Al-Mg系合金挤压加工变形及低周疲劳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金具有密度低、比强度和比刚度高的特点,目前已在航空工业和汽车工业中得到了广泛的应用。为了进一步拓展铝合金的应用领域,需要采取一定的措施以改善铝合金的组织、提高铝合金的力学性能。稀土元素被认为是改善铝合金组织及力学性能的有效的合金元素。因此,研究稀土在铝合金中的作用,对于新型高强、高韧铝合金的开发和工程应用具有重要的意义。此外,等通道转角挤压(ECAP)技术因其可以有效地细化材料的组织,改善材料的力学性能,已经引起人们的普遍关注。作为工程结构材料,疲劳断裂是其主要失效方式之一。为此,本文主要针对不同处理状态的挤压变形Al-4Mg-0.3Ce合金、经过T6处理的Al-0.8Mg-0.6Si-x(Sc, Er)合金以及经过等通道转角挤压后的Al-0.8Mg-0.6Si-0.3Er合金的低周疲劳行为开展研究,以期为这些铝合金的抗疲劳设计和合理使用提供可靠的理论依据。
     实验结果表明,不同处理状态的挤压变形Al-4Mg-xCe合金、经过T6处理的挤压变形Al-0.8Mg-0.6Si-x(Sc, Er)合金以及等通道转角挤压Al-0.8Mg-0.6Si-0.3Er合金可表现为循环硬化、循环稳定和循环软化,主要取决于外加总应变幅的高低、热处理方式、添加稀土元素的种类以及等通道转角挤压的路径和道次等因素;固溶处理可以提高挤压变形Al-4Mg-0.3Ce合金在较高和较低外加总应变幅下的疲劳寿命,时效处理可以有效地提高挤压变形Al-4Mg-0.5Ce合金的疲劳寿命,而时效处理和固溶+时效处理均可有效地提高Al-4Mg-1.0Ce合金的疲劳寿命;不同成分和加工处理状态的合金的塑性应变幅、弹性应变幅与断裂时的载荷反向周次之间的关系分别服从Coffin-Manson和Basquin公式,其中经过T6处理的Al-0.8Mg-0.6Si-0.2Sc合金的塑性应变幅与断裂时的载荷反向周次之间呈双线性关系。
     在低周疲劳加载条件下,不同处理状态的挤压变形Al-4Mg-xCe合金、经过T6处理的挤压变形Al-0.8Mg-0.6Si-x(Sc,Er)合金以及经过等通道转角挤压的Al-0.8Mg-0.6Si-0.3Er合金的疲劳裂纹均是以穿晶方式萌生于试样表面,并以穿晶方式扩展。
Aluminum alloys have such characteristics as low density, high specific strength and rigidity, and have found a wide application in aeronautical and automotive industries. To extend the application field of aluminum alloys, some measures, which can improve the microstructures and mechanical properties of aluminum alloys, need to be taken. The rare earth elements are considered as the most effective elements available to enhance the microstructures and mechanical properties of aluminum alloys. Thus, the research concerning the effect of rare earth elements in aluminum alloys is of important significance for developing new aluminum alloys with high strength and ductility. In addition, the equal-channel angular pressing (ECAP) technology has been paid much attention because it can effectively refine the microstructures of materials and thus improve the mechanical properties of materials. As structural materials, the fatigue fracture is one of their main failure forms. In this investigation, the low-cycle fatigue behaviors of the extruded Al-4Mg-0.3Ce alloys with different treatment states, Al-0.8Mg-0.6Si-x(Sc, Er) alloys subjected to T6 treatment, and Al-0.8Mg-0.6Si-0.3Er alloys after ECAP have been studied in order to provide a reliable theoretical foundation for both fatigue resistant design and reasonable usage of these aluminum alloys.
