isolation by high-speed counter-current chromatography, Journal of Chromatography A,2006,1135:151-157
    [39]L.N. Yu, X.F. Liu, H.M. Ding, X.F. Bian. A new nucleation of primary Si by like-peritectic coupling of AlP and Al4C3 in near eutectic Al-Si alloy, Journal of Alloys and Compounds, 2007,429:119-125
    [40]C. Li, X.F. Liu, Y.Y. Wu. Refinement and modification performance of Al-P master alloy on primary Mg2Si in Al-Mg-Si alloys, Journal of Alloys and Compounds,2008,465:145-150
    [41]Q. Ma. Heterogeneous nucleation on potent spherical substrates during solidification, Acta Materialia,2007,55:943-953
    [42]Y.Y. Wu, X.F. Liu, X.F. Bian. Effect of AlP on the eutectic nucleation in Ni-38wt.%Si alloys, Materials Science and Engineering A,2006,427:69-75
    [43]张茜.AlP在Al-Si熔体中的行为及P吸收率研究,山东大学硕士学位论文,2010
    (1) Vurgaftman, I.;Meyer, J.R.;Ram-Mohan, L. R. J. Appl.Phys.2001,89, 5815-5875.
    (2) Sharma, J. K.; Khan, D. C. Solid State Commun. 1979, 30, 111-113.
    (3) Cardwell, M. J. J. Cryst. Growth 1984, 70,97-102.
    (4) Gorbach, T. Y.; Holiney, R. Y.; Matveeva, L. A.; Smertenko, P. S.; Svechnikov, S. V.; Venger, E. R; Ciach, R.; Faryna, M. Thin Solid Films 1998,336,63-68.
    (5) Le Bourhis, E.; Patriarche, G Phys. Status Solidi 2002,189,175-181.
    (6) De Maria, G; Gingerich, K. A.; Malaspina, L; Piacente, V. J. Chem. Phys. 1966, 44,2531-2532.
    (7) Tsay, Y. R; Corey, A. J.; Mitra, S. S. Phys. Rev. B, 1975,12,1354-1357.
    (8) Wanagel, J.; Arnold, V.; Ruoff, A. L. J. Appl. Phys. 1976, 47,2821-2823.
    (9) Greene, R. G; Luo, H.; Ruoff, A. L. J. Appl. Phys. 1994, 76, 7296-7299.
    (10) Song, M. S.; Huang, B.; Zhang, M. X.; Li, J. G J. Cryst. Growth 2008, 310,4290-4294.
    (11) Zuo, M.; Liu, X. R; Sun, Q. Q.; Jiang, K. J. Mater. Process. Technol. 2009, 209,5504-5508.
    (12) Billig, E. Acta Metall 1957,5,54-55.
    (13) Bennett, A. I.; Longini, R. L. Phys. Rev. 1959,116,53-61.
    (14) Hamilton, D. R.; Seidensticker, R. G J. Appl. Phys. 1960, 31,1165-1168.
    (15)Fujiwara, K.; Maeda, K.; Usami, N.; Nakajima, K. Phys. Rev. Lett.2008,101, 055503.
    (16)Addamiano,A. J. Am. Chem. Soc.1960,82,1537-1540.
    (17)Yu, L. N.; Liu, X. F.; Ding, H. M.; Bian, X. F. J. Alloys Compd.2007,429, 119-125.
    (18)Li, C.; Liu, X. F.; Wu. Y. Y. J. Alloys Compd.2008,465,145-150.
    (19)Birkmann, B.; Hussy, S.; Sun, G.; Berwian, P.; Meissner, E.; Friedrich, J.; Muller, G.J. Cryst. Growth 2006,297,133-137.
    (20)Jackson, K.A. In Liquid Metals and Solidification; Jackson, K. A., Ed.; American Society for Metals:Cleveland,1958; p 174.
    (21)Jackson. K. A. J. Cryst. Growth 2004,264,519-529.
    (22)Terentiev, S. Diamond Relat. Mater.1999,8,1444-1450.