     The experimental results reveal that the extruded Al-4Mg-xCe alloys with different treatment states, Al-0.8Mg-0.6Si-x(Sc, Er) alloys subjected to T6 treatment and Al-0.8Mg-0.6Si-0.3Er alloys after ECAP exhibit the cyclic strain hardening, softening and stability, which mainly depends on the imposed total strain amplitude, heat treatment state, type of added rare earth element as well as route and pass of ECAP. The solution treatment can enhance the fatigue lives of the extruded Al-4Mg-0.3Ce alloy at lower and higher total strain amplitudes, direct aging treatment can improve the fatigue lives of the extruded Al-4Mg-0.5Ce alloy, and both direct aging and solution plus aging treatments can increase the fatigue lives of the extruded Al-4Mg-1.0Ce alloy. For above-mentioned alloys, the relations between elastic strain amplitude, plastic strain amplitude and reversals to failure can be described by Basquin and Coffin-Manson equations, respectively. In addition, for the extruded Al-0.8Mg-0.6Si-0.2Sc alloy, a bilinear relation between the plastic strain amplitude and reversals to failure has been noted.
     Under low-cycle fatigue loading condition, the fatigue cracks initiate transgranularly at the surface of fatigue samples and propagate in a transgranular mode.for the extruded Al-4Mg-xCe alloys with different treatment states, extruded Al-0.8Mg-0.6Si-x(Sc, Er) alloys subjected to T6 treatment and ECAPed Al-0.8Mg-0.6Si-0.3Er alloys.
引文
[1]林肇琦.有色金属材料学.沈阳:东北工学院出版社,1986.
    [2]潘复生,张丁非,杨明波等编.铝合金及应用.北京:化学工业出版社,2006.
    [3]罗兵辉,柏振海,周华等.几种铸造铝合金的铸造性能、力学性能及耐蚀性.矿冶工程,2001,21(2):67-71.
    [4]《轻金属材料加工手册》编写组.轻金属材料加工手册(上册).北京:冶金工业出版社,1979.
    [5]王晓敏.工程材料学.哈尔滨:哈尔滨工业大学出版社,2005.
    [6]Dash M, Makhlouf M. Effect of key alloying elements on the feeding characteristics of aluminum-silicon casting alloys. Journal of Light Metals,2001,1:251-265.
    [7]李元元,郭国文,罗宗强等.高强韧铸造铝合金材料研究进展.特种铸造及有色合金,2000(6):45-47.
    [8]唐明君,吉泽升,吕新宇.5×××系铝合金的研究进展.轻合金加工技术,2004,32(7):1-7.
    [9]陈刚,陈鼎.锰在有色金属中的应用.中国锰业,2003,21(1):34-37.
    [10]司乃潮,傅明喜.有色金属材料及制备.北京:化学工业出版社,2006.
    [11]曾渝,尹志民,潘青林等.超高强铝合金的研究现状及发展趋势.中南工业大学学报,2002,33(6):592-596.
    [12]钟声,苗忠,曹占义.稀土在铝硅合金中细化和变质作用微观机制.长春大学学报,2001,11(4):9-11.
    [13]唐远景.我国铝及铝合金的应用及趋势浅析.轻金属,1994(5):61-64.
    [14]周惦武,刘金水,肖锋等.铝合金挤压型材工艺及在汽车中的应用.金属成形工艺,2004,22(1),62-64.
    [15]柏延武,高红义.铝合金在铁道车辆上应用的探讨.铁路采购与物流,2009,(03):41-43.
    [16]林学丰.铝合金在舰船中的应用.铝加工,2003,148(1):10-11.
    [17]孙丹丹,李文东.铝合金在汽车中的应用.山东内燃机,2003(1):34-36.
    [18]徐永超,康达昌.防锈铝的充液拉伸.中国有色金属学报,2003,13(1):60-64.
    [19]林乐耘,刘增才,徐杰等.实海暴露防锈铝合金局部腐蚀敏感性研究.腐蚀科学与防护技术,2000,12(4):26-28.
    [20]汤小红,胡泽豪.机车用防锈铝氩弧焊工艺性能研究.电焊机,2001,31(4):5-7.
    [21]李君峰,齐彦庆,李万峰.A1-Mg合金MIN焊焊接缺陷及预防措施.化工机械,2002,29(3):7-9.
    [22]邢丽,柯黎明,周细应等.防锈铝LF6的固态塑性连接工艺.中国有色金属学报,2002,12(6):1162-1166.
    [23]邢丽,柯黎明,周细应等.LF6铝合金薄板的搅拌摩擦焊焊缝成型及性能.南昌航空工业学院学报(自然科学版),2001,15(2):23-27.
    [24]傅莉,毛信孚,史学芳.LF6防锈铝与HR-2抗氢不锈钢摩擦焊接.焊接学报,2003,24(1):9-13.
    [25]周海晖,旷亚非,侯朝辉等.LF4合金在磷酸盐-氢氧化钠溶液中的微弧氧化.湖南大学学报(自然科学版),2001,28(5):67-71.
    [26]王联菊.铝镁铸造合金在汽车零件上的应用[J].汽车工艺与材料,1990,(05):40-45.
    [27]张永红,尹志民.微量Sc,zr对A1-Mg合金的组织和力学性能的影响.稀土,2003,23(3):29-32.
    [28]杜挺.稀土元素在金属材料中的一些物理化学作用.金属学报,1997,33(1):67-77.
    [29]Singh V, Prasad K S, Gokhale A A. Microstructure and age hardening response of cast Al-Mg-Sc-Zr alloys. Journal of Materials Science,2004,39:2861-2864.
    [30]郭旭涛,李培杰,熊玉华等.稀土在铝、镁合金中的应用.材料工程,2004(8):60-64.
    [31]Kendig K L, Miracle D B. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Materialia, 2004,50:4165-4175.
    [32]孙伟成,张淑荣,侯爱芹.稀土在铝合金中的行为.北京:兵器工业出版社,1992.
    [33]张启运.稀土元素对A1-Si共晶合金的变质作用.金属学报,1981,17(2):130-136.
    [34]Davydov V G, Rostova T D, Zakharov V V. The principles of making and alloying addition of scandium to aluminium alloys. Materials Science and Engineering,2000, A280:30-36.
    [35]Norman A F, Prangnell P B, Mcewen R S. The solidification behavior of dilute aluminium-scandium alloys. Acta Materialia,1998,46(16):5715-5732.
    [36]尹志民,高拥政,潘青林等.微量Sc和Zr对Al-Mg合金铸态组织的晶粒细化作用.中国有色金属学报,1997,7(4):75-79.
    [37]杨磊,潘青林,尹志民等.微量Sc和zr对Al-Zn-Mg合金组织与性能的影响.材料工程,2001(7):29-32.
    [38]朱大鹏,尹志民,滕浩等.微量Sc和Zr对Al-Mg-Mn合金组织和性能的影响.宇航材料工艺,2004,34(6):45-49.
    [39]徐国富,杨军军,金头男等.微量稀土Er对Al-5Mg合金组织与性能的影响.中国有色金属学报,2006,16(5):768-774.
    [40]Nogita K, Knuutinen A, McDonald S D et al. Mechanisms of eutectic solidification in Al-Si alloys modified with Ba, Ca, Y and Yb.Journal of Light Metals,2001,1:219-228.
    [41]Yin Z M, Pan Q L, Zhang Y et al. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys. Materials Science and Engineering,2000, A280:151-155.
    [42]陈显明,潘青林,周昌荣等.微量钪对Al-Mg-Mn合金组织与性能的影响.稀有金属,2003,27(3):403-405.
    [43]雷广孝.稀土在铝及铝合金中的作用和应用概况.轻合金加工技术,1990(2):5-10.
    [44]丁培道.稀土对6063铝合金热塑性的影响.材料科学进展,1990,4(3):212-217.
    [45]谭澄宇,陈准,郑子樵Al-Mg-Sc合金的拉伸性能和显微组织研究.铝加工,2002,25(4):1-3.