    (23)Hurle, D. T.J. J. Cryst. Growth 1995,147,239-250.
    (24)Koh, H. J.; Fukuda, T.; Choi, M. H.; Park, I. S. Cryst. Res. Technol.1995,30, 397-403.
    (25)Steinemann, A.; Zimmerli, U. Solid-State Electron.1963,6,597-604.
    (26)Hellawell, A. Progr. Mat. Sci.1970,15,3-78.
    (27)Mullin, J. B. J. Cryst. Growth 2004,264,578-592.
    (28)Wagner, R. S.Acta Metall.1960,8,57-60.
    (29)Ho, C. R.; Cantor, B. Acta Metall. Mater.1995,43,3231-3246.
    (30)Cantor, B. Mater. Sci. Eng.,A 1997.226-228,151-156.
    (31)Liu, X. F.; Qiao, J. G.; Liu, Y. X.; Li, S. T.; Bian, X.F.Acta Metall. Sin.2004,40, 471-476.
    (32)Xu, C.L., Ph.D Thesis, Jilin University,2007.
    (33)Bardsley, W.; Boulton, J. S.; Hurle, D. T.J. Solid-State Electron.1962,5, 395-403.
    [1]J. Li, M. Elmadagli, V.Y. Gertsman, J. Lo, A.T. Alpas, Mater. Sci. Eng. A 421 (2006)317-327.
    [2]M.M. Haque, A. Sharif, J. Mater. Process. Technol.118 (2001) 69-73.
    [3]V.C. Srivastava, R.K. Mandal, S.N. Ojha, Mater. Sci. Eng. A 383 (2004) 14-20.
    [4]R. Sterner, C. Rainer, US Patent 1940922,26 December 1933.
    [5]A. Addamiano, J. Am. Chem. Soc.82 (1960) 1537-1540.
    [6]C.R. Ho, B. Cantor, Acta Metall. Mater.43 (1995) 3231-3246.
    [7]B. Cantor, Mater. Sci. Eng. A 226-228 (1997) 151-156.
    [8]Q. Ma, Acta Mater.55 (2007) 943-953.
    [9]F.C. Robles Hernandez, J.H. Sokolowski, J. Alloys Compd.426 (2006) 205-212.
    [10]H.H. Zhang, H.L. Duan, G.J. Shao, L.P. Xu, Rare Met.27 (2008) 59-63.
    [11]D.Y. Maeng, J.H. Lee, C.W. Won, S.S. Cho, B.S. Chun, J. Mater. Process. Technol.105 (2000) 196-203.
    [12]M. Faraji, I. Todd, H. Jones, J. Mater. Sci.36 (2001) 2667-2672.
    [13]M. Zuo, X.F. Liu, Q.Q. Sun, K. Jiang, J. Mater. Process. Technol.209 (2009) 5504-5508.
    [14]Q. Zhang, X.F. Liu, H.S. Dai, J. Alloys Compd.480 (2009) 376-381.
    [15]K.A. Gingerich, Nature 200 (1963) 877-877.
    [16]K.S. Irani, K.A. Gingerich, J. Phys. Chem. Solids 24 (1963) 1153-1158.
    [17]L.Y. Chen, M.X. Huang, Y.L. Gu, L. Shi, Z.H. Yang. Y.T. Qian, Mater. Lett.58 (2004)3337-3339.
    [18]R.F. Jarvis, R.M. Jacubinas, R.B. Kaner, Inorg. Chem.39 (2000) 3243-3246.
    [19]R.L. Ripley, J. Less-Common.Met.4 (1962) 481-584.
    [20]S. Motojima, T. Wakamatsu, K. Sugiyama, J. Less-Common.Met.82 (1981) 1-404.
    [21]A.R. Moodenbaugh, D.C. Johnston, R. Viswanathan, Mater. Res. Bull.9 (1974) 1589-1692.
    [22]Y.H. Cho, H.C. Lee, K.H. Oh, A.K. Dahle, Metall. Mater. Trans. A 39 (2008) 2435-2448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700