    [46]潘青林,尹志民,邹景霞等.微量Sc在Al-Mg合金中的作用.金属学报,2001,37(7):749-753.
    [47]柏振海,熊俊,罗兵辉等.钪在铝合金中的作用.铝加工,2001,24(6):33-37.
    [48]周晓霞,张仁元,刘银峁.稀土元素在铝合金中的作用和应用.新技术新工艺,2003,4:43-45.
    [49]Bian X F. A master alloy for sphereodisation of needle form iron compounds in aluminium alloy. Cast Metals,1993,6(3):2571-2573.
    [50]P E沙林.金属材料中的稀土元素.材料工程,1993(1):1-5.
    [51]曹大力,石忠宁,杨少华等.稀土在铝及铝合金中的作用.稀土,2006,27(5):87-93.
    [52]王祝堂,张燕,江斌.钪-铝合金的新型微量合金元素.轻合金加工技术,2000,28(1):31-34.
    [53]魏晓伟,曾明.稀土对铸造铝铜合金流动性和热裂倾向性的影响.铸造技术,1997(3):46-50.
    [54]邓小民,挤压温度对2Al2铝合金T4状态管材力学性能的影响.轻合金加工技术,2004,32(2):33-34.
    [55]刘莹,王炳德,王本贤.高强度铝合金管材热挤压工艺及力学性能分析.机械设计与制造,2006(8):83-84.
    [56]王涛,尹志民.高强变形铝合金的研究现状和发展趋.稀有金属,2006,30(2):197-202.
    [57]胡赓祥,蔡殉.材料科学基础.上海:上海交通大学出版社,2000.
    [58]Caceres C H, Selling B I. Casting defects and the tensile properties of an Al-Si-Mg alloy. Materials Science and Engineering,1996, A220:109-116.
    [59]蹇海根,姜锋,徐忠艳等.航空用高强韧Al-Zn-Mg-Cu系铝合金的研究进展.热加工工艺,2006,35(12):61-66.
    [60]张玉敏,丁桦,孝云祯等.等径弯曲通道变形(ECAP)的研究现状及发展趋势.材料与冶金学报,2002,1(4):258-259.
    [61]傅定发,张辉,夏伟军等.细晶镁合金的制备方法.轻合金加工技术,2004,32(3):41-43.
    [62]赵美荣,许树勤,边丽萍等.等通道转角挤压工艺有限元分析.热加工工艺,2005(1):31-33.
    [63]刘英,李元元,张大童.金属材料的等通道转角挤压研究进展.材料科学与工程,2002,20(4):613-617.
    [64]吴伟,张禄廷,陈立佳.等通道角度挤压对两种镁合金拉伸性能的影响.沈阳工业大学学报,2003,25(1):18-22.
    [65]魏伟,陈光.ECAP等径角挤压变形参数的研究.兵器科学与工程,2002,25(6):61-62.
    [66]汪建敏,许晓静,石凤健等.等径角挤压获得超细晶铜的研究.热加工工艺,2004(7):6-8.
    [67]Perez C J. On the correct selection of the channel die in ECAP processes. Scripta Materialia, 2004,50:387-389.
    [68]Sun P L, Kao P W, Chang C P. Effect of deformation route on microstructural development in aluminum processed by equal channel angular extrusion. Metallurgical and Materials Transactions,2004,35A:1359-1360.
    [69]居志兰,戈晓岚,许晓静. ECAP细化晶粒法的仿真与分析.材料科学与工程学报,2003,21(2):255-258.
    [70]Matsubaba K, Miyahara Y, Horita Z et al. Achieving enhanced ductility in a dilute magnesium alloy through severe plastic deformation. Metallurgical and Materials Transactions,2004,35A: 1735-1737.
    [71]Furukawa M, Horita Z, Nemoto M et al. Achieving superplasticity at high strain rate using equal channel angular pressing. Materials Science and Technology,2000,16:1330-1333.
    [72]Vinogradov A, Washikita A, Kitagawa K et al. Fatigue life of fine-grain Al-Mg-Sc alloys produced by equal-channel angular pressing. Materials Science and Engineering,2003, A349: 318-326.
    [73]Liu S M, Wang Z G. Fatigue properties of 8090 Al-Li alloy processed by equal-channel angular pressing. Scripta Materialia,2003,48:1421-1426.
    [74]Vinogradov A, Nagasaki S, Patlan V et al. Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing. NanoStructured Materials,1999,11(7):925-934.
    [75]张玉敏,丁桦,孝云祯.等径弯曲通道变形(ECAP)的研究现状及发展趋势.材料与冶金学报,2002,1(4):613-617.
    [76]Altenberger I, Scholtes B. Improvement of fatigue behaviour of mechanically surface treated materials by annealing. Scripta Materialia,1999,41(8):873-881.
    [77]McDowell D L, Gall K, Horstemeyer M F. Microstructure-based fatigue modeling of cast A356-T6 alloy. Engineering Fracture Mechanics,2003,70:49-80.
    [78]Wang Q G., Apelian D, Lados D A. Fatigue behavior of A356-T6 aluminum cast alloys. Journal of Light Metals,2001,1:73-84.
    [79]王清远,王中光,李守新.高速铁路关键材料超长寿命疲劳断裂性能.机车电传动,2003(增刊):28-29.
    [80]张秀梅.Ce的加入对变形铝合金组织与疲劳性能的影响.包头钢铁学院学报,2000,19(3):243-246.
    [81]Meng L, Zheng X. L, Tian L. Effect of alkali metal impurities and cerium modification on the fatigue behaviour of 8089 alloy sheets. Materials Science and Engineering,1995, A196:191-196.
    [82]Watanabe C, Jin C Y, Monzen R et al. Low-cycle fatigue behavior and dislocation structure of an Al-Mg-Sc alloy. Materials Science and Engineering,2004, A387-389:552-555.
    [83]Kobayashi T, Ito T, Yao Q et al. Fatigue properties and microstructure of Al-Si-Cu system casting alloys. Materials Science and Technology,1999,15:1037-1043.
    [84]Bolleau J M, Allison J E. The Effect of solidification time and heat treatment on the fatigue properties of a cast 319 aluminum alloy. Metallurgical and Materials Transcations,2003,34A: 1807-1820.
    [85]Toshiyuki F, Chihiro W, Yoshimichi N et al. Microstructural evolution during low cycle fatigue of a 3003 aluminum alloy. Materials Science and Engineering,2001, A319-321:592-596.
    [86]Eswara P N, Vogt D, Bidlingmaier T et al. High temperature, low cycle fatigue behaviour of an aluminium alloy (Al-12Si-CuMgNi). Materials Science and Engineering,2000, A276:283-287.
    [87]Srivatsan T S, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524. Materials and Design,2002,23:129-139.
    [88]申宏伟,穆恩生,邹定强.几种铝合金的循环特性与疲劳抗力.中国铁道科学报,1997,18(2):99-101.
    [89]Kim K C, Nam S W. Effects of Mn-dispersoids on the fatigue mechanism in an Al-Zn-Mg alloy. Materials Science and Engineering,1998, A244:257-262.
    [90]Roder O, Wirtz T, Gysler A, LUtjering G. Fatigue properties of Al-Mg alloys with and without scandium. Material Science and Engineering,1997, A234-236:181-184.
    [91]Buffiere J Y, Savelli S, Jouneau P H et al. Experimental study of porosity and its relation to fatigue mechanisms of model Al-Si7-Mg0.3 cast Al alloys. Materials Science and Engineering, 2001, A316:115-126.
    [92]Chen D L, Chaturvedi M C, God N et al. Fatigue crack growth behaviorof X2095 Al-Li alloy. International Journal of Fatigue,1999,21:1079-1086.
    [93]Blankenship C P, Kaisand L R. Elevated temperature fatigue crack propagation behavior of an Al-Cu-Mg alloy. Scripta Materialia,1996,34(9):1455-1460.
    [94]Srivatsan T S. An investigation of the cyclic fatigue and fracture behavior of aluminum alloy 7055. Materials and Design,2002,23:141-151.
    [95]Hamana D, Bouchear M, Derafa A. Effect of plastic deformation on the formation and dissolution of transition phases in Al-12wt.%Mg alloy. Materials Chemistry and Physics,1998,57:99-110.
    [96]Gurbuz R, Sarioglu F. Fatigue crack growth behaviour in aluminium alloy 7475 under different aging conditions. Materials Science and Technology,2001,17:1539-1543.
    [97]Bray G H, Glazov M, Rioja R J et al. Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys. International Journal of Fatigue,2001,23:265-276.
    [98]Luo A A, Kubic R C, Tartaglia J M. Microstructure and fatigue properties of hydroformed aluminum alloys 6063 and 5754. Metallurgical and Materials Transactions,2003,34A: 2549-2557.
    [99]Raske D T, Morrow J. Mechanics of materials in low cycle fatigue testing. ASTM STP 465, Philadelphia:American Society for Testing and Materials,1969,1-25.
    [100]Picu R C, Zhang D. Atomistic study of pipe diffusion in Al-Mg alloys. Acta Materialia,2004,52: 161-171.
    [101]钱匡武,李效琦,萧林钢等.金属和合金中的动态应变时效现象.福州大学学报,2001,29(6):8-21.
    [102]Kumar S, Shabadi R, Patel M M.. Influence of precipitation on serrated flow in Al-5Zn-1Mg alloy. Materials Science and Technology,2003,19:1344-13.
    [103]肖亚庆,唐桂林.稀土在6063铝合金中存在的形式和对组织性能的影响.轻合金加工技术,1996,24(11):33-36.
    [104]Nie Z, Jin T, Fu J et al. Research on rare earth in aluminium. Materials Science Forum,2002, 396-402:1731-1736.
    [105]Davydov V G. Scientific principles of making an alloying addition of scandium to aluminum alloys. Materials Science and Engineering,2000, A280:30-36.
    [106]Drits M E, Yu G. Bykov, Toropova L S. Effect of ScAl3 phase dispersity on hardening of Al-6.3%Mg-0.21%Sc alloy. Technical Information,1985(4):309-312.
    [107]杨军军,聂祚仁,金头男等.稀土铒在Al-Zn-Mg合金中的存在形式与细化机理.中国有色金属学报,2004,14(4):620-626.
    [108]Li F, Wang Y, Chen L J et al. Low-cycle fatigue behavior of two magnesium alloys. Journal of Materials Science,2005,40:1529-1531.
    [109]Saisrinadh K V, Singh V. Elimination of dual slope from the Coffin-Manson relationship of low-cycle fatigue in the titanium alloy Timetal 834 by cold rolling. Metallurgical and Materials Transactions,2007,38A:1868-1871.
    [110]Valsan M. and Parameswaran P. High temperature low-cycle fatigue behavior of a Nimonic PE-16 superalloy-corralation with deformation and fracture. Metallurgical Transcations,1992, 23A:1751-1761.
    [111]Lerch B A, Gerold M V. Cyclic hardening mechanisms in Nimonic 80A. Metallurgical Transactions,1987,18A:2135-2141.
    [112]Singh V, Sundararaman M., Chen W et al. Low-cycle fatigue behavior of Nimonic PE16 at room temperature. Metallurgical Transactions,1991,22A:499-506.
    [113]Mediratta S R, Ramaswamy V, Singh V et al. Dependence of strain hardening exponent on the volume fraction and carbon content of martensite in dual phase steels during multistage work hardening. Journal of Materials Science,1990,9:205-206.
    [114]Coffin L F. Noteon low cycle fatigue laws. Journal of Materials Science,1971,6:388-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700